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Abstract

We study the extent to which emoji can be
used to add interpretability to embeddings of
text and emoji. To do so, we extend the
POLAR-framework that transforms word em-
beddings to interpretable counterparts and ap-
ply it to word-emoji embeddings trained on
four years of messaging data from the Jodel
social network. We devise a crowdsourced hu-
man judgement experiment to study six use-
cases, evaluating against words only, what
role emoji can play in adding interpretabil-
ity to word embeddings. That is, we use a
revised POLAR approach interpreting words
and emoji with words, emoji or both accord-
ing to human judgement. We find statistically
significant trends demonstrating that emoji can
be used to interpret other emoji very well.

1 Introduction

Word embeddings create a vector-space representa-
tion in which words with a similar meaning are in
close proximity. Existing approaches to make em-
beddings interpretable, e.g., via contextual (Subra-
manian et al., 2018), sparse embeddings (Panigrahi
et al., 2019), or learned (Senel et al., 2018) transfor-
mations (Mathew et al., 2020)—all focus on text
only. Yet, emoji are widely used in casual com-
munication, e.g., Online Social Networks (OSN),
and are known to extend textual expressiveness,
demonstrated to benefit, e.g., sentiment analysis
(Novak et al., 2015; Hu et al., 2017).
Goal. We raise the question if we can lever-
age the expressiveness of emoji to make word
embeddings—and thus also emoji—interpretable.
I.e., can we adopt word embedding interpretability
via leveraging semantic polar opposites (e.g., cold
/ hot) to emoji (e.g., / , or / ) for inter-
preting words or emoji w.r.t. human judgement.

*Timon Mohaupt performed this work during his master
thesis at Brandenburg University of Technology and RWTH
Aachen University.

Approach. Motivated and based upon POLAR
(Mathew et al., 2020), we deploy a revised variant
POLARρ that transforms arbitrary word embed-
dings into interpretable counterparts. The key idea
is to leverage semantic differentials as a psychomet-
ric tool to align embedded terms on a scale between
two polar opposites. Employing a projection-based
transformation in POLARρ, we provide embed-
ding dimensions with semantic information. I.e.,
the resulting interpretable embedding space values
directly estimate a term’s position on a-priori pro-
vided polar opposite scales, while approximately
preserving in-embedding structures (§ 2).

The main contribution of this work is the large-
scale application of this approach to a social media
corpus and especially its evaluation in a crowd-
sourced human judgement experiment. For study-
ing the role of emoji in interpretability, we create a
word-emoji input embedding from on a large social
media corpus. The dataset comprises four years
of complete data in a single country from the on-
line social network provider Jodel (48M posts of
which 11M contain emoji). For subsequent main
evaluation, we make this embedding interpretable
with word and emoji opposites by deploying our
adopted tool POLARρ (§ 3).

Given different expressiveness of emoji, we ask
RQ1) How does adding emoji to POLARρ impact
interpretability w.r.t. to human judgement? I.e., do
humans agree on best interpretable dimensions for
describing words or emoji with word or emoji oppo-
sites? And RQ2) How well do POLARρ-semantic
dimensions reflect a term’s position on a scale be-
tween word or emoji polar opposites?
Human judgement. We design a crowdsourced
human judgement experiment (§ 4) to study if
adding emoji to word embeddings and POLARρ

in particular increases the interpretability—while
also answering how to describe emoji best. Our hu-
man judgement experiment involves six campaigns
explaining Words (W/*) or Emoji (E/*) with Words,
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Figure 1: The POLAR-framework (Mathew et al., 2020) makes word embeddings interpretable leveraging polar
opposites. It provides a new interpretable embedding subspace with systematic polar opposite scales: Along six
use-cases, we evaluate which role emoji expressiveness plays in adding interpretability to word embeddings. I.e.,
how well can our adopted POLARρ interpret (W/*) words or (E/*) emoji with words, emoji or both (*/M), Mixed.
We test POLARρ alignment with human judgement as represented in shown semantic profiles above.

