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Abstract

Transformer-based language models are often
trained on structured text where non-lexical
markers of sentence and discourse structure
(e.g., punctuation and casing) are present and
used consistently. Transformers encode these
markers and arguably benefit from the infor-
mation they convey. Yet, a systematic evalua-
tions of the contribution of non-lexical markers
to model performance, and of whether mod-
els’ behavior changes significantly in their ab-
sence, is currently lacking. This knowledge
is both relevant from a theoretical standpoint,
but also important to understand how well pre-
trained models may perform in common appli-
cation scenarios where casing and punctuation
are absent or inconsistent. Here, we analyze
GPT-2’s language modeling behavior in paral-
lel corpora that differ in the presence vs. ab-
sence of consistent punctuation and casing. We
compute GPT-2’s precision and uncertainty in
next-token prediction for multiple context sizes,
and compare the resulting performance distri-
butions across corpora. We find that absence
of non-lexical markers, especially punctuation,
increases model uncertainty, and it affects (but
does not catastrophically disrupt) GPT-2’s pre-
cision in next-token prediction. Interestingly,
the absence of non-lexical markers prevents the
model from benefiting from larger contexts in
order to reduce the uncertainty of its predic-
tions. Future work will extend this paradigm
to a wider range of models and systematically
investigate how features of training text affect
both language modeling and downstream pre-
dictive performance.

1 Introduction

The advent of Transformer-based language models
(Vaswani et al., 2017) and their availability through
high-quality easy-to-use libraries such as hugging-
face’s transformers (Wolf et al., 2020) has widely
democratized the use of state-of-the-art models
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beyond the NLP community. Transformers’ lan-
guage modeling capabilities can be leveraged off-
the-shelf — with no further training and only mini-
mal programming required — for a large variety of
applications, ranging from neuroscientific investi-
gations of human language processing (Merkx and
Frank, 2020; Schrimpf et al., 2021) to interactive
and improvisational storytelling (Austin, 2019).

Transformers (Devlin et al., 2019; Radford et al.,
2019; Brown et al., 2020) are often trained on
large corpora including highly structured text (e.g.,
BooksCorpus, (Zhu et al., 2015), or the English
Wikipedia), where non-lexical sentence structure
and discourse markers (punctuation and casing)
are present and used consistently. Tokenization
preserves these markers: punctuation is encoded
through dedicated tokens and (for some models)
casing is preserved through case-sensitive vocabu-
laries.

Punctuation and casing encode rich information
about sentence boundaries, internal sentence struc-
ture, and discourse (Steinhauer, 2003), which trans-
formers’ language modeling capabilities arguably
benefit from. Yet, systematic investigations of
whether this is the case, and how sparse or inconsis-
tent use of these markers affects models’ predictive
performance, is lacking'.

This knowledge would not only be informative
from a theoretical standpoint (clarifying the con-
tribution of non-lexical structure and discourse
markers to transformers’ language modeling ca-
pabilities) but also to understand whether popular
pretrained models’ capabilities generalize to com-
mon real-world application scenarios where non-
lexical markers are absent or used inconsistently
(e.g., social media text, or speech-to-text transcrip-
tion). Discrepancies in performance could in fact
be addressed by fine-tuning models on unstructured

"'With the exception of studies on punctuation restoration
(Courtland et al., 2020; Varavs and Salimbajevs, 2018) and
dialogue act recognition (Zelasko et al., 2021).
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baseline

no punctuation

the date: September eighteenth. He slides over
a dirty martini, and

the date September eighteenth He slides over
a dirty martini glass

and ‘cheapest’ therapist. Before long, he un-
derstood that, knowing nothing about the sub-
ject, it was hard to figure out which therapist

and cheapest therapist Before long he under-
stood that knowing nothing about the subject
it was hard to figure out which one

cups are too big to serve wine. "You didn’t get
half the things on my cup

cups are too big to serve wine You didn’t get
half the things on my list

is now going to introduce Watson to Sherlock
in hopes that, um, Sherlock and, or, you

is now going to introduce Watson to Sherlock
in hopes that um Sherlock and or Watson

Table 1: Examples of model input and predictions (blue if predicted token = true token, red otherwise).

text, but in many scenarios resource- or technical
limitations make this unfeasible.

In this paper, we start addressing these questions
by analyzing the language modeling behavior of
OpenAl’'s GPT-2 (Radford et al., 2019) using a
corpus of narratives available both as manually
curated transcriptions and as noisier force-aligned
transcripts. These manipulations make it possible
to evaluate the impact of punctuation and casing
removal on GPT-2’s language modeling precision
and uncertainty with very minimal preprocessing of
the input text. By comparing next-token predictive
accuracy and entropy across: a) parallel version
of the corpus and b) multiple context sizes, we
analyze how absence of these structural markers
affects the model’s ability to integrate information
over longer text spans in order to formulate precise
next-token predictions and reduce uncertainty.

