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Abstract

Various approaches have been proposed for au-
tomated stance detection, including those that
use machine and deep learning models and nat-
ural language processing techniques. However,
their cross-dataset performance, the impact of
sample size on performance, and experimental
aspects such as runtime have yet to be com-
pared, limiting what is known about the gener-
alizability of prominent approaches. This pa-
per presents a replication study of stance detec-
tion approaches on current benchmark datasets.
Specifically, we compare six existing machine
and deep learning stance detection models on
three publicly available datasets. We investi-
gate performance as a function of the number
of samples, length of samples (word count),
representation across targets, type of text data,
and the stance detection models themselves.
We identify the current limitations of these ap-
proaches and categorize their utility for stance
detection under varying circumstances (e.g.,
size of text samples), which provides valuable
insight for future research in stance detection.

1 Introduction

The task of detecting stance from a text sample,
i.e., determining if the author of the text is in fa-
vor, against, or has a neutral attitude towards an
entity or proposition in the text (Mohammad et al.,
2016; Zhou et al., 2017), has not only contributed
to increased understanding of how users behave
and interact on these platforms (Küçük and Can,
2020), but it has also complemented sentiment and
semantic analyses (Stieglitz and Dang-Xuan, 2013).
In stance detection, the entity or proposition, which
is often referred to as the target, can be a place,
person, product, situation, policy, organization, etc.
(Mohammad et al., 2016).

Many machine and deep learning and natural
language processing (NLP) techniques have been
proposed for automated stance detection (Zhou
et al., 2017; Mohtarami et al., 2018; Mohammad

et al., 2016; Augenstein et al., 2016). However,
substantial advancements thus far have depended
on publicly available datasets (Sobhani et al., 2017;
Mohammad et al., 2017), which, at the time of their
writing, were not large nor diverse in comparison
to datasets for other NLP tasks like sentiment anal-
ysis (Socher et al., 2013; Ni et al., 2019; Neal et al.,
2017). Most stance detection approaches have been
trained and tested on the benchmark dataset used
in the SemEval 2016 workshop (SemEval, 2016;
Mohammad et al., 2017), limiting the analysis of
stance detection on varying text types (blogs, social
media posts, news articles, etc.).

Due to the nature of the datasets on which cur-
rent stance detection models are trained, their abil-
ity to generalize to larger datasets is not well-
studied. This includes a comparative analysis of
their runtime, performance depending on the size
of the dataset, and their application to cross-dataset
stance detection, in which subtasks like cross-target
stance detection are receiving increasing attention
(Wei and Mao, 2019; Zhang et al., 2020; Liang
et al., 2021; Conforti et al., 2021; Ji et al., 2022;
Xu et al., 2018). Thus, we present a comparative
analysis of stance detection models as a means of
benchmarking existing approaches such that future
research can address gaps identified in this work.

This paper presents an analyses of six commonly
used stance detection classification approaches,
each trained and tested on three publicly available
datasets (Mohammad et al., 2017; Sen et al., 2018;
Somasundaran and Wiebe, 2010). The text samples
in these datasets cover three types of data sources
(i.e., Twitter posts, responses to questions, and on-
line debates), and are annotated with the target (e.g.,
gun rights, atheism, e-cigarettes, etc.) and the au-
thor’s stance (FAVOR, AGAINST, or NEUTRAL)
towards the target. In prior work, Ghosh et al.
(2019) also compared the reproducibility of dif-
ferent stance detection models on two datasets
(Sen et al., 2018; Mohammad et al., 2017). While
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their work studied stance detection within a single
dataset, they observed that “no single method [was]
able to give very high metric value over all datasets”
(Ghosh et al., 2019). However, a comparative anal-
ysis of other parameters that could play a role in
stance detection accuracy, alongside studying ex-
isting models in more demanding scenarios, such
as their application across datasets, has yet to be
explored. That is, prior work compares the merits
and limitations of stance detection models in terms
of stance detection accuracy alone, while we con-
tribute novel insight concerning other metrics (e.g.,
runtime) and use cases (e.g., cross-dataset stance
detection). Specific contributions include:

1. We examine the generalizability of stance de-
tection models across text types by using three
publicly available datasets, each representing
three different text domains (i.e., Twitter data,
query responses, and long debates).

2. We conduct cross-dataset stance detection to
determine if current stance detection models
can accurately identify stance on datasets un-
seen during training, furthering the analysis
of generalizability.

3. We explore the impacts of different character-
istics of the datasets, including sample size,
sentence length, semantic context, and run-
time, on stance detection accuracy.

2 Background

Initial work in stance detection focused on deter-
mining the stance of political and parliamentary
debates (Somasundaran and Wiebe, 2010). Lately,
this interest has shifted towards social media plat-
forms due to the diversity of opinions shared on
these applications (Mohammad et al., 2016). Many
tasks have been proposed in the past owing to the
diverse applications of stance analysis on social
media like multi-target stance detection (Wei et al.,
2018; Sobhani et al., 2017), cross-target stance de-
tection (Zhang et al., 2020; Conforti et al., 2021;
Wei and Mao, 2019), rumour stance classification
(Zubiaga et al., 2018; Lukasik et al., 2019), and
fake news stance detection (Ghanem et al., 2018;
Umer et al., 2020).

