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Abstract

Natural language models are often summarized
through a high-dimensional set of descriptive
metrics including training corpus size, train-
ing time, the number of trainable parameters,
inference times, and evaluation statistics that
assess performance across tasks. The high di-
mensional nature of these metrics yields chal-
lenges with regard to objectively comparing
models; in particular it is challenging to as-
sess the trade-off models make between perfor-
mance and resources (compute time, memory,
etc.).

We apply Data Envelopment Analysis (DEA)
to this problem of assessing the resource-
performance trade-off. DEA is a nonparametric
method that measures productive efficiency of
abstract units that consume one or more inputs
and yield at least one output. We recast natu-
ral language models as units suitable for DEA,
and we show that DEA can be used to create
an effective framework for quantifying model
performance and efficiency. A central feature
of DEA is that it identifies a subset of models
that live on an efficient frontier of performance.
DEA is also scalable, having been applied to
problems with thousands of units. We report
empirical results of DEA applied to 14 different
language models that have a variety of archi-
tectures, and we show that DEA can be used to
identify a subset of models that effectively bal-
ance resource demands against performance.

1 Introduction

A standard task in the machine learning lifecycle is
to compare performance of many models; typically
this process involves analyzing high-dimensional
sets of summary statistics (hyperparameters, evalu-
ation metrics, etc.). A common use case is quantify-
ing the trade-off between performance and resource
constraints; the goal being to achieve the best pos-
sible performance using minimal resources.

Meanwhile, multitask performance benchmarks
(e.g., GLUE) have found widespread adoption in

the natural language processing (NLP) commu-
nity, with transformer-based models often leading
in evaluation performance (Vaswani et al., 2017).
While the performance of transformer-based lan-
guage models is impressive, they are notoriously
resource-intensive, and often smaller models can
more efficiently leverage a limited resource budget.
However, it is nontrivial to demonstrate this fact by
formulating a rational and fair comparison among
models of different sizes and architectures.

In this paper, we apply data envelopment anal-
ysis (DEA) to this challenge of assessing model
resource-performance trade-off (Charnes et al.,
1978; Banker et al., 1984). DEA is a technique
that originated in the operations research commu-
nity, and it has been applied to a wide range of
settings over many decades. It is traditionally con-
cerned with rigorously defining decision making
efficiency for teams, departments, companies, and
other types of people-oriented organizations. But
DEA is a generic technique that is based on solving
a series of linear programs that are constructed to
analyze the relative efficiency of decision making
units (DMUs). A DMU is an abstract object that
converts a set of inputs or resources into a set of
outputs or benefits.

Our adaptation of DEA to the NLP context be-
gins by treating each model as a DMU. Example
inputs for the analysis include training time, train-
ing corpus size, the number of trainable parameters,
and total monetary cost to train. Typical outputs
would be performance evaluation metrics, evalua-
tion throughput, etc.

Our main contribution in this paper is that we ap-
ply DEA to the problem of assessing the resource-
performance trade-off of machine learning models
with an emphasis on evaluating the efficiency of
language models. To our knowledge, this applica-
tion of DEA to machine learning has not appeared
in prior work. We do not assume familiarity with
DEA, so in Section 4 we provide sufficient detail
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Figure 1: Two simple examples of DEA. (Left) Each DMU, represented by a blue dot, has two outputs and a single
input. Efficient DMUs generally lie far from the origin, which corresponds to DMUs that have high output per
unit of input. (Right) Each DMU ingests two inputs and yields a single output. The set of DMUs that lie close to
either axis are more efficient, which has the interpretation of low unit input per unit of output. The Pareto fronts are
indicated with the heavy black line segments. Note that the dashed lines segments are not considered part of the
front. Suboptimal DMUs are said to be “enveloped” by efficient DMUs.

to interpret our empirical results, which apply DEA
to a variety of models, in Section 5.

2 Background

DEA was developed to enable performance assess-
ment of teams of people and organizations such
as not-for-profits, governmental organizations, de-
partments within larger organizations and meta-
analyses of industries. Traditional inputs include
organizational staff salary, operational costs, and
time. Traditional outputs include revenue, sales
volume, and other organizational goals. The Pareto
front of DEA in this context is also known as
the best practice frontier, with the name derived
from the observation that if a decision making unit
(DMU) is on this frontier, it is objectively more
efficient at transforming its inputs into outputs.