Emoji, or both Mixed. We evaluate two test con-
ditions to answer both research questions: (RQ1)
a selection test studies if human subjects agree to
the POLARρ identified differentials (e.g., how do
emoji affect POLARρ interpretability?), and (RQ2)
a preference test that studies if the direction on
a given differential scale is in line with human
judgement (e.g., how well does POLARρ interpret
scales).
Results. POLARρ identifies the best interpretable
opposites for describing emoji with emoji, yet gen-
erally aligning well with human judgement. Except
interpreting words with emoji only probably due
to lack of emoji expressiveness indicated by coder
agreement. Further, POLARρ estimates an embed-
ded terms’ position on a scale between opposites
successfully, especially for interpreting emoji.
Broader application. Not all emoji have a univer-
sally agreed on meaning. Prior work showed that
differences in the meaning of emoji exist between
cultures (Guntuku et al., 2019; Gupta et al., 2021).
Even within the same culture, ambiguity and dou-
ble meanings of emoji exist (Reelfs et al., 2020).
Currently, no data-driven approach exists to infer
the meaning of emoji—to make them interpretable.
Our proposed approach can be used to tackle this
challenge since it makes emoji interpretable.

2 Creating Interpretable Embeddings

We explain next our deployed tool for creat-
ing interpretable word-emoji embeddings: PO-

LAR (Mathew et al., 2020); and provide detail
on a revised POLAR extension via projection.

2.1 POLAR Approach
Semantic Differentials. Based upon the idea of
semantic differentials as a psychometric tool to
align a word on a scale between two polar oppo-
sites (Fig. 1), POLAR (Mathew et al., 2020) takes
a word embedding as input and creates a new inter-
pretable embedding on a polar subspace. This sub-
space, i.e., the opposites used for the interpretable
embedding are defined by an external source.

That is, starting with a corpus and its vocab-
ulary V , a word embedding created by an algo-
rithm a (e.g., Word2Vec or GloVe) assigns vectors−→
Wa
v ∈ Rd on d dimensions to all words v ∈ V ac-

cording to an optimization function (usually word
co-occurrence). This pretraining results in an em-
bedding D =

[−→
Wa
v, v ∈ V

]
∈ R|V|×d.

Such embedding spaces carry a semantic struc-
ture between embedded words, whereas the dimen-
sions do not have any specific meaning. How-
ever, we can leverage the semantic structure be-
tween words to transform the embedding space
to carrying over meaning into the dimensions:
POLAR uses N semantic differentials/opposites
that are itself items within the embedding, i.e.,
P =

{
(piz, p

i
−z), i ∈ [1..N ], (piz, p

i
−z) ⊆ V2

}
.

As shown in Fig. 2a, given two anchor points for
each polar opposite, a line between them represents
a differential—which we name POLAR direction
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Figure 2: POLAR (Mathew et al., 2020) with Projection in a nutshell: We showcase POLARρ interpreting emoji
with emoji (E/E) (cf. paper title). (a) We leverage polar opposites (here: / , / , / ) to provide em-
bedding dimensions with semantic information. By using opposite differential directions (red dashed vectors), we
create a new interpretable subspace. (b) Orthogonal projection (blue dotted vectors) of an embedded term (here:

) onto this subspace (e.g., left: / , right: / ) yields a direct scale measure between both opposites in the
adjacent leg (green vectors, directed alike the differential). (c) The resulting interpretable embedding now contains
a tangible position estimation along employed polar dimensions for each embedded term (here: ).