To date, there have been numerous efforts for
stance detection using traditional machine learn-
ing algorithms and deep learning techniques (Mo-
hammad et al., 2016; Zhou et al., 2017; Ghosh
et al., 2019; Mohtarami et al., 2018; Somasundaran
and Wiebe, 2010; Zhang et al., 2020; Augenstein

et al., 2016; Al-Ghadir et al., 2021), while the 2016
SemEval workshop’s task on detecting stance in
tweets (SemEval, 2016) generated various stance
detection approaches which used traditional sen-
timent and sentence classification features like n-
grams and embedded vectors (Zarrella and Marsh,
2016; Wei et al., 2016). Workshop submissions
showed significant improvement in performance
when using support vector machines (SVM), even
in comparison to the top three submissions which
leveraged transfer learning and recurrent neural net-
works (RNNs) (Mohammad et al., 2016). For in-
stance, the method proposed by Zarrella and Marsh
used transfer learning on features extracted from
two large unlabeled datasets via distant supervision
(Zarrella and Marsh, 2016), although their method
failed to outperform the SVM-derived baseline.

On the other hand, RNN models also show
promising results. Zhou et al. extended two RNN
models (biGRU and biGRU-CNN) to incorporate
target information via a token-level (AT-biGRU)
and semantic-level attention (AS-biGRU) mecha-
nism for detecting stance in tweets (Zhou et al.,
2017). Similarly, Ghosh et al. (2019) reproduced
a few competitive Convolutional Neural Network
(CNN) and RNN based methods, and compared
them with Google’s Bidirectional Encoder Repre-
sentations from Transformers (BERT) model.

3 Methodology

3.1 Dataset Descriptions
The chosen datasets were selected due to their di-
versity in text type, number of text samples, and
size of each sample. Only datasets with samples
written in English were considered.

The SemEval-2016 Task 6A Stance Dataset
The SemEval-2016 Stance Dataset (Mohammad
et al., 2017) was used in the task of stance detec-
tion at SemEval-2016 (SemEval, 2016). It con-
tains 4,870 manually annotated (stance and tar-
get) tweets. Tweets in the dataset are divided
among five targets: “Atheism”; “Climate Change
is Real Concern”; “Feminist Movement”; “Hillary
Clinton”; and “Legalization of Abortion.” Each
tweet is labeled with the author’s stance (FAVOR,
AGAINST or NEITHER) towards the target. An
example is shown below:

Target Tweet Stance
Feminist movement “Whether you label yourself a

feminist or not I think it’s impor-
tant that we address equal rights.”

FAVOR
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Multi-Perspective Consumer Health Query
Data (MPCHI) The MPCHI dataset (Sen et al.,
2018) consists of responses to five different queries:
“Are e-cigarettes safe?”; “Does the MMR vaccine
lead to autism in children?”; “Does sunlight expo-
sure lead to skin cancer?”; “Does vitamin C prevent
the common cold?”; and “Should women take HRT
post-menopause?” This dataset was created by
retrieving the top 50 links corresponding to each
query on the web, and then using crowd-sourcing
to retrieve query relevant sentences. Each sentence
has a polarized stance, i.e., FAVOR or AGAINST.
An example is shown below:

Target Response Stance
Does sunlight exposure
lead to skin cancer?

The UV explanation for
melanoma is not adequate.

AGAINST

Ideological Online Debates The Ideological On-
line Debates dataset (Somasundaran and Wiebe,
2010) consists of political and ideological on-
line debates on “Existence of God”; “Healthcare”;
“Gun Rights”; “Gay Rights”; and “Abortion and
Creationism.” Debates for each topic are labeled
as FOR or AGAINST; we converted the label FOR
to FAVOR for consistency across datasets. An ex-
ample is shown below:

Target Response Stance
Gun Rights “The statement of ‘Guns kill people, Guns kill

children’ is false guns don’t kill people, peo-
ple kill people. Guns should be allowed every-
where GUNS ARE GOOD.”

FAVOR

3.2 Stance Detection Approaches
Approach #1: Support Vector Machines and N -
grams Application of SVMs for stance detection
were proposed by Mohammad et al. (2016), and
used as the baseline method in the SemEval (Mo-
hammad et al., 2016) and in other stance detection
approaches (Zhou et al., 2017; Ghosh et al., 2019;
Augenstein et al., 2016; Mohtarami et al., 2018).
A SVM is a classification algorithm which finds a
hyperplane having a maximum margin, or distance,
between data points of different classes, in an n-
dimensional space. We refer the reader to (Noble,
2006) for more details on SVMs.