DEA analysis is applied to the inputs and outputs
of a population of DMUs, and it assigns a scalar
value between 0 and 1 to each DMU which ex-
presses its efficiency. A DMU that is more effective
at transforming inputs into outputs is considered
more efficient.

Figure 1 illustrates two simple scenarios where
DEA-type efficiency can be endowed with an intu-
itive representation. On the left, several DMUs are
represented as blue dots, and each DMU ingests
a single input and yields two outputs. A process
that generates more output for a given input is con-
sidered to have greater efficiency. In this scenario,

processes that lie on the Pareto front are far from
the origin. At right, a different set of DMUs is
shown. In this example, each DMU ingests two in-
puts and performance is assessed through a single
output. A DMU with low input or large output will
live close to one of the axes, and DMUs close to
the origin are more efficient.

We now illustrate how DEA quantifies model
efficiency by briefly describing a hypothetical, and
simple, example. Consider a language model
trained on a small amount of data with high ac-
curacy for some task. DEA classifies this model
as more efficient than (1) a model that achieves
the same accuracy with more training data or (2)
a model that achieves a lower accuracy with the
same amount of training data.

We describe the formal definition of DEA below
in Section 4, but for now it suffices to understand
that DEA is the result of solving a sequence of
linear programs. In particular, global solutions
are guaranteed to be found rapidly and with high
numerical precision.

A DEA-based approach to model comparison
has several advantages. Since it is based on linear
programming, the DEA framework lends itself to
detailed theoretical analysis, which extends to in-
terpreting solutions and modifying the programs in
a controlled way. Furthermore, DEA is extensible
both in the number of models that one can consider
as well as the metrics that are used to represent
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each model’s inputs and outputs. Finally, DEA is a
scalable technique, since it allows one to analyze
model performance of tens of thousands of models.

DEA can be applied to almost arbitrary data that
satisfies a small number of weak conditions, but
this flexibility comes with some cost. In order to de-
rive meaning from DEA, one must carefully choose
the set of inputs and outputs. This process of selec-
tion is necessarily subjective. The specifics of our
implementation are not meant to be universal pre-
scriptions but rather a demonstration of the concept
and useful starting point.

3 Related work

DEA was introduced to the operations research
community as a tool to help organizations quan-
tify efficiency, and to objectively identify subor-
ganizations that perform especially well (Charnes
et al., 1978). Since its introduction, DEA has
been applied to a vast array of fields, including
international banking, cloud computing operations,
economic sustainability, police department opera-
tions, hospital operations, and logistical applica-
tions (Charnes et al., 1995; Emrouznejad et al.,
2016; Sun, 2002; Thanassoulis, 1995; Tsaples et al.,
2022). Recent work has applied DEA to the ma-
chine learning context to optimize generalization
error of models (Guerrero et al., 2022); we are
unaware of prior work that applies DEA to the pur-
pose of assessing model efficiency as we do here.

The theory of DEA continues to be an active
field of research, and there have been many devel-
opments over the years in an attempt to address per-
ceived shortcomings. In addition to the relaxation
of constant returns to scale, “cross-efficiency” was
introduced to generate unique efficiency rankings,
and “stochastic data envelopment analysis” was de-
veloped to account for noise and uncertainty in the
measurements that are used to inform DEA (Banker
et al., 1984; Doyle and Green, 1994; Olesen and
Petersen, 2016).

DEA is parallelizable, and it has been applied to
problems with tens of thousands of DMUs (Phillips
et al., 1990; Khezrimotlagh et al., 2019). Reducing
the required computation time of DEA has also
been explored (Ali, 1990, 1993).

Assessment of natural language understanding
requires models to execute a range of linguistic
tasks across different domains. Recognizing this,
the GLUE benchmarks were introduced (Wang
et al., 2018). The GLUE benchmarks consist of

nine English sentence understanding tasks, so the
performance of a single model on the GLUE bench-
mark yields a nine-dimensional vector. Typically,
this vector is summarized through an average and
reported as a single score.

A challenge of modern transformer-based ma-
chine learning is the large number of different ar-
chitectures that can be tested. A fairly comprehen-
sive overview of recent performance results related
to language models is reported in (Narang et al.,
2021). The primary method of reporting the re-
sults is in tabular form (see, for example Tables 1
and 2 of that reference), and comparative analysis
is challenging. Others propose rigorous scientific
methods and experiment design to help manage
these challenges (Ulmer et al., 2022), (Dror et al.,
2019), (Dror et al., 2017); we believe DEA is an-
other tool that can be leveraged for these analyses.

