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Abstract
Fact checking is a challenging task that requires
corresponding evidences to verify the property
of a claim based on reasoning. Previous stud-
ies generally i) construct the graph by treat-
ing each evidence-claim pair as node which is
a simple way that ignores to exploit their im-
plicit interaction, or building a fully-connected
graph among claim and evidences where the
entailment relationship between claim and ev-
idence would be considered equal to the se-
mantic relationship among evidences; ii) ag-
gregate evidences equally without considering
their different stances towards the verification
of fact. Towards the above issues, we propose a
novel heterogeneous-graph reasoning and fine-
grained aggregation model, with two following
modules: 1) a heterogeneous graph attention
network module to distinguish different types
of relationships within the constructed graph; 2)
fine-grained aggregation module which learns
the implicit stance of evidences towards the
prediction result in details. Extensive experi-
ments on the benchmark dataset demonstrate
that our proposed model achieves much better
performance than state-of-the-art methods.

1 Introduction

Today, social media is considered as the biggest
platform to share news and seek information. How-
ever, misinformation is spreading at increasing
rates and may cause great impact to society. The
reach of fake news was best highlighted during the
critical months of the 2016 U.S. presidential elec-
tion generated millions of shares and comments on
Facebook (Zafarani et al., 2019). Therefore, auto-
matic detection of fake news on social media has
become a significant and beneficial problem. We
pay more attention on fact checking task, which
utilizes external knowledge to determine the claim
veracity when given a claim.

Verifying the truthfulness of a claim with respect
to evidence can be regarded as a special case of rec-
ognizing textual entailment (RTE) (Dagan et al.,

2005) or natural language inference (NLI) (Bow-
man et al., 2015). Typically, existing approaches
contain the representation learning process and ev-
idence aggregation process. Representation pro-
cess tries to enhance the semantic expression of
claim and evidence via sequence structure meth-
ods (Hanselowski et al., 2018a; Soleimani et al.,
2020) or graph based neural networks (Zhou et al.,
2019; Liu et al., 2019) where they utilize simple
combination methods such as just dealing with
claim-evidence pair as graph nodes. The evidence
aggregation process aims to find out the most im-
portant evidence which contributes more to claim
verification with different methods like mean pool-
ing, attention-based aggregation, etc.

However, existing approaches such as Liu et al.
(2019) establish a semantic-based graph, which ig-
nore the difference between relationships among
nodes in reasoning graph. For example in Fig-
ure 1, given the claim “Al Jardine is an American
rhythm guitarist.” and the retrieved evidence sen-
tences (i.e., E1-E5), making the correct prediction
requires model to reason that “Al Jardine” is the
person mentioned in E2 and “rhythm guitarist” is
occurred in E1 based on the entailment interac-
tion of claim with the evidences. Furthermore, we
also expect the semantical coherence of multiple
evidences from E1 to E5 to automatically filter un-
related evidence such as E3-E5. We believe it’s
crucial for verification to mine distinct relation-
ships within the reasoning graph.

Besides, in previous methods (Zhou et al., 2019;
Liu et al., 2019), stance of evidences towards claim
are aggregated equally or some irrelevant evidences
are prevented from predicting the veracity of claim
roughly via simple attention mechanism. However,
each piece of evidence has a different impact on the
claim, which needs to be exploited on fine-grained
perspective.

To alleviate above issues, we propose a
novel Heterogeneous-Graph Reasoning and Fine-
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Figure 1: A motivating example for fact checking and
the FEVER task. The purple solid line denotes the
semantical coherence between each piece of evidence.
The purple dotted line denotes entailment consistence
between claim and evidences. Verifying the fact requires
exploiting these two different implicit relationships dur-
ing reasoning process.

Grained Aggregation Model (HGRGA), which not
only enhances the representation learning for claim
and evidences by capturing different types of re-
lationships within the constucted graph but also
aggregating stances of evidences towards claim
concretely. More specifically, we construct a het-
erogeneous evidence-evidence-claim graph based
on graph attention network to enhance the represen-
tation of claim and evidences. Besides, we utilize
an capsule network to further aggregate evidences
with different implicit stances towards the claim,
and learn the weights via dynamic routing which in-
dicate how each of evidence attributes the veracity
of claim.