We were unable to find publicly available code
by the authors to replicate these experiments, and
thus wrote the code from scratch using the details
provided in the article (Mohammad et al., 2016).
We note that the article does not mention which
feature extraction method was used to extract n-
grams (i.e., CountVectorizer or TfidfVectorizer). A
CountVectorizer captures the frequency of tokens

in a text sample, while a TfidfVectorizer (Term Fre-
quency - Inverse Document Frequency) provides
both the frequency of tokens and their importance
by penalizing those that occur too frequently or
not often enough. Here, we have implemented
TfidfVectorizer as it performed better. We tuned
the SVM’s parameters (kernel, γ, C) using a grid
search and five-fold cross-validation. Following the
work of Mohammad et al. (2016), our experimental
approach consisted of two tasks:

1. SVM-ngrams: Multiple SVMs (one per target)
trained on n-grams, where n = 1, 2, 3 and
n = 2, 3, 4, 5 for word and character n-grams,
respectively.

2. SVM-ngram - comb (overall): A single classi-
fier trained on all targets using the same fea-
tures as SVM-ngram.

Approach #2: Bi-directional Gated Recurrent
Units Gated Recurrent Units (GRUs) are very
similar to basic RNNs except that they have a
update and relevance gate which are capable of
updating only relevant information, making them
useful for stance detection (Zhou et al., 2017).
A GRU maps the input sequence of length N ,
[x<t1>, x<t2>, x<t3>....x<tN>] into a set of hid-
den states [h<t1>, h<t2>, h<t3>, .......h<tN>] as
follows:

Γu = σ(Wu[h
<t0>, x<t1>] + bu)

Γr = σ(Wr[h
<t0>, x<t1>] + br)

h
′<t1> = tanh(Wh[Γr ∗ h<t0>, x<t1>] + bh)
h<t1> = Γu ∗ h<t0> + (1− Γu) ∗ h′<t1>

where Γu corresponds to the update gate and
Γr to the reset gate; σ(.) is a sigmoid function;
Wu,Wr,Wh ∈ Rd1×d0 represent the weight ma-
trices; h

′<t1> ∈ Rd1 corresponds to the generated
candidate hidden state and h<t1> ∈ Rd1 to the real
updated hidden state; bu, br ∈ Rd1 are bias terms;
and x<tn> ∈ Rd0 represents a word embedding of
tokenized and pre-processed text.

Bi-directional GRUs (bi-GRUs) process a se-
quence in forward and backward directions, i.e.,
the same gated mechanism is applied from both
directions to the sequence. The final hidden state
output is the concatenation of both outputs, cap-
turing information from past and future sequences.
For a text, X , the final vector representation is

X =
−−−−→
h<tN> ∥ ←−−−h<t1>

where ∥ represents the concatenation of two vec-
tors.
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Dataset Target Train Test
%Favor %Against %Neutral #Total Train %Favor %Against %Neutral #Total Test Sentence Length - Mean

SemEval 2016 Stance Dataset - Task A
Athesim (AT) 17.93 59.26 22.81 513 14.55 72.73 12.73 220 102.77
Climate Change is Real Concern (CC) 53.67 3.80 42.53 395 72.78 6.51 20.71 169 101.2
Feminist Movement (FM) 31.63 49.40 18.98 664 20.35 64.21 15.44 285 103.4
Hillary Clinton (HC) 17.13 57.04 25.83 689 15.25 58.31 26.44 295 102.7
Legalization of Abortion (LA) 18.53 54.36 27.11 653 16.43 67.50 16.07 280 103.9

Total 25.84 47.87 26.29 2914 24.34 57.25 18.41 1249 102.95 (Overall Mean)
MPC Query Data

E-Cigarettes (EC) 20.76 40.83 38.41 289 26.61 37.90 35.48 124 144.58
MMR Vaccine (MV) 26.52 33.70 39.78 181 30.77 42.31 26.92 78 157.83
Sunlight Cancer (SC) 29.24 22.03 48.73 236 33.98 25.24 40.78 103 124.09
Vitamin C (VC) 38.14 26.80 35.05 194 44.05 19.05 36.90 84 145.74
HRT (HT) 19.19 55.23 25.58 172 12.16 55.41 32.43 74 148.83

Total 26.49 35.26 38.25 1072 29.81 35.21 34.99 463 143.18 (Overall Mean)
Ideological Online Debates

Existence of God (EG) 48.28 51.72 NA 667 48.60 51.40 NA 286 678.59
Healthcare (HC) 50.00 50.00 NA 466 56.22 43.78 NA 201 715
Gun Rights (Gu R) 72.19 27.81 NA 748 72.90 27.10 NA 321 720
Gay Rights (Ga R) 64.40 35.60 NA 1444 63.06 36.94 NA 620 807.5
Abortion (AB) 54.04 45.96 NA 805 56.65 43.35 NA 346 746.13
Creationism (CR) 33.91 66.09 NA 861 37.67 62.33 NA 369 958.43

Total 55.14 44.86 0.00 4991 56.56 43.44 0.00 2143 784.68 (Overall Mean)

Table 1: Distribution of examples in all three datasets.