(red dashed vectors):
−−→
diri =

−−→
Wa
piz
−−−−→Wa

pi−z
∈ Rd

Base Change. Naturally, we can use these dif-
ferentials as a new basis for the interpretable em-
bedding E. Gathering all directions in a matrix
dir ∈ RN×d, we obtain for all embedded terms
v ∈ V : dirT

−→
Ev =

−→
Wa
v , and ultimately apply a base

change transformation
−→
Ev = (dirT )−1

−→
Wa
v yield-

ing an interpretable subspace along the differentials−−→
diri that carries over specific geometric semantics
from the input embedding. I.e., for each word
v ∈ V within the resulting interpretable embedding
E, its embedding vector

−→
Ev now carries a measure

along each polar dimension’s semantics.
Limitations. Polar opposites being very close
in the original embedding space might tear apart.
From a technical perspective, the used pseudo in-
verse for the base change becomes numerically
ill-conditioned if d ≈ N (Mathew et al., 2020).

2.2 POLARρ Extension: Projection
While the base change approach seems natural,
its given limitations lead us to propose a variant
that comes with several benefits. Instead of cre-
ating a new interpretable vector space, we take
measurements on the differentials dir defined as
before (Fig. 2a, red dashed vectors). However,
we now project each embedding vector

−→
Wv for

v orthogonally onto the differentials as shown in
Fig. 2b (blue dotted vectors). This leads to a small-
est distance between both lines w.r.t. the differen-
tial, yet simultaneously allows for a direct scale
measure on the differential vector as shown in

Fig. 2b & Fig. 2c (green vectors). Thereby, we also
decouple the transformation matrix, which eases
later add-ins to the interpretable embedding.

Orthogonal projection (blue dotted vectors) of
each input embedding vector

−→
Wa
v onto a differential

i provides us the adjacent leg vector as follows:

oprojdiri(
−→
Wa
v) =

−→
Wa
v ·
−−→
diri

|−−→diri|︸ ︷︷ ︸
scalar

·
−−→
diri

|−−→diri|︸ ︷︷ ︸
direction

As this adjacent leg (green vectors)’s direction
naturally equals the differential, we focus only
on the scalar part representing a direct scale mea-
sure. By normalizing the differential vector lengths
d̂ir = dir · |dir|−1, the projected scale value con-

veniently results in: oprojscalardiri
(
−→
Wa
v) =

−→
Wa
v ·
−−→̂
diri.

This transformation allows to create a new inter-
pretable embedding E ∈ R|V|×N for each embed-
ding vector

−→
Wa
v (exemplified in Fig. 1) as follows:

−→
Ev = oprojscalardir (

−→
Wa
v) = d̂ir

T−→Wa
v ∈ RN

Computationally it requires an inital matrix mul-
tiplication for each embedded term; Dimension
increments require a dot product on each term.
Downstream Tasks. Other experiments indicate
POLARρ downstream task performance being on
par with the input embedding, and an edge over
base change POLAR if d ≈ N (not shown).

2.3 Measuring Dimension Importance

There can be many possible POLAR dimensions,
which requires to select the most suitable ones.
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That is, we want to define a limited set of oppo-
sites that best describes words or emoji w.r.t. inter-
pretability across the whole embedding.
Extremal Word Score (EWSO). We propose a
new metric to measure the quality of polar di-
mensions complementing heuristics from (Mathew
et al., 2020). It measures the embedding confi-
dence and consistency along available differentials.
The idea of POLARρ is that directions represent
semantics within the input embedding. We deter-
mine embedded terms shortest distance to these
axes via orthogonal projection; we use resulting
intersections as the position w.r.t. the directions.

That is, as a new heuristic, for each of our dif-
ferentials diri, we look out for k = 10 embedded
words at the extremes (having the highest scores in
each direction) and take their average cosine dis-
tance within the original embedding D to the differ-
ential as a measure. This results in the average sim-
ilarity of existing extremal words on our scale—a
heuristic that represents the skew-whiffiness within
the extremes on a differential scale.

3 Approach: Embedding & Polarization

We next propose an approach to improve the inter-
pretability of word embeddings by adding emoji. It
uses our extended version POLARρ and adds emoji
to the POLAR space by creating word embeddings
that include emoji.