We conduct experiments on the real-world
benchmark dataset. Extensive experimental re-
sults demonstrate the effectiveness of our model.
HGRGA boosts the performance for fact check-
ing and the main contributions of this work are
summarized as follows:

• To our best knowledge, this is the first study
of representing reasoning structure as a het-
erogeneous graph. The graph attention based
heterogeneous interaction achieves significant

improvements over state-of-the-art methods.

• We incorporate the capsule network struc-
ture into our proposed model to learn implicit
stances of evidences towards the claim on fine-
grained perspective.

• Experimental results show that our model
achieves superior performance on the large-
scale benchmark dataset for fact verification.

2 Background and related work

2.1 Problem fomulation

The input of our task is a claim and a collection
of Wikipedia articles D. The goal is to extract
a set of evidence sentences from D and assign
a veracity relation label y ∈ Y = {S,R,N} to
a claim with respect to the evidence set, where
S = SUPPORTED, R = REFUTED, and N =
NOTENOUGHINFO(NEI).

2.2 Fact checking

The process of evidence-based fact checking in-
volves the following three subtasks: document
retrieval, evidence sentence selection and claim
verification. In the document retrieval phrase, re-
searchers use a hybrid approach that combines
search results from the MediaWiki API1 and the re-
sults on the basic of the term frequency-inverse doc-
ument frequency (TF-IDF) model (Hanselowski
et al., 2018b). In the evidence sentence se-
lection phrase, Nie et al. (2019); Hanselowski
et al. (2018b) use the enhanced sequential infer-
ence model (ESIM) to encode and align a claim-
evidence pair. Chen et al. (2016) train a rank-
ing model to rank evidence sentences via different
kinds of loss, such as pointwise and pairwise loss.
Many fact checking approaches aims to improve
the performance of claim verification phrase. Pre-
vious work modified existing RTE/NLI models to
deal with multiple sentences (Thorne et al., 2018a;
Nie et al., 2019; Hanselowski et al., 2018b), con-
catenated all sentence (Stammbach and Neumann,
2019).

Recently, there are some approaches related to
graph-based neural networks (Kipf and Welling,
2016). For example, Zhou et al. (2019) build a
fully-connected evidence graph where each node
indicates a piece of evidence while Liu et al. (2019)
conduct fine-grained evidence propagation in the

1https://www.mediawiki.org/wiki/API
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graph. Zhong et al. (2019) use semantic role label-
ing (SRL) to build a graph structure, where a node
can be a word or a phrase depending on the SRL’s
outputs.

2.3 Pre-trained language models

Pre-trained language representation models such
as GPT (Radford et al., 2018), BERT (Devlin et al.,
2018) are proven to be effective on many NLP
tasks. These models employ well-designed pre-
training tasks to fuse context information and train
on rich data. Each BERT layer transforms an input
token sequence (one or two sentences) by using
self-attention mechanism. Hence, we use BERT as
the sentence encoder in our framework to encode
better semantic representation.

2.4 Capsule network

A recent method called capsule network explored
by Sabour et al. (2017) introduces an iterative rout-
ing process to learn a hierarchy of feature detectors
which send low-level features to high-level cap-
sules only when there is a strong agreement of their
predictions to high-level capsules. Researchers re-
cently apply capsule network into NLP task such
as text classification (Zhao et al., 2018), slot fill-
ing (Zhang et al., 2018), etc.

3 Proposed method

In this section, we present an overview of the ar-
chitecture of the proposed framework HGRGA for
fact verification. As shown in Figure 2, given a
claim and the retrieved evidence, we first utilize a
sentence encoder to obtain representations for the
claim and the evidences. Then we build a heteroge-
neous evidence-evidence-claim graph to propagate
information among claim and evidence. Finally,
we use the capsule network to model the implicit
stances of evidences towards claim on fine-grained
perspective.

3.1 Sentence Encoder

Given an input sentence, we employ BERT (Devlin
et al., 2018) as our sentence encoder by extracting
the final hidden state of the [CLS] token as the
representation, where [CLS] is the special classifi-
cation embedding in BERT.

Specifically, given a claim c and N pieces of
retrieved evidence {e1, e2, . . . , eN}, we feed each
sentence into BERT to obtain the claim represen-
tation c and the evidence representation ei, where

i ∈ {1, ..., N}. That is,

c = BERT(c),
ei = BERT(ei).

(1)

We thus denote the utterance as a matrix, i.e.,
X = [c, e1, e2, ..., eN]T, where c, ei ∈ Rd respec-
tively denotes the d-dimensional embedding of the
claim and each relative evidence.