Approach #3: Bi-directional Gated Recurrent
Unit - Convolutional Neural Network (Zhou
et al., 2017) BiGRUs are powerful in capturing
dependencies in sequential data, but its gated mech-
anism is highly dependent on the length of a text
sequence. If the length of the sequence becomes
very large, it can suffer from vanishing gradients,
resulting in information loss from initial sequences.
Because the Online Debate Dataset (Somasundaran
and Wiebe, 2010) has an average text length that is
much higher compared to the other datasets used in
our experiments, we replicated the Bi-directional
Gated Recurrent Unit - Convolutional Neural Net-
work (biGRU-CNN) model. Using the approach
proposed by Tan et al. (2015) and used by Zhou
et al. (2017) for stance detection on Twitter data,
each value of feature map, c<i>, is obtained by
applying filter, Wg, on k concatenated consecu-
tive hidden states h<i:i+k−1> of the biGRU model.
This calculation also includes the addition of a bias
term, bg, as given in the equation below:

c<i> = g(W T
g h<i:i+k−1> + bg)

where g is a rectified linear unit function. To cap-
ture the most important semantic features, c′, max
pooling is applied over the generated feature map
C = [c<1>, c<2>, c<3>...c<N−k+1>], where N is
the input sequence length. Multiple features are
generated using different values of sliding windows
(i.e., k = 3, 4, 5), which are concatenated to obtain
a vector representation of a text sample. We refer
the reader to (Zhou et al., 2017) for more details
on the biGRU and biGRU-CNN models.

Approach #4: Bi-directional Long Short Term
Memory Models Long Short Term Memory
models (LSTMs) allow a deep network to for-
get irrelevant information. LSTMs have shown
promising results in many applications like im-
age captioning, speech recognition, chatbots, next-
character prediction and music composition, and
stance detection (Su et al., 2017; Wang et al.,
2016; Eck and Schmidhuber, 2002; Graves et al.,
2013; Sundermeyer et al., 2012; Augenstein et al.,
2016). LSTMs map an input sequence of length N ,
[x<t1>, x<t2>, x<t3>....x<tN>] into a set of hid-
den states [h<t1>, h<t2>, h<t3>, .......h<tN>] as
follows:

Γf = σ(Wf [h
<t−1>, x<t1>] + bf )

Γi = σ(Wi[h
<t−1>, x<t>] + bi)

ĉt = tanh(Wc[h
<t−1>, x<t>] + bc)

ct = Γf ⊙ ct−1 + Γi ⊙ ĉt
Γo = σ(Wo[h

<t−1>, x<t>] + bo)
h<t1> = Γo tanh(ct)

where Γf ,Γi,Γo represent the forget, input and
output gates, respectively; Wf ,Wi,Wc,Wo are the
weight matrices, bf , bi, bc, bo are the biases; ĉt and
ct are the candidate cell state and final cell state,
respectively; σ(.) is the sigmoid function; ⊙ rep-
resents the Hadmard product or element wise mul-
tiplication; and h<t1> ∈ Rd1 the real updated hid-
den state.

Similar to the biGRU, a biLSTM processes a
given sequence forward and backward; the same
gated mechanism is applied from both directions to
the sequence. The final hidden state output is the
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concatenation of both outputs. This allows the cap-
ture of information from past and future sequences.
For a text, X , the final vector representation is
X =

−−−−→
h<tN> ∥ ←−−−h<t1>.

Approach #5: Bi-directional Long Short Term
Memory - Convolutional Neural Network The
architecture of a bi-directional LSTM-CNN is sim-
ilar to biGRU-CNNs, except the outputs of consec-
utive hidden layers of the LSTM are fed into the
same CNN architecture as discussed in Approach
#3.

Approach #6: Bidirectional Encoder Represen-
tations from Transformers (BERT) BERT was
developed by Google AI Language as a language
representation model (Devlin et al., 2018a). It is a
masked language model which generates contex-
tual embeddings for each token in the raw text by
incorporating context in both left and right direc-
tions in the sentence. It has also been used for next
sentence prediction (Devlin et al., 2018b). We fine-
tuned the BERT base model (uncased) for stance
detection with 50 epochs, a batch size of 32, and
a maximum sequence length of 128. We used 512
tokens per sequence and a learning rate of 2e-5.
We used the pooled output from the final layer of
BERT model and applied a dropout of 0.1 followed
by a Dense layer with a sigmoid activation function.
We note that BERT was trained in an early stopping
fashion.

3.3 Experimental Setup

Data Preprocessing In line with Mohammad
et al. (2016), for all other models except the SVM,
the text was preprocessed as follows. Each text
sample was converted to lowercase characters.
Retweets, URLs, and hashtags were removed when
applicable. Stop words and punctuation were re-
moved to then create an array of tokens. To cre-
ate a vocabulary dictionary, all unique words (i.e.,
keys) in the dataset were assigned a unique num-
ber (i.e., value) corresponding with its index in the
dictionary. Indices 0, 1, and 2 were reserved for
padding (_PAD_), end of sentence (_</e>_), and
unknown tokens (_UNK_), respectively. Each text
sample was then transformed into a numerical ar-
ray, which consisted of the value corresponding to
each key (i.e., word in the sentence) in the vocabu-
lary dictionary. The resulting array was padded to
the maximum sentence length.