3.1 Data Set

We create a word embedding out of a social media
text corpus, since emoji are prominent in communi-
cation within Online Social Networks. We decided
to use a corpus from the Jodel network, where
about one out of four sentences contain emoji (see
(Reelfs et al., 2020)).
The Jodel Network. We base our study on a
country-wide complete dataset of posts in the on-
line social network Jodel, a mobile-only messaging
application. It is location-based and establishes
local communities relative to the users’ location.
Within these communities, users can anonymously
post photos from the camera app or content of up
to 250 characters length, i.e., microblogging, and
reply to posts forming discussion threads.
Corpus. The network operators provided us with
data of content created in Germany from 2014 to
2017. It contains 48M sentences, of which 11M
contain emoji (1.76 emoji per sentence on average).
Ethics. The dataset contains no personal informa-

tion and cannot be used to personally identify users
except for data that they willingly have posted on
the platform. We synchronize with the Jodel opera-
tor on analyses we perform on their data.

3.2 Semantic Differential Sources

POLARρ can create interpretable embeddings w.r.t.
a-priori provided opposites. We next describe how
we select these opposites to make POLARρ appli-
cable to our data. Most importantly, the approach
requires being part of or locating desired opposites
within the original embedding space.
Words. As we extend the word embedding space
with emoji, we still want to use words. We find
common sources of polar opposites in antonym
wordlists (Shwartz et al., 2017) as used in the orig-
inal POLAR work. To fit our German dataset, we
translated and manually checked all pairs keeping
1275 items. From GermaNet (Hamp and Feldweg,
1997), we extracted 1732 word pairs via antonym
relations leading to |Pwords| = 1832 word pairs.
Emoji. Being not ideal, but due to lack of bet-
ter alternatives, we ended up heuristically creating
semantic opposites from emoji through qualitative
surveys across friends and colleagues resulting in
|Pemoji| = 44 emoji pairs, cf. Tab. 3. While we
could use far more opposites especially of facial
emoji, due to emoji clustering in the input embed-
ding, spanned expressive space would arguably be-
come redundant at similar EWSO scores for many
directions. Effectively it may bias interpretability
over proportionally towards facial emoji.

3.3 Polarization

Preprocessing. We tokenize sentences with
spaCy and remove stopwords. To increase am-
ounts of available data, we remove all emoji mod-
ifiers (skin tone and gender): { , , }→ .
Due to German language, we keep capitalization.
Original Embedding. We use gensim imple-
mentation of Word2Vec (W2V). A qualitative in-
vestigation suggests that skip-gram works better
than CBOW (better word analogy). We kept train-
ing parameters largely at defaults including nega-
tive sampling, opting for d = 300 dimensions.
Interpretable Embedding. The actual applica-
tion of embedding transformation is simple. We
create the matrix of differentials dir, the POLAR
subspace, according to our antonym-set Pwords ∪
Pemoji (§ 3.2). After normalizing the subspace vec-
tors, we create all embedding vectors via projec-
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(c) Preference Task for Emoji/Mixed (E/M).

Figure 3: (a) We conduct six campaigns measuring human interpretability for including emoji to the POLARρ

embedding space. Exemplified with the Emoji Mixed campaign (E/M): interpreting emoji with emoji and words.
(b) In the Selection test, coders choose suitable differentials for describing a given term. (c) In the Preference test,
coders provide their interpretation of a given term to a differential scale.

tion
−→
Ev = d̂ir

T −→Wv, ∀v ∈ V . Though normal-
ization requires careful later additions to the PO-
LAR space, we opted for standard normalization,
Estdnrm = [E−mean(E)] · std(E)−1, to ensure that
the whole embedding space aligns properly around
the center of gravity on each differential scale. We
select the best suited opposites for a given em-
bedding space by using the Extremal Word Score
(§ 2.3) for d=500+44 dimensions (words + emoji).