3.2 Graph Reasoning Network

This section describes how to incorporate the het-
erogeneous graph attention network into our model.
Based on the observation as illustrated in Fig-
ure 1, we assume that given a claim, the evidence
should be semantically coherent with each other
while the claim should be entailment consistent
with the relevant evidence. Therefore, we de-
compose the evidence-evidence-claim graph into
claim-evidence subgraph and evidence-evidence
subgraph.

Claim-Evidence Subgraph Considering that the
neighbors of each node in subgraphs have differ-
ent importance to learn node embedding for fact
checking task, we use graph attention network
(GAT) (Veličković et al., 2017) to generate the
sentence representation of claim and the retrieved
evidence.

We use H l
ce = [hl0, h

l
1, h

l
2, ..., h

l
N ]T to represent

the hidden states of nodes at layer l and initially,
H0

ce = X . In order to encode structural contexts to
improve the sentence-level representation by adap-
tively learning different contributions of neighbors
to each node, we perform self-attention mechanism
on the nodes to model the interactions between
each node and its neighbors. The attention coeffi-
cient can be computed as follows:

αl
i,j = Atten(hli, h

l
j)

=
exp(ϕ(aT [W lhli||W lhlj ]))∑

j∈Ni
exp(ϕ(aT [W lhli||W lhlj ]))

,
(2)

where αl
i,j indicates the importance of node i to

j at layer l, a is a weight vector, W l is a layer-
specific trainable transformation matrix, || means
“concatenate” operation, Ni contains node i’s one-
hop neighbors and node i itself, ϕ denotes the ac-
tivation function, such as LeakyReLU (Girshick
et al., 2014). Here, we use the adjacency matrix
Ace to denotes the relationship between each node,
which is defined as:
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Figure 2: The pipeline of our method. The HGRGA framework is illustrated in the proposed method section.

Ace
i,j =





1 i/j ∈ {claim},
j/i ∈ {claim, e1, ..., eN}

0 otherwise
, (3)

then the layer-wise propagation rule is defined as:

hl+1
i = ReLU(

∑

j∈Ni

αl
i,jW

lhlj). (4)

After that, multi-head attention (Vaswani et al.,
2017) is utilized to stabilize the learning process
of self-attention and extend attention mechanism.
Thus Eq. 4 would be extended to the multi-head at-
tention process of concatenating M attention heads:

hl+1
i =

M

||
m=1

ReLU(
∑

j∈Ni

αl,m
i,j W

l
mhlj), (5)

where || represents concatenation, αl,m
i,j is a nor-

malized attention coefficient computed by the m-th
head at the l-th layer, and W l

m is the corresponding
input linear transformation’s weight matrix. By
stacking L layers of GAT, the output embedding in
the final layer is calculated using averaging, instead
of the concatenation operation:

hLi = ReLU(
1

M

M∑

m=1

∑

j∈Ni

αL−1,m
i,j WL−1

m hL−1
j ).

(6)
Through aforementioned operations, we get

the final layer of claim-evidence subgraph result
HL

ce = [hL0 , h
L
1 , h

L
2 , ..., h

L
N ]T.

Evidence-Evidence Subgraph Similarly to the
claim-evidence subgraph in Section 3.2, we en-
hance the semantical coherence of each evidence
via GAT method. More concretely, we use H l

ee =
[h̃l0, h̃

l
1, h̃

l
2, ..., h̃

l
N ]T to represent the hidden states

of nodes at layer l and initially, H0
ee = X . Besides,

the relationship between nodes within subgraph is
different and we utilize the adjacency matrix Aee to
denotes the relationship between each node, which
is defined as:

Aee
i,j =





1 i ∈ {e1, ..., eN},
j ∈ {e1, ..., eN}

0 otherwise
. (7)

Finally, the output of evidence-evidence
subgraph can be updated via HL

ee =
[h̃L0 , h̃

L
1 , h̃

L
2 , ..., h̃

L
N ]T.

Fusion of Subgraphs To fuse the information
contained in two subgraphs, we concatenate HL

ce

and HL
ee to form implicit representation of claim

and evidences, denoted as HL . Then, we propose
a slice operation to extract claim and evidence fea-
ture separately from HL, denoted as sc ∈ R2d×1

and se ∈ R2d×N . Consequently, we tile sc N times
and concatenate them with se to construct a new
feature matrix as

s = concat(sc, se),
p = tanh(Wss + bs),

(8)

where Ws ∈ Rd×4d and bs ∈ Rd×1 are the weight
and bias matrix for dimensionality reduction op-
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eration. p ∈ Rd×N denotes the implicit stance of
evidences towards final class prediction. The rea-
son we use the concatenation operation is that we
think the evidence nodes in the following aggrega-
tion process need the information from the claim to
guide the routing agreement process among them.