Training and Testing Like Mohammad et al.
(2016), all models were trained on all three classes
for the SemEval and MPCHI datasets, and the
NEUTRAL/NEITHER class was not considered dur-
ing testing. Further, because the Ideological dataset
only consist of two classes, all models were trained
on these two classes for this dataset.

We considered several experiments: one model
trained per target, a model trained on all targets,
and a model trained on one dataset and tested on the
others. For all models except BERT, we performed
five-fold cross-validation with 50 epochs per fold.
We used the same hyperparameters as Zhou et al.
(2017) for all neural network models, along with
using GLOVE (Global Vectors for Word Represen-
tation) Wikipedia embeddings (Pennington et al.,
2014). These hyperparameters were obtained by us-
ing a grid search on the biGRU model. For BERT,
we used the same hyperparameters as Ghosh et al.
(2019). All hyperparameters are listed in Table 4.

3.4 Evaluation
In line with the evaluation metric used in the
SemEval-2016 Task 6A and other studies, we em-
ploy the macro-average of the F1 score of detecting
FAVOR and AGAINST stance.

Ffavor =
2PfavorRfavor

Pfavor +Rfavor

Fagainst =
2PagainstRagainst

Pagainst +Ragainst

Favg =
Ffavor + Fagainst

2

4 Results

4.1 Performance Per Dataset
SemEval 2016 Stance Dataset According to Ta-
ble 2, BERT outperforms all models across all tar-
gets, excluding LA, for the SemEval dataset. We
note that the BERT model learns contextual de-
pendencies in a sentence, while sequence learning
models, biLSTM and biGRU, are based on GLOVE
embeddings which do not take context into account.
We also observe some merit (6 of 10 experiments
showed increased accuracy with the added CNN
layer) with adding the CNN layer for other models;
biGRU-CNN outperformed biGRU for targets AT,
CC, FM, LA by an average of 4.8%. biLSTM-CNN
outperformed biLSTM with an average increase of
1.95% on targets FM and HC.
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Dataset Target Models
SVM biGRU biGRU-CNN biLSTM biLSTM-CNN BERT

AT 58.72 54.33 60.21 54.67 56.35 69.41
CC 43.01 40.57 43.22 42.11 42.00 44.21

SemEval-2016 TaskA FM 58.18 52.30 53.75 57.06 56.58 58.72
HC 58.04 53.35 44.77 54.05 54.68 69.78
LA 64.55 59.22 63.40 61.83 57.73 59.30
Overall 62.11 57.45 56.19 54.67 54.54 66.24
EC 60.96 52.89 59.29 57.89 60.99 60.21
MV 75.38 56.75 62.79 59.42 66.93 44.50

MPCHI SC 59.97 50.13 57.99 60.79 57.88 67.57
VC 61.64 56.91 49.87 40.80 48.56 67.13
HT 55.13 59.00 47.57 44.26 60.56 41.38
Overall 58.51 54.92 60.72 57.46 59.44 58.22
EG 65.58 54.57 59.70 53.49 59.31 54.73
HC 63.75 60.21 61.00 59.27 59.38 64.88
Gu R 68.85 58.10 62.55 64.35 64.76 42.30

Ideological Online Debates Ga R 66.73 57.67 64.69 60.92 65.97 61.24
AB 65.91 58.21 62.30 58.09 61.86 57.69
CR 54.91 51.33 52.24 53.45 57.63 47.92
Overall 58.20 58.35 58.54 57.51 60.38 61.84

Table 2: F1 macro score for each model when trained and tested on the same target.

However, an interesting observation is that, with
the exception of BERT, the deep sequence mod-
els did not consistently outperform the SVM (the
biGRU-CNN outperformed the SVM for AT and
LA targets). We attribute the poor performance
of deep learning models to their need for a large
number of examples, which is not available in the
SemEval dataset. We suspect that the BERT model
outperformed SVM in most cases because it is a
pre-trained model which is fine-tuned on the data
corresponding to targets. Nonetheless, we posit
that in the case smaller datasets, a SVM with a Tf-
Idf vector captures more stance expressing features
than deep learning sequence models.

MPCHI Dataset As shown in Table 2, we again
observe that the SVM outperforms all models in
most cases (EC, MV, HT). For biLSTM-CNN, the
performance was increased by adding the CNN
layer to biLSTM by an average of 8.85% for targets
EC, MV, VC, and HT. Adding the CNN layer to
biGRU boosted its performance by an average of
6.76% for targets EC, MV, and SC.