4 Human Evaluation Approach

While we have now created a supposedly inter-
pretable embedding, it remains to be seen how well
it is perceived by humans. That is, we next evaluate
our two key RQs, discuss significance, and provide
further details: RQ1) How well does POLARρ with
EWSO perform in selecting most interpretable di-
mensions at varying expressiveness of words and
emoji? RQ2) How well do POLARρ scalar val-
ues reflect directions on the differential scales? i)
Do humans prefer emoji to words? ii) How well
do human raters align w.r.t. interpretability? iii)
What impact do demographic factors play in inter-
pretability with or without emoji?

4.1 Evaluation design

To gather human judgement, we employ crowd-
sourcing on the Microworkers platform.

4.1.1 Questions & Evaluation Metrics
Our evaluation of the POLARρ approach includ-
ing emoji to the differentials bases on two main
questions next to demographics.
Selection test. Analogous to the original work,
we want to find out whether humans agree on best
interpretability of POLARρ selected differentials
with a word intrusion task. The question asks our

coders to select five out of ten differentials that
describe a given word best as shown in Fig. 3b.
We select half of these dimensions according to
the highest absolute projection scale values (most
extreme). The other half consists of a random selec-
tion from the bottom half of available differentials.
I.e., if the projection approach determines inter-
pretable dimensions well, humans would choose
all five out of five POLARρ chosen differentials.

As any user might choose differently, we count
how often coders choose certain differentials. The
resulting frequencies immediately translate in a
ranking that we leverage for calculating the fraction
of Top 1..5 being POLARρ chosen differentials.

Preference test. Additionally, we introduce the
preference test evaluating whether the direction
on a given differential scale is in line with human
judgement. That is, for the same words from the se-
lection test, we display the same ten dimensions (5
top-POLARρ, 5 random bottom) where coders se-
lect their interpretation of the given word on scales
as shown in Fig. 3c. Typical for semantic differen-
tial scales (Tullis and Albert, 2008; Osgood et al.,
1957), we deliberately use a seven point scale repre-
senting -3 to 3, allowing more freedom than 3 or 5
points (Simms et al., 2019). Further, we specifically
allow a center point—being equal—as it might in-
dicate both being equally well or not good at all.

Due to scale usage heterogeneity (Rossi et al.,
2001), we normalize coder chosen directions
(shift+scale according to mean) prohibiting dispro-
portional influence of single coders. We evaluate
the coder agreement by counting direction (sign)
non-/alignment with the POLARρ projection scale.

Demographics. There is a multitude of other ex-
ternal factors that might have impact on coders’
choices. To better understand participant back-

5



ground, we ask for their education, emoji usage
(familiarity), smartphone platform (different emoji
pictograms), and if they had used Jodel before.

4.1.2 Evaluation Setup
Crowdworker Campaigns We run a campaign
for each of the cross product between words only,
emoji only, and mixed Tab. 3a and Fig. 2. (W/W)
word/word sets a baseline comparison to results
from the original POLAR work, albeit now using
the projection approach. (W/M): word/mixed uses
not only words, but includes emoji to the POLAR
subspace. (W/E): word/emoji uses only emoji to
describe words. (E/W): emoji/word provides an-
other baseline as to how well emoji may be inter-
preted with words only. (E/M): emoji/mixed uses
both, emoji and words to interpret emoji. (E/E):
emoji/emoji may be the most interesting as we only
use the expressiveness of emoji to describe emoji.