3.3 Stance Aggregator
To model the fine-grained stances of evidences to-
wards class prediction, we incorporate the capsule
network (Sabour et al., 2017) into our model. We
regard p as the primary capsule pi|Ni=1 ∈ Rd , Let
vk|Kk=1 ∈ Rdc denote the high-level class capsules,
where K denotes the number of classes and dc
means the dimension of class capsules’ represen-
tation. The capsule model learns a hierarchy of
feature detectors via a routing-by-agreement mech-
anism, which define the different contributions of
stances of evidences towards prediction result.

Dynamic Routing-by-agreement We denote
pk|i as the resulting prediction vector of the i-th
stance capsule when being recognized as the k-th
class:

pk|i = σ(Wkp
T
i + bk), (9)

where k ∈ {1, 2, ...,K} denotes the class type and
i ∈ {1, 2, ..., N}. σ is the activation function such
as tanh. Wk ∈ Rdc×d and bk ∈ Rdc×1 are the
weight and bias matrix for the k-th capsule.

The dynamic routing-by-agreement learns an
agreement value ck,i that determines how likely
the i-th stance capsule agrees to be routed to the
k-th class capsule. ck,i is calculated by the dy-
namic routing-by-agreement algorithm (Sabour
et al., 2017), which is briefly recalled in Algorithm
1.

The algorithm determines the agreement value
ck,i between stance capsules and class capsules
while learning the class representations vk in an
unsupervised, iterative fashion. ci is a vector that
consists of all ck,i where k ∈ K. bk,i is the logit
(initialized as zero) representing the log prior prob-
ability that the i-th stance capsule agrees to be
routed to the k-th class capsule. During each it-
eration (Line 4), each class representation vk is
calculated by aggregating all the prediction vectors,
weighted by the agreement values ck,i obtained
from bk,i (Line 6-7):

sk =
N∑

i

ck,ipk|i,

vk = g(sk),

(10)

Algorithm 1 Dynamic routing-by-aggrement
1: procedure DYNAMIC ROUTING(pk|i, iter)
2: for each stance capsule i and class capsule k: bk,i ←

0.
3:
4: for iter iterations do
5: for all stance capsule i: ci ← softmax(bi)
6: for all class capsule k: sk ←

∑
r ck,ipk|i

7: for all class capsule k: vk = squash(sk)
8: for all stance capsule i and class capsule k: bk,i ←

bk,i + pk|i · vk
9: end for

10: Return vk
11: end procedure

In the above algorithm, g is a non-linear squash-
ing function which limits the length of vk to [0, 1].
Once we updated the class representation vk during
iteration, the logit bk,i becomes larger when the dot
product pk|i · vk is large, which means representa-
tion of stance capsule pk|i is more similar to class
representation vk. In our scenario, that is, stance
of evidences contributes more to a certain cate-
gory. Meanwhile, we can observe the fine-grained
distributions towards prediction result of different
stances.

Max-margin Loss for Class Detection Based
on the capsule theory (Sabour et al., 2017), the
orientation of the activation vector vk represents
class properties while its length indicates the acti-
vation probability. The loss function considers a
max-margin loss on each labeled utterance:

L =
K∑

k=1

{[[y = vk]] ·max(0,m+ − ||vk||)2

+ λ[[y ̸= vk]] ·max(0, ||vk|| −m−)2},
(11)

where ||vk|| is the norm of vk and [[]] is an indica-
tor function, y is the ground truth label. λ is the
weighting coefficient, and m+ and m− are mar-
gins.

The prediction of the utterance can be easily
determined by choosing the activation vector with
the largest norm ŷ = argmax

k∈{1,2,...,K}
||vk||.

4 Experimental Setting

4.1 Dataset and Evaluation Metrics
We conduct experiments on the dataset
FEVER (Thorne et al., 2018a). The dataset
consists of 185,455 annotated claims with a set
of 5,416,537 Wikipedia documents from the June
2017 Wikipedia dump. We follow the dataset
partition from the FEVER Shared Task (Thorne
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Split SUPPORTED REFUTED NEI
Train 80,035 29,775 35,639
Dev 6,666 6,666 6,666
Test 6,666 6,666 6,666

Table 1: Statistics of FEVER dataset.

et al., 2018b). Table 1 shows the statistics of the
dataset.