Further, the biLSTM-CNN’s performance was
improved by an average of 7.2% compared to bi-
GRU’s performance. We suspect this is due to the
ability of these models to forget and the text sam-
ple size. The number of examples in the MPCHI
dataset is one-third of the number of examples in
the SemEval dataset, although the MPCHI has a
greater average sentence length. Sequence models
like biGRU and biLSTM can automatically extract
stance expressing features from a sentence of ad-
equate length, which should not be too short or
too long. However, the biLSTM may be a more
optimal model than biGRU since the biLSTM can

forget irrelevant information while biGRU does
not. Also, since sentences with high length will
result in larger sequences to classify, the problem
of vanishing gradient descent might arise.

Ideological Online Debates Dataset From Table
2, it can be observed that the SVM outperformed
other models for targets EG, Gu R, Ga R, and AB.
The biLSTM-CNN outperformed biLSTM for all
targets by an average of 3.68%. The biGRU-CNN
outperformed biGRU for all targets by an aver-
age of 3.41%. It is important to note that BERT’s
performance was generally poorer than previously
observed for the other datasets. We attribute this to
its limitation of the maximum processing sequence
length of 512 for this dataset, whereas the actual
average sentence length is greater than 512. There-
fore, truncating the rest of the text leads to a loss
of information.

We note that the Ideological dataset has the high-
est sentence average length (see Table 1). An
interesting observation here is that given an ad-
equate sequence length, both biLSTM-CNN and
biGRU-CNN outperformed their non-CNN added
version for all targets. However, for the SemEval
and MPCHI datasets, where the sequence length
is relatively small, these CNN-added models were
only able to outperform on some targets. We at-
tribute this to feeding the output of the bidirectional
layers to a CNN, which further enables the model
to capture most stance semantic features from the
feature map.

4.2 Performance Per Stance Detection Model

biGRU and biGRU-CNN For the biGRU and
biGRU-CNN models, Table 2 shows that adding a
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Tested On Trained on SemEval 2016 Task 6A
SVM_TFIDF biGRU biGRU-CNN biLSTM biLSTM-CNN BERT

SemEval 2016 Task 6A 72.00 65.38 66.53 63.85 67.37 66.18
MPCHI 46.52 56.79 54.73 54.26 56.9 36.80
Ideological Online Debates 45.19 45.95 46.25 46.22 44.46 52.51
Tested On Trained on MPCHI

SVM_TFIDF biGRU biGRU-CNN biLSTM biLSTM-CNN BERT
SemEval 2016 Task 6A 55.15 49.81 48.50 45.34 48.55 50.06
MPCHI 74.00 65.05 73.69 67.73 72.03 77.77
Ideological Online Debates 48.89 52.66 51.54 51.57 52.91 38.90
Tested On Trained on Ideological Online Debates

SVM_TFIDF biGRU biGRU-CNN biLSTM biLSTM-CNN BERT
SemEval 2016 Task 6A 50.73 47.03 49.19 47.19 43.52 39.96
MPCHI 35.97 51.80 47.56 51.34 47.57 49.61
Ideological Online Debates 59.00 58.35 58.54 57.61 60.38 60.28

Table 3: F1 macro score for each model when trained on one dataset and tested on another dataset.

CNN layer to the hidden layer outputs of biGRU
generally provides improved F1 macro scores in
the SemEval and MPCHI datasets. We suspect
that feeding the output of the bidirectional layers
of the biGRU, which contains information about
dependencies in a text sequence, into CNN layers
with different filter sizes, enables the model to bet-
ter capture important semantic features. A further
possible explanation for the lower accuracy of the
biGRU could be the lower average sentence length
(after pre-processing) of 9 tokens in the SemEval
dataset and 15 tokens in the MPCHI dataset, caus-
ing the biGRU to fail to recognize dependencies in
the sequence; the CNN layer enabled the biGRU
to better capture dependencies. This claim is sup-
ported by the fact that the biGRU-CNN performed
better than SVM for targets AT, CC, and LA. On
the other hand, the poor performance of biGRU for
the Ideological Debates dataset can be attributed to
longer sequences, which may be difficult to process
and identify within sentence dependencies.

biLSTM and biLSTM-CNN Table 2 also shows
the F1 macro score of the biLSTM and biLSTM-
CNN models. First, when trained and tested on
the SemEval dataset, the biLSTM did not outper-
form the SVM. Further, adding a CNN layer did
not improve the performance of biLSTM except
for target AT and slightly for FM and HC. This is
attributed to the lower sequence length. This claim
is supported by the performance of biLSTM-CNN
on MPCHI targets, where it outperformed the biL-
STM along with biGRU and biGRU-CNN models
in most cases, possibly because the LSTM is ca-
pable of forgetting irrelevant information, which
enables it to capture more accurate dependencies
in the text sequence than the biGRU.