Multidimensional descriptions of models are an
inescapable feature of machine learning, and scalar-
ization of such descriptions are equally common.
Several metrics commonly used to describe mod-
els include precision, recall, accuracy, model size,
and a variety measures of performance including
BLEU and the family of ROUGE scores (Lin, 2004;
Papineni et al., 2002). Aside from DEA, other well-
known examples of scalarization techniques used
within the machine learning community include the
F1 score, the Matthews correlation coefficient, and
the Fowlkes–Mallows index, which summarizes
the confusion matrix (Matthews, 1975; Yule, 1912;
Fowlkes and Mallows, 1983).

4 Mathematical background

In this section, we provide sufficient background
for one who is unfamiliar with DEA to interpret
the results of Section 5.

When DEA was originally introduced, a tech-
nical requirement of the processes being assessed
was that they exhibit constant returns to scale; for
example this means that doubling the value of each
input (e.g., sales staff) should cause the doubling
of the value of all the outputs (e.g., monthly sales).
DEA found widespread adoption despite this as-
sumption almost never holding in practice. To ad-
dress this perceived deficiency in DEA, the original
formulation of DEA was modified to relax the con-
stant returns to scale assumption. Several other
extensions of DEA are now in common use, and
we provide an overview below. More details can
be found in (Cooper et al., 2007).
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We introduce the setup and notation as follows.
There are n DMUs, each of which consumes m
inputs and produces s outputs. Concretely, DMUj

consumes xij ≥ 0 units of input and produces
yrj ≥ 0 units of output, where 1 ≤ i ≤ m,
1 ≤ r ≤ s, and 1 ≤ j ≤ n. The measure-
ment units of the different inputs and outputs
need not be congruent. For shorthand, we can
express the data corresponding to DMUj with the
pair (xj , yj) ∈ Rm+s where xj = (xij)

m
i=1 and

yj = (yrj)
s
r=1. We call the pair (xj , yj) an activ-

ity. We can additionally arrange the input data in
an m × n matrix X = (xij) and the output data
in an s × n matrix Y = (yrj). All the vectors
xj and yj are assumed to be semipositive, mean-
ing their entries are nonnegative and at least one
entry is strictly positive. Equivalently, this means
DMUj consumes a positive amount of some input
and produces a positive amount of some output.

4.1 CCR efficiency

We first introduce the (input-oriented) CCR model
(Charnes et al., 1978), named as such after its cre-
ators Charnes, Cooper, and Rhodes. The CCR
model is widely regarded as the first DEA model,
and assumes constant returns to scale.

For each o, where 1 ≤ o ≤ n, we evaluate
DMUo against its peers. Let v = (vi)

m
i=1 ∈ Rm

+

and u = (ur)
s
r=1 ∈ Rs

+ denote the weights that
are applied to all the inputs and all the outputs
of DMUo, respectively. For an arbitrary activ-
ity (x, y) ∈ Rm+s

+ , the ratio u⊤y/v⊤x measures
efficiency by reducing the multiple inputs (resp.
outputs) to a single “virtual” input (resp. “virtual”
output), then returning the ratio of virtual output
to virtual input. The CCR model aims to solve the
following fractional program, indexed by o, where
1 ≤ o ≤ n:

maximize
v,u

θ := θo =
u⊤yo
v⊤xo

(1a)

subject to
u⊤yj
v⊤xj

≤ 1 for j = 1, . . . , n (1b)

v ∈ Rm
+ , u ∈ Rs

+. (1c)

The constraints (1b) bound the efficiency ratio of
each DMU above by 1. The objective (1a) aims to
find multipliers v, u that maximize the efficiency
ratio of target DMUo; due to the constraints (1b),
clearly the optimal value θ∗ is at most 1. It can be
shown that Eq. (1) is equivalent to the following

linear program, called the CCR multiplier form:

maximize
v,u

θ = u⊤yo (2a)

subject to v⊤xo = 1 (2b)

− v⊤X + u⊤Y ≤ 0⊤ (2c)

v ∈ Rm
+ , u ∈ Rs

+. (2d)

Equivalence of (1) and (2) can be verified through
a simple exercise (Cooper et al., 2007). We call
DMUo CCR-efficient if θ∗ = 1 and there exists an
optimal (v∗, u∗) with v∗ > 0 and u∗ > 0. Other-
wise we call DMUo CCR-inefficient.