We evaluated performance by using the label
accuracy (LA) and FEVER score (F-score). LA
measures the 3-way classification accuracy of class
prediction without considering the retrieved evi-
dence. The F-score reflects the performance of both
evidence sentence selection and veracity relation
prediction, where a complete set of true evidence
sentences is present in the selected sentences, and
the claim is correctly labeled.

4.2 Baseline

The baselines include sota models on FEVER1.0
task, BERT based models and graph-based models.

Three top models (Athene (Hanselowski et al.,
2018b), UNC NLP (Nie et al., 2019), UCL
MRG (Yoneda et al., 2018)) in FEVER1.0 shared
task are compared in our experiment.

As BERT (Devlin et al., 2018) has achieved
promising performance on several NLP tasks,
we use BERT-pair, BERT-concat from previous
work (Zhou et al., 2019) as our baselines.

Other baselines are following like GEAR (Zhou
et al., 2019), KGAT (Liu et al., 2019) and
DREAM (Zhong et al., 2019).

4.3 Implementation Details

We employ a three-step pipeline with components
for document retrieval, sentence selection and
claim verification to solve the task. More details
can be found in Appendix A.

We utilize BERTBASE (Devlin et al., 2018) in
our proposed model. Besides, some experiments
of hyper-parameters such as the size of pre-trained
model, the number of graph attention layer, can be
found in Appendix B.

5 Experimental Results

In this section, we first present the overall perfor-
mance of our model HGRGA compared with other
approaches. Then we conduct an ablation study
to explore the effectiveness of the heterogeneous
graph structure and the fine-grained capsule net-

Models

FEVER

Dev Test

LA F-score LA F-score

UKP Athene 68.49 64.74 65.46 61.58
UCL MRG 69.66 65.41 67.62 62.52
UNC NLP 69.72 66.49 68.21 64.21

BERT(base) 73.51 71.38 70.67 68.50
BERT(large) 74.59 72.42 71.86 69.66
BERT-Pair 73.30 68.90 69.75 65.18
BERT-Concat 73.67 68.89 71.01 65.64

GEAR 74.84 70.69 71.60 67.10
KGAT(BERT base) 78.02 75.88 72.81 69.40
KGAT(BERT large) 77.91 75.86 73.61 70.24
DREAM 79.23 - 76.85 70.60
Our Model 80.67 77.54 74.26 70.72

Table 2: Overall performance on the FEVER dataset
(%).

work. Finally, we present a case study to demon-
strate the effectiveness of our framework.

5.1 Overall Performance

Table 2 shows the performance of our proposed
method versus all the compared methods on
FEVER dataset, where the best result of each col-
umn is bolded to indicate the significant improve-
ment over all baselines.

As shown in Table 2, in terms of LA, our model
significantly outperforms BERT-based models with
80.67% and 74.26% on both development and test
sets respectively. It is worth noting that, our ap-
proach, which exploits distinct types of relation-
ships between nodes within reasoning graph, out-
performs GEAR and KGAT, both of which regard
claim-evidence pair as node and ignore different
implicit interactions among them. However, in
terms of LA, DREAM outperforms our approach
with 76.85% on the test set. One possible reason
is that DREAM incorporates graph-level semantic
structure of evidence obtained by Semantic Role
Labeling (SRL) which may contain more exter-
nal information. Despite this, in terms of FEVER
score, which is a kind of more comprehensive met-
rics, our method outperforms it.

5.2 Ablation Study

Effect of Heterogeneous Graph We observe
how the model performs when some critical compo-
nents are removed. The specific results are shown
in Table 3, where Hce represents the node’ rep-
resentation updated via claim-evidence subgraph

11



Models LA F-score

Our Model 80.67 77.54
-w/o Hce 75.64 70.32
-w/o Hee 77.68 73.52
Homo 78.89 75.93

Aggregation
max 77.33 75.23
mean 77.54 74.97
attention 77.92 75.10

Table 3: Ablation analysis in the development set of
FEVER.

and Hee denotes the node’ representation learned
via evidence-evidence subgraph. Besides, Homo
denotes the reasoning graph is regarded as the ho-
mogenous graph which ignores different types of
relationships between claim and evidence, evidence
and evidence. As expected, with the removal of
important components, the performance of model
gradually decrease, especially when the reasoning
graph is trained as the homogeneous structure, the
LA score drops by nearly 2%, which also shows
the strong effectiveness of heterogeneous graph.
We will attempts to explore the effective result of
heterogeneous structure in Section 5.2. Besides,
it’s worth noting that, when Hce is removed, model
still has a proper result, where it’s investigated in
previous study (Hansen et al., 2021) and an impor-
tant problem is highlighted that whether models
for automatic fact verification have the ability of
reasoning.