BERT The BERT model is capable of capturing
contextual information for each token in a text se-
quence, both in the left and right directions. Being
an attention model, it also directs attention towards
the desired word in the sequence. One interesting
observation is that while the BERT model performs
best in SemEval, except for target LA, it does not
perform well on EC, MV, HT, and overall in the
MPCHI dataset. Similarly, for the Ideological De-
bates dataset, it does not perform better than SVM
and other sequence models. We attribute this to the
following observations. First, the number of train-
ing examples in the SemEval dataset is three times
the number of examples in the MPCHI dataset.
Further, the F1 macro score is computed for the
Favor and Against classes only; the percent-
age of training examples is larger for the SemEval
dataset (73.71%) compared to the MPCHI dataset
(61.75%). For the Ideological Debates dataset, the
mean sentence length is 784.68, whereas BERT
can be trained on a maximum of 512 tokens. It is
important to observe that the mean sentence length
in the SemEval dataset is smaller (102.95) than
the MPCHI dataset (143.18). However, BERT per-
formed better on the former given the higher num-
ber of training examples.

4.3 Cross-Dataset Stance Detection

We investigated the performance across datasets
(trained on one dataset and tested on the others)
to determine the generalizability of each model.
Our datasets are diverse in size and text types, thus
motivating this analysis. Specifically, in SemEval,
the average sentence length is 102.95 words. In
MPCHI, the average sentence length is 143.18
words. In Ideological Online Debates, the average
sentence length is 784.68 words. Detailed results
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are given in Table 3.
Overall, we find that each model generalizes

poorly, highlighting the need for more robust al-
gorithmic solutions to stance detection, especially
for cross-dataset stance detection. Performance
degradation could be attributed to many factors,
including diversity of topics across datasets, diver-
sity in sample sizes, and the failure of models to
capture sequential information as the dataset sizes
change. Specifically, the datasets used in this work
comprise of contextually diverse targets and do-
mains. There is some domain overlap in SemEval
and Ideological Debates (e.g., (AT, EG) and (FM,
LA, AB)), but the number of training examples in
these datasets vary. Therefore, a model trained on
less training data might under perform due to low
and imbalanced learning. Since deep learning mod-
els are capable of capturing relevant information
from the data automatically, they fail to generalize
over datasets when trained on fewer data and signif-
icantly varying text lengths. Therefore, while using
deep learning models, a large number of examples
per target with adequate text length contributes
highly towards training on prediction performance.

The common use of GLOVE embeddings could
also play role in poor generalization across datasets.
GLOVE embeddings in sequence models do not
take context into account. Unlike sentiment analy-
sis, where the positive, negative and neutral words
are similar across datasets, stance analysis is de-
pendent on the revolving context around the target.
Cross-dataset stance detection might be improved
by using contextual embeddings for training.

4.4 Runtime Performance Comparison

Table 4 provides scaled runtimes (training time)
and scaled performances according to Table 2 for
experiments considered. This table serves as a
reference when deciding on the best-case model
architecture in consideration of sample size and
sentence lengths, in-dataset versus cross-dataset
stance detection, and whether the stance detec-
tion model extracts semantic context. For example,
when choosing between biLSTM-CNN and BERT
for a dataset similar to MPCHI, this table suggests
that although the biLSTM-CNN has lower average
per target training runtime, while BERT has higher
runtime, the per target performance is medium for
both models. Because of this, the biLSTM-CNN
can be chosen over BERT. Importantly, note that all
experiments were run on a NVIDIA A40 GPU with

four GPUs per task and 500GB memory. The pro-
vided categories in Table 4 are dependent on this
setup. The exact runtime in seconds and all code
files of the experiments in this paper are available at
the following Github link: https://github.com/nlp-
grp/stance_comparison

5 Discussion and Recommendations

Prior work identifies a linear relationship between
the labels in stance detection and sentiment analysis
— that is, Positive = Favor and Negative
= Against (ALDayel and Magdy, 2021). How-
ever, an author can also express a negative senti-
ment, while being in favor of the target. For exam-
ple, in the following tweet “The statement of ‘Guns
kill people, Guns kill children’ is false guns don’t
kill people, people kill people. Guns should be al-
lowed everywhere GUNS ARE GOOD”, TextBlob
(Loria, 2018), a Python text processing library, pre-
dicts its sentiment as negative, whereas the ac-
tual stance of this tweet towards the target of Gun
Rights is Favor. Thus, sentiment is based on the
polarity of words in the text, which are more likely
to persist across datasets and varying domains. On
the other hand, it is evident from Table 3 that the
current benchmark stance detection models gen-
eralize poorly across datasets. This is due to the
expression of stance toward a specific target, and
hence the dependence on semantic context. Specif-
ically, semantic context differs with the target, in
addition to the domain of the text. For example, in
the SemEval dataset, targets Feminist Movement
and Legalization of Abortion can be categorized to
a similar domain of women’s rights. However, a
stance detection model trained on the target of Le-
galization of Abortion can only perform well when
tested on the target of Feminist Movement if it has
learned the semantic contextual knowledge. This is
called cross-target stance detection (Conforti et al.,
2021).