It is possible for DMUo to achieve the maximal
value θ∗ = 1 and still be CCR-inefficient; this oc-
curs when some DMUj ̸= DMUo consumes no
more input than DMUo, produces at least as much
output as DMUo, and either consumes strictly less
of some input or produces strictly more of some
output than DMUo. In the literature, such CCR-
inefficient DMUs are occasionally referred to as
weakly efficient, whereas DMUs satisfying both
θ∗ = 1 and (v∗, u∗) > 0 are called strongly effi-
cient (Cooper et al., 2004). In Figure 1, the weakly
inefficient points are the endpoints of the dashed
line segments that are parallel to the axes, and they
are labeled “suboptimal.” For the most part, we
will not use this terminology and simply refer to
DMUs satisfying θ∗ = 1 and not (v∗, u∗) > 0 as
inefficient.

Computationally, one typically does not work
with the CCR multiplier form directly, but rather
with its dual. The dual of (2) is referred to as the
CCR envelopment form:

minimize
θ,λ

θ (3a)

subject to θxo −Xλ ≥ 0 (3b)

Y λ ≥ yo (3c)

θ ∈ R, λ ∈ Rn
+. (3d)

We now describe the connection between the
CCR model and the assumption of constant returns
to scale with an alternative interpretation of the
envelopment form. Recall that an arbitrary pair of
vectors (x, y) ∈ Rm+s

+ is called an activity. The
CCR model assumes there is a set of feasible activ-
ities, called the production possibility set, denoted
PCCR, which is defined as the polytope

PCCR := {(x, y) ∈ Rm+s
+ :

x ≥ Xλ, y ≤ Y λ, λ ∈ Rn
+},

and which has the following properties:
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1. We assume the observed activities
{(xj , yj)}nj=1 are contained in PCCR.

2. If (x, y) ∈ PCCR, then (x̄, ȳ) ∈ PCCR for
any x̄ ≥ x, ȳ ≥ y. (In the economics litera-
ture, this is known as free disposability (Carter
and Koopmans, 1952).)

3. Conic combinations of activities in PCCR be-
long to PCCR.

The last property implies constant returns to scale,
as (x, y) ∈ PCCR implies (tx, ty) ∈ PCCR for
any t > 0.

Eq. (3) can be viewed as finding the mini-
mum θ such that (θxo, yo) ∈ PCCR. More intu-
itively, Eq. (3) aims to synthesize a new activity
using conic combinations of the observed activi-
ties {(xj , yj)}nj=1, i.e., (Xλ, Y λ) where λ ∈ Rn

+.
Eq. (3) tries to scale the inputs xo as small as pos-
sible by the factor θ while ensuring that the synthe-
sized activity (Xλ, Y λ) consumes no more inputs
than θxo and maintains output levels at least as
high as yo.

The envelopment form allows for an alterna-
tive characterization of CCR-efficiency: DMUo is
CCR-efficient if for any optimal solution (θ∗, λ∗)
to (3), θ∗ = 1 and the solution has zero slack,
i.e., the constraints (3b) and (3c) hold at equality;
DMUo is CCR-inefficient otherwise. If DMUo is
CCR-inefficient, then there exists λ ∈ Rn

+ such that
xo ≥ Xλ, Y λ ≥ yo and at least one inequality in
the system holds strictly; the synthesized activity
(Xλ, Y λ) is thus strictly better than (xo, yo), and
so DMUo is said to be enveloped by the observed
activities {(xj , yj)}nj=1.

Solving (3) alone is not enough to determine
whether DMUo is CCR-efficient; to determine
whether every optimal solution to (3) has zero slack,
one additionally solves the following linear pro-
gram:

maximize
λ,s−,s+

1⊤s− + 1⊤s+ (4a)

subject to s− = θ∗xo −Xλ (4b)

s+ = Y λ− yo (4c)

λ ∈ Rn
+, s

− ∈ Rm
+ , s+ ∈ Rs

+, (4d)

where θ∗ in (4) is the optimal value of (3). If DMUo

is CCR-inefficient, we can additionally find its ref-
erence set, the set of CCR-efficient DMUs that en-
velop DMUo thus making it CCR-inefficient. The

reference set is defined based on the max-slack
solution (θ∗, λ∗, s−∗, s+∗) of (3) and (4) to be

ECCR
o = {j ∈ {1, . . . , n} : λ∗

j > 0}.