For mixed cases (emoji and words within the PO-
LAR subspace), we create rankings from absolute
scale values on both types (words/emoji) separately
and then select them equally often to achieve simi-
lar amounts of word and emoji differentials.
Used Words & Emoji. We selected 50 words and
emoji to be described in each campaign. To ensure
that i) we only use common words that are very
likely known to our coders, and ii) these words are
captured well within the underlying embedding,
we pick them out of the upper 25% quantile by
occurrences in the corpus (n ≥1.6k). I.e., we chose
emoji and words that appear frequently and should
therefore be well-known. For words, we ensured
that they are part of the German dictionary Duden.
Tasks Setup. Within our six campagins, we now
have each 50 emoji or 50 words to be interpreted.
We bundled this into 5 tasks each consisting of 10
emoji/words—resulting in 30 different tasks. Each
of these tasks contains the Selection test, Prefer-
ence test, and demographics.
Subjects. Human judgement and crowdsourced
evaluations are noisy by nature. While it is usually
sufficient to employ few trusted expert coders, it is
suggested to use more in the non-expert case (Snow
et al., 2008). Thus, we assign 5 different annotators
to each of the 30 tasks. At estimated 10-15min du-
ration, we provide 3$ compensation for answering
a single task, above minimum wage in our country.
Quality Assurance. Any crowdsourcing task of-
fers an incentive to rush tasks for the money, which
requires us to employ means of quality assurance
(QA). As we have an uncontrolled environment and

thus untrusted coders, we handcraft test questions
for the selection and preference test. This task is
non-trivial as we require unambiguity in correct
answers (we ensured this with multiple qualitative
tests among friends and colleagues), while simul-
taneously not being too obvious. We place one
test question for selection and one for preference
randomly into each task (ending up in 11 words or
emoji per task). This also means that each coder
can only participate in up to 5 different tasks within
a single campaign before re-seeing a test question.

We define acceptance thresholds of four out of
five correct answers for both, the selection test and
the correct direction for the preference test.

4.2 Results

Within the crowdsourcing process, we rejected
about 10% of all tasks according to our QA mea-
sures, which then had to be re-taken. We ended up
with 6 campaigns each having 50 words/emoji an-
swered by 5 coders; summing up to completed 150
tasks. In total, 16 different coders accomplished
this series of which 4 completed Σ ≥ 100 tasks.

4.2.1 Interpreting Emoji
First we focus on the describing emoji cam-
paigns (E/*). We present our main evaluation re-
sults in Tab. 1. Within columns, we show results for
random, original POLAR, and our six campaigns.
We split the rows into results from the selection test
across Top1..5 entries and the preference test.
Selection Test. We find very good results along
all emoji campaigns (E/*) being consistently bet-
ter than any campaign describing words (W/*).
The best performance was achieved for explain-
ing emoji with emoji (E/E); others are on par.

We want to note however, that the small size of
used emoji-differential set may ease selection. E.g.,
facial expression emoji regularly achieve higher
embedding scores than others, which thus may bias
the bottom control half (§ 4.1.1). However, inter-
preting emoji or words with words only, (E/W) and
(W/W), achieve comparable performance.
Preference Test. Here, we make the same obser-
vation; The projected scales on the differentials are
mostly well in line with human judgement.

4.2.2 Interpreting Words
Again, we refer to Tab. 1, but now change our focus
to describing words, campaigns (W/*).
Selection Test. Albeit not being directly com-
parable, using POLARρ in compaings: describing
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Task Random POLAR (W/W) (W/M) (W/E) (E/W) (E/M) (E/E)

Selection

Top 1 0.500 0.876 0.79 0.83 0.60 0.81 0.79 0.88
Top 2 0.222 0.667 0.62 0.61 0.35 0.67 0.68 0.77
Top 3 0.083 0.420 0.45 0.42 0.15 0.54 0.57 0.67
Top 4 0.024 0.222 0.30 0.18 0.07 0.37 0.37 0.59
Top 5 0.004 0.086 0.14 0.08 0.01 0.22 0.19 0.38

Preference 0.500 - 0.740 0.672 0.576 0.800 0.848 0.832

Table 1: Campaign results. Random & original POLAR baseline. Selection and Preference results across cam-
paigns. Words are better described by word dimensions, and emoji are better described by emoji dimensions.

words with words (W/W), or describing words with
words and emoji (W/M) achieved performance well
on par with POLAR. Noteworthy, describing words
with emoji (W/E) yielded the worst results. The
projection scale values for the emoji dimensions
were mostly lower compared to words. I.e., ac-
cording to POLARρ, for words only few emoji
differentials would be among the top 5 opposites.
Preference Test. As for the preference test, de-
scribing words yield the best results using word
opposites only (W/W). Explaining words with
emoji (W/E) performs particularly worse.