Effect of Capsule Layer We explore the effec-
tiveness of the capsule network aggregation by
comparing it with other different aggregation meth-
ods, such as mean-aggregator, max-aggregator and
attention-aggregator. The mean aggregator per-
forms the element-wise Mean operation among
stances’ representation while the max aggregator
performs the element-wise Max operation. The
attention aggregator is followed from Zhou et al.
(2019), where the dot-product attention operation
is used among evidence representation. As shown
in Table 3, we can find that our approach using
capsule network performs better than other aggre-
gation methods.

Furthermore, when capsule network is trained,
we can easily observe the distribution of stance of
evidences towards predicted class during iterations.
We will show an example in Section 5.2.

Claim: One host of Weekly Idol is a comedian.

Evidence:
E1: The show is hosted by comedian Jeong
Hyeong-don and rapper Defconn.
E2: Defconn, one host of Weekly Idol, is a rap-
per used to perform several songs on the show.
E3: Weekly Idol is a South Korean variety show,
which airs Wednesdays, 6PM KST, on MBC
Every1, MBC’s cable and satellite network for
comedy and variety shows.
E4: Many comics achieve a cult following while
touring famous comedy hubs such as the Just
for Laughs festival in Montreal, the Edinburgh
Fringe, and Melbourne Comedy Festival in Aus-
tralia.
E5: However, a comic’s stand-up success does
not guarantee a film’s critical or box office suc-
cess.

Label: SUPPORTED

Table 4: A case of the claim that requires integrating
multiple evidence to verify. Facts shared across the
claim and the evidences are highlighted with different
colors.

Case Study Table 4 shows an example in our
experiments which needs multiple pieces of evi-
dence to make the right inference. There are some
noisy evidences such as E4-E5, which are not se-
mantically coherent with E1-E3, and a confusing
evidence E2 which may introduce spurious infor-
mation and mislead the model to predict the label
incorrectly. In order to observe the difference be-
tween homogenous graph structure and heteroge-
neous graph structure, we plot the claim-evidence
attention map from the model learned under these
two settings.

As shown in Figure 3a, when the reasoning
graph is constructed as homogenous structure, the
model would consider the entailment relationship
between claim and evidence equally to another re-
lationship, semantic coherence among each evi-
dence. With high similarity between claim and
E2 on semantic perspective, the proposed method
tends to attend E2, which leads to a prediction er-
ror. In contrast, when the inference relationship
between claim and evidence is explicitly exploited,
the ability of reasoning would be further enhanced.
Making the correct prediction requires model to
reason based on the understanding that “comedian”
is occurred in E1 and “Weekly Idol” is a show
mentioned in E3. Based on the observation as
illustrated in Figure 3b, our approach pays more
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(a) Homogenous graph structure. Predicted label: REFUTED.

(b) Heterogeneous graph structure. Predicted label: SUP-
PORTED.

Figure 3: Attention map of claim-evidence subgraph
with different kinds of graph structure for the case in
Table 4.

attention on E1 and E3, which provide the most
useful information in this case, and the label is
correctly detected as SUPPORTED.

Figure 4: The learned agreement values between class
capsules (y-axis) and stance capsules (x-axis) for the
case in Table 4. Left: after the first iteration. Right:
after the second iteration.

The dynamically learned agreement values
within capsule aggregation layer naturally reflect
how stance of evidences are collectively aggregated
into class capsules for each input utterance. We vi-
sualize the agreement values between each stance
capsule and each class capsule. The left part of
Figure 4 shows that after the first iteration, since

the model improperly recognize E2 as a whole, the
REFUTED capsule contribute significantly to the fi-
nal result. From the right part of Figure 4, we found
that with the entailment relationship between claim
and evidence being captured in claim-evidence sub-
graph, evidence E1 and E3 contribute more to the
correct class capsule SUPPORTED, which leads to
a reasonable result.