2 Methods

2.1 Dataset

We evaluated GPT-2’s language modeling behav-
ior on next-token prediction using transcripts from
the Narratives dataset (Nastase et al., 2021). The
Narratives dataset, originally intended as a neu-
ral benchmark for models of language processing,
includes transcripts from 27 thematically diverse
audio narratives, and functional imaging (fMRI)
data from participants listening to those narratives
2. Transcripts are made available in three parallel
versions: a manual transcript, cased and includ-
ing punctuation (henceforth referred to as "base-
line"); a cased, punctuation-stripped transcript; an
uncased punctuation-stripped transcript produced
by a force-aligned algorithm. Overall, each par-

*Both can be accessed through DataLad (Halchenko
et al.,, 2021) at http://datasets.datalad.org/
?dir=/labs/hasson/narratives

allel version includes 42,989 words, and 1,440 of
these are marked as "unknown" in the force-aligned
transcript (the words not recognized by the force-
alignment algorithm). These parallel versions of
the corpus provide incremental manipulations of
the presence of punctuation and casing (and an
additional manipulation introducing lexical noise),
while lexical content stays the same. To disen-
tangle the effects of casing and lexical noise, we
generated one more version of the transcripts, iden-
tical to the force-aligned transcription except for
unknown tokens being replaced with lower-cased
original tokens.

2.2 Procedure

For each transcript type, we evaluated GPT-2 be-
havior in next-token prediction in a sliding window
fashion, using a 1-word stride and different win-
dow sizes (5, 10, 15, 20, 25, 30, 50 words — where
words are defined by whitespace boundaries). The
manipulation in window size makes it possible to
assess whether and how the model’s ability to inte-
grate information over longer contexts to produce
more precise next-token predictions is affected by
ablation of punctuation, casing, or addition of lex-
ical noise. For each narrative and window size,
the model iterates through corresponding chunks
of text across all parallel corpora: at each itera-
tion ¢, input to the model will include the same
lexical context for all four corpora (with the excep-
tion of corrupted tokens). For a given window size
s, words wyg, Wiy1, ..., Wetrs—1 are joined through
whitespaces, tokenized, and fed to the corpus. wey s
is tokenized, and the first of the resulting token is
treated as true next token to compute performance
metrics.

For each iteration ¢ and each corpus, we extract
a few predictive performance and uncertainty met-
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Figure 1: Proportion of cases (top: absolute values, bottom: difference from baseline) where the true word is
assigned top probability (left), is among the tokens with the 5 highest probability scores (middle) or is among
the tokens with the 10 highest probability scores (right), for each text type and context size. Error bars are 95%
confidence intervals across narratives in the corpus.

rics. For performance, we focus on the model’s  each for top 1 precision, and up to 2% each top 5
precision in retrieving the true token (a more inter-  and top 10 precision). Overall, the model retains
pretable metric than cross-entropy loss). To quan-  considerably good precision across manipulations
tify performance, we compute: a) a binary score  (16-22% top 1, 35-45% top 5, and 42-53% top 10).
quantifying whether the token with highest pre- For all text types, precision systematically in-
dicted probability is the true token (top 1 precision);  crease as context size increases, suggesting that
b) a binary score quantifying whether predicted  absence of punctuation and casing does not hinder
probability for the true token is one of the 5 hi ghest the models’ abﬂity to benefit from additional long-
predicted probability values (top 5 precision); ¢) a  range information to refine its predictions. Qual-
binary score quantifying whether predicted prob- itative inspection of model predictions suggests
ability for the true token is among the 10 highest  that, even when punctuation or casing are removed,
predicted probability values (top 10 precision). For  the model generally produces plausible next-token
uncertainty, we extract the entropy of the predicted predictions. Note that, for corresponding input se-
probability distribution. To summarize the overall  quences, predicted next tokens are often different
impact of punctuation, casing and lexical noise on  across text types: the predicted token is the same
the model’s behavior, for each of these metrics we  across baseline and manipulated texts less than 10%
also compute correlations between values for the  of the time.

baseline transcript and values for each of the three

manipulated versions. 3.2 Uncertainty

3 Results All manipulations increase model uncertainty rel-
ative to the baseline, with punctuation having by

3.1 Precision far the largest effect. Interestingly, the effect of ma-

Overall, ablation of punctuation and casing and  nipulations here interact with context size. When
addition of lexical noise incrementally degrade pre- ~ punctuation is available, the model benefits from
cision. the larger context to reduce its uncertainty. In ab-
Removal of punctuation contributes the most  sence of punctuation, however, entropy remains
to a loss in precision (up to 4%, up to 6.5% and  roughly constant across context sizes larger than
up to 8% for top 1, top 5 and top 10 precision 10 words (see Figure 2).
respectively), while incremental casing and noise This effect is clarified by closer inspection of the
removal contribute to a smaller extent (up to 1%  predicted probability distribution (see Figure 4). In
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the baseline, adding context increases probability
mass in the head of the distribution, which reduces
entropy. In absence of punctuation, as context size
increases, probabilities remain roughly the same
for the highest probability token (top left panel),
and they decreases for its immediate competitors
(top middle panel) and for highly implausible op-
tions (bottom right panel), but the countervailing
increase in probability mass in the middle of the dis-
tribution (top right to bottom center panel) causes
overall model uncertainty not to decrease.
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Figure 2: Entropy of the predicted probability distribu-
tion across text types and context sizes.