4.2.3 Result Confidence

Significance. To test for differences within the
coder alignment with POLARρ, we model both,
the selection and preference test. With our primary
goal to understand the impact of including emoji
to a POLARρ interpretable word embedding, we
anchor to the (W/W) campaign as a baseline.

For the selection test, we count if coders aligned
with POLARρ or chose any of the random alterna-
tives across the Top 1..5 selection. For the prefer-
ence test, we count whether coders aligned with
POLARρ’s scale direction. We apply double-sided
chi-square tests χ2 with p < 0.05 between the in-
terpreting words with words (W/W) baseline and
the remaining five campaigns.

We identify significant differences in coder-
POLARρ alignment to the (W/W) baseline when
describing words with emoji (W/E) over Top1..5
selection and preference. Counts from explain-
ing emoji with emoji (E/E) signal significance for
preference and selection Top3..5. Coder-POLARρ

alignment in preferences is also significant for de-
scribing emoji with emoji and words (E/M).

4.2.4 Observations

Emoji. As a byproduct, we also show if emoji
opposites are preferred over words. That is, we
focus on the mixed campaigns describing words
and emoji with words and emoji (*/M).

α (W/W) (W/M) (W/E) (E/W) (E/M) (E/E)

Selection 0.44 0.35 0.24 0.46 0.39 0.55
Preference 0.57 0.41 0.34 0.61 0.54 0.60

Preference 0.65 0.52 0.40 0.70 0.64 0.68
POLARρ only
Preference 0.31 0.17 0.25 0.31 0.22 0.22
random only

Table 2: Inter-rater agreement Krippendorff’s α across
campaigns. Coders achieve the best agreement in selec-
tion test of emoji-based campaigns (E/*) and generally
within the preference test measuring differential scales.

We establish a baseline by filtering the counts
for all non-POLARρ randomly chosen dimensions
being word or emoji representing a Bernoulli ex-
periment. I.e., along the random dimensions, our
coders chose 228 vs. 221 and 167 vs. 187 words
over emoji. Applying chi-squared statistics indi-
cates, that both types (words and emoji) are chosen
equally often at least cannot be rejected.

We next analyze the POLARρ chosen dimen-
sions in the mixed campaigns. Here, coders chose
words over emoji as follows: 465 vs. 336 in the
(W/M), and 414 vs. 482 in the (E/M) campaign.
We find statistically significant favors for words to
interpret words and emoji to describe emoji.
Scale Usage. We find no evidence for any direc-
tional biases within our preference test (cf. 3c).
Coder Agreement. While the aggregate results
are compelling, we use the Krippendorff-alpha met-
ric to measure coder agreement along all six cam-
paigns as shown Tab. 2; higher scores depict better
agreement. We split the overall results by test first
(Selection & Preference), but also show additional
agreement results for preferences along POLARρ

chosen dimensions and their random counterpart.
Most agreement is within the moderate regime.

This observation does not come unexpected from
our five non-expert classifiers per task. Overall, we
find that coders agree better for well-performing
campaigns. We identify the best agreement scores
for interpreting emoji with emoji (E/E); coders
agree least in the worst performing explaining
words with emoji campaign (W/E).
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For the preference test, we subdivide our results
into POLARρ chosen differentials and compare
them to the randomly chosen ones. While the
agreement on the random opposites is only fair,
the agreement on POLARρ chosen opposites is
consistently better: Estimating differential scale
directions via POLARρ for words yields moderate
agreement, whereas coders consistently align sub-
stantially in interpreting emoji. We presume emoji
may convey limited ideas, but are easier to grasp,
have better readability; the campaings interpreting
emoji (E/*) were generally accomplished faster.

4.2.5 Demographics
Though we are confident in applied QA measures,
none of the demographics can be confirmed. The
annotator sample-size is small and thus most likely
not representative. Further, we find most work-
ers providing contrasting answers across multiple
tasks they participated in, rendering collected de-
mographic information unusable.