6 Error Analysis

We randomly select 200 incorrectly predicted in-
stances and summarize the primary types of errors.

The first type of errors is caused by failing
to match the semantic meaning of some phrases
on some complex cases. For example, the claim
“Philomena is a film nominated for seven awards.”
is supported by the evidence “It was also nomi-
nated for four BAFTA Awards and three Golden
Globe Awards.” The model needs to understand
that four plus three equals seven in this case. An-
other case is that the claim states “Winter’s Tale is
a book”, while the evidence states “Winter’s Tale
is a 1983 novel by Mark Helprin”. The model fails
to understand the relationship between novel and
book. Solving this type of problem requires the in-
corporation of additional knowledge, such as math
logic and common sense.

The second type of errors is due to the failure
of retrieving relevant evidences. For example, the
claim states “Lyon is a city in Southwest France.”,
and the ground-truth evidence states “Lyon had
a population of 506,615 in 2014 and is France’s
third-largest city after Paris and Marseille.”, which
gives not enough information to help model make
a true judgement.

7 Consultion

In this work, we present a novel heterogeneous-
graph reasoning and fine-grained aggregation
framework on the claim verification subtask of
FEVER. We propose heterogeneous graph attention
network to better exploit different types of relation-
ships between nodes within reasoning graph. Fur-
thermore, the capsule network is used to observe
fine-grained distributions of stances towards claim
from multiple pieces of evidence. The framework
is proven to be effective and achieve significant and
explainable performance. In the future, we would
like to explore a fine-grained reasoning mechanism
within graph and jointly learn evidence selection
and claim verification.
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A Implementation Details

In the document retrieval and sentence selec-
tion stages, we simply follow the method from
Hanselowski et al. (2018b) since their method has
the highest score on evidence recall in the former
FEVER shared task and we focus on the claim
verification task. We describe our implementation
details in this section.

Document Retrieval and Sentence Selection
We adopt the entity linking approach from
Hanselowski et al. (2018b), which uses entities as
search queries and find relevant Wikipedia pages
through the online MediaWiki API2. Then related
sentences are selected from retrieval document. We
follow the previous method from Zhao et al. (2020)
and use BERT as sentence retrieval model. We
use the [CLS] hidden state to represent claim and
evidence sentence pair. Then a rank layer is trained
to rank score via pairwise loss. Sentences with
top-5 relevance scores are selected to form the final
evidence set in our experiments.

Claim Verification In our HGRGA, we set the
batch size to 256, the number of evidences N to
5 and the dimension of features d to 768. The
number of class capsules K is 3, the dimension of
class capsules dc is 10. We set the number L of
the graph attention layer as 2, and the head number
M as 4. The model is trained to minimize the
capsule loss (Sabour et al., 2017) using the Adam
optimizer (Kingma and Ba, 2014) with an initial
learning rate of 3e-5. In the loss function, the down-
weighting coefficient λ is 0.5, margins m+ and m−

are set to 0.8 and 0.2. We use an early stopping
strategy on the label accuracy of the validation set,
with a patience of 10 epochs.

B Additional results on different
hyper-parameters

Effect of Pre-trained Models Table 5 shows the
results of different pre-trained models on the test
set in detail. When the size of pre-trained model be-
comes larger, the performance of proposed method
could be improved. We can also discover from the

2https://www.mediawiki.org/wiki/API

Pre-trained Model Learning Rate Time LA FEVER
BERT-base 3e-5 35m 74.26 70.72
BERT-large 2e-5 2h20m 75.10 71.86

RoBERTa-base 3e-5 37m 76.54 73.81
RoBERTa-large 2e-5 2h15m 77.38 74.21

Table 5: Additional results of HGRGA on the test set
using different pre-trained models (%).

GAT Layers L
Head Number M

2 3 4 5

2 72.83 73.94 74.26 74.10
3 73.41 74.15 74.11 74.05
4 70.87 72.56 72.87 73.60

Table 6: Label accuracy on the test set with different
GAT layers and head numbers (%).

table that models with RoBERTa-large achieve the
best results.

Effect of GAT Layers and Attention Head We
conduct additional experiments to check the ef-
fect of the number of GAT layers and attention
head, which could be important and sensitive to
our proposed method. Table 6 shows the result of
parameter-tuning experiment and we choose L = 2
and M = 4 as hyper-parameters settings.
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