3.3 Overall similarity

Both next-token predictive performance metrics
and entropy display medium to high correlations
between baseline text and manipulated texts. Corre-
lations range between .78 and .83 when punctuation
is removed, between .72 and .77 when casing is
removed, and between .69 and .73 when corrupted
lexical tokens are added.
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Figure 3: Correlations between baseline text and manip-
ulated texts for both entropy and precision metrics.
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4 Conclusions

We evaluated how manipulations of non-lexical
markers (specifically, punctuation and casing) af-
fects GPT-2’s language modeling behavior. Ab-
sence of punctuation and casing increase uncer-
tainty, and they decrease, but do not disrupt,
model’s ability to yield plausible language mod-
eling predictions. Crucially, we observe that in ab-
sence of punctuation, GPT-2’s precision increases
when longer contexts are available, but — contrary
to what observed for baseline text — longer con-
texts do not reduce uncertainty.

5 Limitations and future work

Our study provides a first contribution to under-
standing how transformers leverage structural and
discourse information conveyed by non-lexical
markers to perform language modeling predictions.

This study focuses uniquely on GPT-2, and the
patterns observed in the present work may not gen-
eralize to other models. There are a number of
factors that may modulate whether and how model
behavior is significantly affected by the absence (or
an inconsistent use) of non-lexical markers. Char-
acteristics of the training corpus are one such ex-
ample, with models trained on corpora including
a larger proportion of unstructured text potentially
being more robust than models trained mainly on
highly structured text. Other relevant factors may
include the mono- vs. multi-lingual nature of the
model. Use of punctuation and casing is, in fact,
far from consistent across languages. Multilingual
models may therefore rely on non-lexical mark-
ers to a smaller extent compared to monolingual
models. In a follow-up to this study, we are ap-
plying out evaluation pipeline to a wider range of
pretrained models, including both models trained
on forward language modeling and on masked lan-
guage modeling, and including both monolingual
and multilingual models.

The current study only evaluates the impact of
non-lexical markers on language modeling perfor-
mance. Yet, in most application scenarios, pre-
trained models are deployed in the context of down-
stream tasks (e.g., classification). Future iterations
of this work will combine an evaluation of the ef-
fect of removing non-lexical markers on language
modeling behavior with an evaluation of its impact
on common downstream tasks.

Finally, this study compares GPT-2’s behavior
across scenarios where non-lexical markers are ei-
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Figure 4: Average probability for the top value in the distribution (top left), 2" to 5" top values (top middle), 5
to 10 top values (top right), 10™ to 100™ top values (bottom left), 100™ to 1000 top values (bottom centre) and

bottom 1000 values (bottom right).

ther present and used consistently or fully absent,
but there are several (and perhaps more realistic)
scenarios in between. Future work will also target
these intermediate scenarios, using a more varied
set of corpora or probabilistic text augmentation.
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A Appendix

original transcript. Jerry and George strolled through the airport with their suitcases. George walked
quickly, grimacing as he scanned the signs to figure out which way to go. A man passing by sneezed in
his direction, causing him to recoil backwards and then frantically squirt Purell onto his hands.

- punctuation. Jerry and George strolled through the airport with their suitcases George walked quickly
grimacing as he scanned the signs to figure out which way to go A man passing by sneezed in his direction
causing him to recoil backwards and then frantically squirt Purell onto his hands

- casing jerry and george strolled through the airport with their suitcases george walked quickly grimacing
as he scanned the signs to figure out which way to go a man passing by sneezed in his direction causing
him to recoil backwards and then frantically squirt purell onto his hands

- casing noised jerry and george strolled through the airport with their suitcases george walked quickly
<unk> as he scanned the signs to figure out which way to go a man passing by sneezed in his direction
causing him to <unk> backwards and then frantically squirt <unk> onto his hands jerry <unk> up

Table 2: Sample excerpts from different transcript types

text type input next word | true token | predicted
manual transcript | their suitcases. George walked quickly, | passing pass in
grimacing as he scanned the signs to
figure out which way to go. A man
- punctuation their suitcases George walked quickly | passing pass in
grimacing as he scanned the signs to
figure out which way to go A man
- casing their suitcases george walked quickly | passing pass in
grimacing as he scanned the signs to
figure out which way to go a man
- casing noised | their suitcases george walked quickly | passing pass was
<unk> as he scanned the signs to figure
out which way to go a man

Table 3: inputs to the model, next word, true token, and model predictions for window size 20.
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