4.2 BCC efficiency

The constant returns to scale assumption of the
CCR model can be problematic when comparing
language models, e.g., one typically expects dimin-
ishing returns from increased training time. For-
tunately, this can be relaxed with a very simple
modification to the CCR formulation (Banker et al.,
1984). The so-called BCC model, named after its
creators Banker, Charnes, and Cooper, addresses
this shortcoming and allows for variable returns
to scale by adding a single additional constraint,
namely 1⊤λ = 1, on the production possibility
set. The BCC envelopment form, which is almost
identical to Eq. (3), is as follows:

minimize
θ,λ

θ (5a)

subject to θxo −Xλ ≥ 0 (5b)

Y λ ≥ yo (5c)

1⊤λ = 1 (5d)

θ ∈ R, λ ∈ Rn
+. (5e)

The dual of (5) is the BCC multiplier form:

maximize
v,u,u0

u⊤yo − u0 (6a)

subject to v⊤xo = 1 (6b)

− v⊤X + u⊤Y − u01
⊤ ≤ 0⊤ (6c)

v ∈ Rm
+ , u ∈ Rs

+, u0 ∈ R. (6d)

The production possibility set PBCC of the BCC
model is defined as

PBCC = {(x, y) ∈ Rm+s
+ :

x ≥ Xλ, y ≤ Y λ, 1⊤λ = 1, λ ∈ Rn
+}.

The envelopment form (5) can be viewed as finding
the minimum θ such that (θxo, yo) ∈ PBCC . We
call DMUo BCC-efficient if for any optimal solu-
tion (θ∗, λ∗) to (5), θ∗ = 1 and the solution has
zero slack, i.e., the constraints (5b) and (5c) hold at
equality; DMUo is BCC-inefficient otherwise. As
in the case of the CCR model, one not only solves
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(5) but also the following:

maximize
λ,s−,s+

1⊤s− + 1⊤s+ (7a)

subject to s− = θ∗xo −Xλ (7b)

s+ = Y λ− yo (7c)

1⊤λ = 1 (7d)

λ ∈ Rn
+, s

− ∈ Rm
+ , s+ ∈ Rs

+, (7e)

where θ∗ in (7) is the optimal value of (5).
If DMUo is BCC-inefficient, we are interested

in finding its reference set, the set of BCC-efficient
DMUs that envelop DMUo thus making it BCC-
inefficient. The reference set is defined based on
the max-slack solution (θ∗, λ∗, s−∗, s+∗) of (5) and
(7) to be

EBCC
o = {j ∈ {1, . . . , n} : λ∗

j > 0}.

If DMUo is BCC-efficient, we can additionally
determine returns to scale as follows:

1. Increasing returns to scale prevails at (xo, yo)
iff u∗0 < 0 for all optimal solutions to (6).

2. Decreasing returns to scale prevails at (xo, yo)
iff u∗0 > 0 for all optimal solutions to (6).

3. Constant returns to scale prevails at (xo, yo)
iff u∗0 = 0 for some optimal solution to (6).

Suppose we solve (6) and obtain u∗0 < 0. We then
solve the following modified program:

maximize
v,u,u0

u0 (8a)

subject to v⊤xo = 1 (8b)

u⊤yo − u0 = 1 (8c)

− v⊤X + u⊤Y − u01
⊤ ≤ 0⊤

(8d)

v ∈ Rm
+ , u ∈ Rs

+, u0 ≤ 0. (8e)

If (8) yields an optimal solution with u∗0 = 0, then
constant returns to scale prevails at (xo, yo), oth-
erwise increasing returns to scale prevails. If on
the other hand we solve (6) and obtain u∗0 > 0, (8)
can be modified by replacing the constraint u0 ≤ 0
with u0 ≥ 0 and switching the optimization sense
to minimize u0.

Since the BCC envelopment form differs from
the CCR envelopment form only in the addition
of the convexity constraint 1⊤λ = 1, if DMUo is
CCR-efficient, it is also BCC-efficient, and con-
stant returns to scale prevail at DMUo.

The CCR score θ∗CCR is called the (global) tech-
nical efficiency (TE) as the CCR model ignores the
effects of scaling. The BCC score θ∗BCC is called
the (local) pure technical efficiency (PTE) as the
BCC model accounts for variable returns to scale.
The scale efficiency (SE) is defined as

SE =
TE

PTE
=

θ∗CCR

θ∗BCC

. (9)

Note that 0 ≤ SE ≤ 1. Eq. (9) implies a decom-
position of technical efficiency into pure technical
efficiency and scale efficiency; if technical effi-
ciency TE is low, it is either because of inefficient
operation (low PTE) or poor scaling of resources
(low SE).