We can consider cross-target stance detection a
subtask of cross-dataset stance detection. That is,
the limitations associated with cross-target stance
detection were observed in this work for cross-
dataset stance detection. It is evident from Table 3
that all models trained on the SemEval dataset gen-
eralize poorly when tested on the MPCHI dataset
as the model cannot adapt knowledge from one
domain to another. We anticipate improved gen-
eralization of models across datasets if the targets
in both datasets belong to similar domains, thus
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Model Hyperparameters Context Average per Target training Run Time Per Dataset training Run Time Per Target Performance per Dataset Cross-Dataset Performance per Dataset

LR = Learning Rate SemEval MPCHI Ideological SemEval MPCHI Ideological SemEval MPCHI Ideological SemEval MPCHI Ideological

SVM Grid(’kernel’: [’rbf’], ’gamma’:
[1e-3, 1e-4], ’C’: [1, 10, 100,
1000], ’kernel’: [’linear’], ’C’: [1,
10, 100, 1000])

N L L L H L H H H H P H P

BiGRU LR: 1e-3, batch size:50,
Batch Size: 32, dropout: 0.3,
Optimizer: Adam, activa-
tion=’softmax’

N M L H M H H P P P H P H

BiGRU-CNN LR: 1e-3, batch size:50, Batch
Size: 32, dropout: 0.3, Opti-
mizer: Adam, activation=’relu’

N M L M L M M M M M H H H

biLSTM LR: 1e-3, batch size:50,
Batch Size: 32, dropout: 0.3,
Optimizer: Adam, activa-
tion=’softmax’

N M L H L M M M P P H P H

biLSTM-CNN LR: 1e-3, batch size:50, Batch
Size: 32, dropout: 0.3, Opti-
mizer: Adam, activation=’relu’

N M L M L M M P M M H H H

BERT LR:2e-5, Epochs:50, Max Seq
Length:[(Semeval, MPCHI): 128,
Ideological: 512]

Y H H L L M L H M M P P H

Table 4: Comparison of runtime and performance of all models for Per Target and Per Dataset stance detection. Per
Target Run Time: Runtime mean in seconds per model when trained per target for all datasets, categorized as L:
Low, M: Medium, or H: High. Per Target Performance: Ranked performance of all stance detection models ranked
from 1 to 6 (best to worse), with 1-2: H (High), 2-4: M (Medium), 5-6: P (Poor). Per Dataset Run Time: Runtime
of each model when trained on the whole dataset, categorized as L: Low, M: Medium, or H: High. Performance
per Dataset: For each model, the mean of macro F1 scores when trained on one dataset and tested on the other two
datasets, categorized as P: Poor, M: Medium, or H: High. Note that all experiments were run on a NVIDIA A40
GPU with four GPUs per task and 500GB memory.

allowing the model to leverage similar linguistic
and semantic cues.

Further, we also found all deep learning stance
detection methods except BERT to be trained us-
ing GLOVE embeddings. As noted previously,
GLOVE embeddings do not capture context. Fu-
ture work should consider the use of pre-trained
models or their embeddings for training sequence
models, such as BERT, Sentence Bert (Reimers and
Gurevych, 2019), Universal Sentence Encoder em-
beddings (Cer et al., 2018), or Contextualized Word
Vectors embeddings (McCann et al., 2017). This
will enable the model to learn semantic contextual
dependencies, likely leading to better performance.

Finally, we often observed performance degrada-
tion due to smaller dataset sizes. To cope with this,
we suggest future work investigate the use of sam-
pling techniques like random sampling, SMOTE
(Synthetic Minority Over-Sampling Technique)
(Chawla et al., 2002), synthetic data augmentation
techniques like EDA (Easy Data Augmentation)
(Wei and Zou, 2019), and synthetic data integration,
such as paraphrase generation, to handle highly un-
balanced data (Liu et al., 2019). Zero-shot learning
has also shown improvement in these types of cases
(Allaway et al., 2021).

6 Conclusion

In this paper, we replicated six popular stance de-
tection approaches and analyzed them using three

publicly available datasets. We explored how well
these methods perform in stance detection per and
across each dataset. Our results show that current
methods generalize poorly, potentially due to the di-
versity in targets and the use of deep models which
do not consider semantic contextual information,
such as meaning and domain specificity. In our ex-
periments, BERT is the only model which captures
semantic context; all other deep learning models
are trained on GLOVE embeddings which do not
capture context. We also explored the SVM, an-
other baseline stance detection model, which only
captures surface-level vocabulary statistics. Our ob-
servations and recommendations for future work,
such as the use of sampling techniques to increase
dataset sizes and the use of pre-trained models like
Sentence Bert to capture context, are also noted.

To expand this work, we will test similar meth-
ods for cross-target stance detection. We are
also developing techniques to improve cross-target,
cross-domain, and cross-dataset stance analyses.
We will also consider larger datasets like the Will-
They-Won’t-They dataset proposed by Conforti
et al. (2020), and other baseline models for cross-
target stance detection such as those proposed by
Augenstein et al. (2016), Du et al. (2017), and Xu
et al. (2018).
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