5 Related Work

No universal meaning of emoji. Prior
work showed that the interpretation of emoji
varies (Miller et al., 2016; Kimura-Thollander and
Kumar, 2019), also between cultures (Guntuku
et al., 2019; Gupta et al., 2021). Even within the
same culture, ambiguity and double meanings of
emoji exist (Reelfs et al., 2020) and differences ex-
ists on the basis of an individual usage (Wiseman
and Gould, 2018). These observations motivate
the need to better understand the meaning of emoji.
Currently, no data-driven approach exists to make
emoji interpretable—a gap that we aim to close.
Interpretable word embeddings. Word embed-
dings are a common approach to capture mean-
ing; they are a learned vector space representa-
tion of text that carries semantic relationships as
distances between the embedded words. A rich
body of work aims at making word embeddings
interpretable, e.g., via contextual (Subramanian
et al., 2018), sparse embeddings (Panigrahi et al.,
2019), or learned (Senel et al., 2018) transforma-
tions (Mathew et al., 2020)—all focus on text only.
Recently, (Mathew et al., 2020) proposed the PO-
LAR that takes a word embedding as input and
creates a new interpretable embedding on a po-
lar subspace. The POLAR approach is similar to
SEMCAT (Senel et al., 2018), but is based on the
concept of semantic differentials (Osgood et al.,
1957) for creating a polar subspace. It measures

the meaning of abstract concepts by relying on op-
posing dimensions associated (good vs. bad, hot
vs. cold, conservative vs. liberal). In this work, we
extend and use POLAR.
Emoji embeddings. Few works focused on using
word embeddings for creating emoji representa-
tions, e.g., (Eisner et al., 2016) or (Reelfs et al.,
2020). (Barbieri et al., 2016) used a vector space
skip-gram model to infer the meaning of emoji in
Twitter data (Barbieri et al., 2016). Yet, the general
question if the interpretability of word embeddings
can be improved by adding emoji and if different
meaning of emoji can be captured remains still
open. In this work, we adapt the POLAR inter-
pretability approach to emoji and study in a hu-
man subject experiment if word embeddings can
be made interpretable by adding emoji and how
emoji can be interpretated by emoji.

6 Conclusion

We raise the question whether we can leverage
the expressiveness of emoji to make word embed-
dings interpretable. Thus, we use the POLAR
framework (Mathew et al., 2020) that creates in-
terpretable word embeddings through semantic dif-
ferentials, polar opposites. We employ a revised
POLARρ method that transforms arbitrary word
embeddings to interpretable counterparts to which
we added emoji. We base our evaluation on an off
the shelf word-emoji embedding from a large social
media corpus, resulting in an interpretable embed-
ding based on semantic differentials, i.e., antonym
lists and polar emoji opposites.

Via crowdsourced campaigns, we investigate
the interpretable word-emoji embedding quality
along six use-cases (cf. Fig. 1): Using word- &
emoji-polar opposites (or both Mixed), to interpret
words (W/W, W/E, W/M) and emoji (E/W, E/E,
E/M), w.r.t. human interpretability. Overall, we
find POLARρ’s interpretations w/wo emoji being
well in line with human judgement. We show that
explaining emoji with emoji (E/E) works statisti-
cally significantly best, whereas describing words
with emoji (W/E) systematically yields the worst
performance. We also find good alignment to hu-
man judgement estimating a term’s position on
differential scales, using the POLARρ-projection.

That is, emoji can improve POLARρ’s capability
in identifying most interpretable semantic differ-
entials. We have demonstrated how emoji can be
used to interpret other emoji using POLARρ.
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p−z pz p−z pz p−z pz p−z pz

Table 3: Used heuristically identified polar emoji oppo-
sites (p−z, pz) ∈ Pemoji. We opted for a diverse set of
opposites selecting only few facial emoji differentials.
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