We remark that all of the CCR and BCC mod-
els we consider are input-oriented, as they attempt
to reduce input consumption while maintaining
the same if not higher level of output production.
We do not consider output-oriented models which
consider the opposite situation where output pro-
duction is increased while maintaining the same or
lower level of input consumption.

5 Results and analysis

In this section, we describe the results of applying
DEA to compare a variety of NLP models. The in-
put features and the output features were selected to
incorporate aspects of training, evaluation and task
performance. Since training is one part of our anal-
ysis, several identical versions of the same models
are represented in the set of models considered
but with different learning rates selected. We also
incorporate several simpler models as baselines in-
cluding TF-IDF and GloVe embeddings with linear
classifiers (Pennington et al., 2014).

The transformer models are pretrained mod-
els that are sourced from the Hugging Face
Model Hub (Hugging Face, 2022). Each trans-
former model appears three times: once for
each of the learning rates 10−3, 10−4, and 10−5.
The base models are bert-base-uncased,
bert-large-uncased (Devlin et al., 2019),
roberta-base (Liu et al., 2019), and their dis-
tilled versions: distilbert-base-uncased,
distilroberta-base (Sanh et al., 2019).
The GloVe embeddings used are all trained on the
Wikipedia 2014 and Gigaword 5 6B corpuses and
vary in embedding dimension between 50, 100, 200
and 300 (Pennington et al., 2014). As our simplest
baseline we use scikit-learn’s implementa-
tion of TF-IDF which varies in vocabulary size
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between 100, 500, 1000, 5000, 10000 and 15000
(Pedregosa et al., 2011).

The number of trainable parameters for the trans-
former and other deep network models is deter-
mined by the model architecture and is typically
in the millions. For the simpler embedding-based
models, the number of trainable parameters is deter-
mined by the embedding dimension or vocabulary
size. The GLUE benchmarks were coalesced in the
standard manner by applying an average of all the
scores. This score was treated as an output.

We ran each model through the standard GLUE
benchmark by training them on the train split of
the dataset and evaluating them on the eval split;
in doing so we generated several dozen metrics
for each model. These metrics include standard
metrics that capture model throughput, running
time and performance; a condensed representative
summary is presented in Table 1.

In practical applications of DEA, if the analysis
uses far more inputs and outputs than the num-
ber of DMUs, then the typical outcome classifies
all DMUs as Pareto efficient. There can still be
value in analyses where this happens, this is atyp-
ical and we wish to avoid it. A rule of thumb
advises that the number of DMUs should be at
least twice the number of inputs and outputs con-
sidered (Cook et al., 2014; Golany and Roll, 1989).
Following this advice, we run an analysis with
just two inputs and two outputs. The inputs we
use are log (# trainable params) and total train run-
time. The outputs were average score across all
GLUE tasks and average eval throughput (sam-
ples/second).

We nonlinearly transform the number of train-
able parameters by applying log to it for two rea-
sons. First, there is a large disparity between the
number of trainable parameters that the simple
models have, and the number of trainable parame-
ters that the transformer models have. The result
of this gap is that the feature effectively becomes
a binary indicator of whether the model is a trans-
former or not, and this is not what we would like
the feature to convey. The second reason is based
on empirical observations about performance. In-
formally, we expect performance to be a sublinear
function of model size. That is, model performance
should improve as a function of model size, but
with decreasing returns.

We ran our experiments via Google Cloud Plat-
form’s Vertex AI Pipelines. Transformer models

were trained on n1-highmem-8 instances (8 vC-
PUs, 52 GiB memory) and one NVIDIA T4 GPU
with CUDA toolkit version 11.2. Non-transformer
models were trained on e2-standard-4 in-
stances (4 vCPUs, 16 GiB memory). All ex-
periments used Python 3.8 and, at the time of
writing, the latest versions of major libraries1.
Our experiment script was a modified version of
the run_glue.py script included with Hugging
Face’s examples 2. Runtimes for all tasks varied
from minutes to hours depending on the task and
model but all experiments were completed within
24 hours.

After generating the model metrics, we con-
structed the relevant linear programs described in
Section 4, and we solved them using Gurobi ver-
sion 9.5.2.

The results shown in Table 2 use the following
definitions. The column headed “CCR score” re-
ports the optimal objective value of the program in
Eq. (3), and the “BCC score” reports the optimal
objective value of the program in Eq. (5). The col-
umn headed “scale efficiency” reports the ratio of
the two optimal values, and is defined explicitly in
Eq. (9). The column “CCR eff.” indicates whether
the optimal solution to (3) has zero slack, and re-
ports the result of solving Eq. (4). The column
headed “BCC eff.” indicates whether the optimal
solution to Eq. (5) has zero slack and requires solv-
ing Eq. (7) to make the determination. Note that
several models exhibit a BCC score of 1.000 while
not being BCC-efficient, i.e., they are weakly effi-
cient. Finally, the “ret. to scale” column containing
either CRS or DRS (IRS does not occur here) re-
ports the results of Eq. (6) and Eq. (8). CRS indi-
cates constant returns to scale, which corresponds
to item 3 in the list appearing just prior to Eq. (8).
DRS indicates decreasing returns to scale. In this
case, DRS corresponds to item 2 in that same list.

As a result, of this table, it is clear
that the models glove-50-linear,
tfidf-1000-linear, and roberta-base
with lr=1e-4 perform well overall. It is also
clear that the BCC equations provide a view of
model performance that benefits the more complex
models. This confirms the general intuition that
large changes in model size, complexity and

1The libraries and their versions are: (torch, 1.11.0),
(transformers, 4.20.1), and (scikit-learn, 1.1.1).

2https://github.com/huggingface/
transformers/blob/v4.20.1/examples/
pytorch/text-classification/run_glue.py
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other inputs yield incremental improvements
in performance. Additionally, it shows that
bert-large-uncased models are suboptimal,
requiring a lot of time and space in exchange for
performance that is similar to that of other models.

6 Conclusions and Future Work

We have applied Data Envelopment Analysis to the
challenge of quantifying the trade-off that exists
between model performance and resource demands.
We base this analysis on standard high-dimensional
summary statistics that describe each model. We
apply DEA to the analysis of 14 natural language
models, and from this analysis we identify both
simple and transformer-based models that effec-
tively balance the competing objectives.

We demonstrate that the method is feasible
and scales well. Future work can refine the ap-
proach presented above in several directions. First,
specifics of our analysis can be modified by se-
lecting different sets of inputs and outputs, or by
selecting different ways of normalizing the inputs
and outputs. Although DEA is a quantitative frame-
work, there is much subjectivity in how the analysis
is set up and interpreted. Second, it would be in-
teresting to consider a more principled approach
to the normalization of inputs and output attributes
used in the analysis. We take the log of the number
of trainable parameters to amplify the difference
between models where the number of parameters
is small, as well as to capture diminishing resource
cost once models are sufficiently large. For future
work, one may apply exp to achieve the opposite ef-
fect. In addition, for attributes that take on negative
values, since DEA assumes semipositive data, one
may consider splitting the attribute into its positive
and negative parts. Third, we have only consid-
ered input-oriented models, and so inherent in our
approach is the goal of minimizing input consump-
tion while maintaining best-in-class performance.
An output-oriented approach is conversely inter-
ested in holding input resources constant while
producing superior results. We leave investigation
of these types of models to future work. Finally, it
seems possible that DEA might be integrated into
the training process, where the analysis is used to
direct training time, parameter size, performance
criteria. Due to the high-dimensional nature of lan-
guage model descriptions, we believe that DEA is
well-suited for language model assessment.
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Metric Percentiles: 25 50 75
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Table 1: Representative data for the stsb tests. The five models tested are: bert-base-uncased, bert-large-uncased,
distilbert-base-uncased, distilroberta-base, and roberta-base with three different learning rates 10−5, 10−4 and 10−3.
In addition to stsb, the other tests are mrpc, qqp, wnli, rte, mnli, cola, sst2, and qnli. For each distinct model, each
test, and each learning rate, similar metrics are generated, for a total of over 100 different metrics.

θ∗CCR θ∗BCC SE CCR eff. BCC eff. RTS GLUE score
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Table 2: Efficiency scores, returns to scale characterizations of BCC-efficient models, and GLUE scores (average
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characteristics (increasing = ↑, decreasing = ↓, constant = →) indicated only for BCC-efficient models.
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