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Introduction

Welcome to the Tutorials Session of EMNLP 2022

The EMNLP 2022 tutorials session provides an in depth coverage of a variety of topics reflecting recent
advances in Natural Language Processing methods and applications, presented by experts from academia
and ranging from introductory to cutting-edge.

This year, as has been the tradition over the past few years, the call, submission, reviewing and selection
of tutorials were coordinated jointly for multiple conferences: ACL, NAACL, COLING and EMNLP.
A review committee consisting of ACL, NAACL, COLING and EMNLP tutorial chairs as well as 23
external reviewers (see Program Committee for the full list), was formed. The committee followed a
review process that ensured that each of the 47 submitted tutorial proposals, received 3 reviews. The
selection criteria included clarity and preparedness, novelty or timely character of the topic, instructors’
experience, likely audience interest, open access of the tutorial instructional material, and diversity and
inclusion.
The six tutorials selected for EMNLP include 2 introductory tutorials and 4 cutting-edge tutorials. The
two introductory tutorials address Arabic natural language processing (T2) and causal inference for natu-
ral language processing(T4) while the cutting-edge tutorials address meaning representations for natural
languages (T1), emergent language-based coordination in deep Multi-Agent Systems (T3), modular and
parameter-efficient fine-tuning for NLP models (T5), and non-autoregressive models for fast sequence
generation (T6).

We would like to thank the ACL, NAACL, and COLING tutorial chairs and the 23 external reviewers
for their effective collaboration and their efforts to ensure a smooth selection process as well as their
invaluable assistance in the decision process. We would also like to thank EMNLP’s general chair Noah
Smith for his readiness to extend support whenever requested. We are very grateful for tutorial organizers
for their valuable contributions.

As has been the case last year, tutorial presentations will be a mixture of online, on-site and hybrid pre-
sentations. We hope you all benefit from and enjoy the tutorial program at EMNLP 2022!

EMNLP 2022 Tutorial Co-chairs
Samhaa R. El-Beltagy
Xipeng Qiu
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Abstract

This tutorial reviews the design of common
meaning representations, SoTA models for
predicting meaning representations, and the
applications of meaning representations in a
wide range of downstream NLP tasks and real-
world applications. Reporting by a diverse
team of NLP researchers from academia and
industry with extensive experience in design-
ing, building and using meaning representa-
tions, our tutorial has three components: (1)
an introduction to common meaning represen-
tations, including basic concepts and design
challenges; (2) a review of SoTA methods
on building models for meaning representa-
tions; and (3) an overview of applications of
meaning representations in downstream NLP
tasks and real-world applications. We will
also present qualitative comparisons of com-
mon meaning representations and a quantita-
tive study on how their differences impact
model performance. Finally, we will share
best practices in choosing the right meaning
representation for downstream tasks.

1 Background

In this tutorial, we primarily discuss one thread of
meaning representations encompassing the Propo-
sition Bank (PropBank) (Palmer et al., 2005), Ab-
stract Meaning Representations (AMR) as well as
Uniform Meaning Representations (UMR), a re-
cent extension to AMR. We will discuss the repre-
sentations themselves, discuss the latest semantic
role labeling (SRL) and AMR parsing techniques
using these representations, and overview applica-
tions of these meaning representations to practical
natural language applications.

These approaches all share the use of the
predicate-specific semantic roles defined in the
Proposition Bank (PropBank) (Palmer et al., 2005).
In such an approach, the particular sense of “afford”
in “The public was afforded a preview of the show”,
is sense-tagged as “afford.02” in PropBank, and

it requires three semantic roles, Arg0 the provider,
Arg1 the thing that is provided, and Arg2 the re-
cipient of Arg1. We will seek to provide attendees
with good intuitions about the behavior and advan-
tages of how such predicate-specific roles work
across these different meaning representations. We
will also contextualize how such an approach to
semantics compares to other approaches such as
FrameNet(Baker et al., 1998).

AMR can be viewed as an extension of Prop-
Bank to handle wide-coverage sentence represen-
tation. Whereas PropBank is annotated on a
predicate-by-predicate basis and predicates are can
be viewed as independent, Abstract Meaning Rep-
resentation (AMR) (Banarescu et al., 2013) adopts
PropBank-style semantic roles but also connects
the different predicates in a sentence in a graph.
Such an AMR graph seeks to represent the mean-
ing of sentences as a single-rooted directed acyclic
graph, where the nodes are labeled with entity or
predicate types, and edges are labeled with seman-
tic roles (e.g., Arg0, Arg1) or general semantic
relations (e.g., time, location).

AMR captures the essential predicate-argument
structure of a sentence that is applicable to a vari-
ety of applications as well as to languages such as
Chinese. Extensions to AMR attempt to increase
coverage beyond the sentence, to add additional se-
mantic phenomena, and to increase cross-linguistic
applicability(Gysel et al., 2021). We discuss these
extensions with a focus on the new Uniform Mean-
ing Representation(UMR) approach, which extends
AMR to add coverage of Aspect, Scope, Person and
Number annotation to the sentence level represen-
tation, adds a document-level representation that
captures temporal and modal dependencies as well
as coreference relations that can go beyond sen-
tence boundaries, and which defines conventions
for AMR-style annotation of languages without ex-
isting PropBank lexicons. The discussion of UMR
will provide attendees with an understanding of
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which semantic phenomena are out of scope for
AMR and how projects like UMR address them.

In this tutorial we will provide an in-depth dis-
cussion of these meaning representations. When
doing so, we will also discuss how they are similar
to or different from other meaning representations
such as semantic dependencies (Oepen et al., 2015),
Minimal Recursion Semantics (MRS) (Copestake
et al., 2005), Discourse Representation Theory
(DRT) (Kamp and Reyle, 2013; Bos et al., 2017) ,
and UCCA (Abend and Rappoport, 2013).

The increasing availability of meaning represen-
tation datasets such as PropBank as well as signifi-
cant advances in modeling techniques have led to
increased interest and progress in computational
models for meaning representation parsers. In this
tutorial, we will discuss models for SRL and AMR
tasks. We will start with the traditional SRL mod-
els that rely heavily on syntactic feature templates
(Xue and Palmer, 2004; Pradhan et al., 2005; Zhao
et al., 2009; Akbik and Li, 2016), go on to ad-
vanced neural SRL models (He et al., 2017, 2018),
and include more recent work (Marcheggiani and
Titov, 2020; Fei et al., 2021a,b). For AMR parsing,
we will cover early approaches and SoTA meth-
ods for graph-based methods (Flanigan et al., 2014;
Foland and Martin, 2017; Lyu and Titov, 2018; Cai
and Lam, 2019; Zhang et al., 2019b; Zhou et al.,
2020), transition-based methods (Wang et al., 2015;
Wang and Xue, 2017; Ballesteros and Al-Onaizan,
2017; Fernandez Astudillo et al., 2020; Zhou et al.,
2021), grammar-based methods(Peng et al., 2015;
Artzi et al., 2015; Chen et al., 2018) sequence-to-
sequence methods(Konstas et al., 2017; Xu et al.,
2020), and other methods (Pust et al., 2015; Welch
et al., 2018; Lindemann et al., 2020; Cai and Lam,
2020; Lee et al., 2020; Lam et al., 2021). We will
discuss whole-document AMR parsing (Anikina
et al., 2020; Fu et al., 2021).

There is a wide range of NLP tasks that leverage
meaning representations as an effective way to in-
fuse knowledge into their models for better perfor-
mance and interpretability. For instance, SRL has
been widely used to build better models for infor-
mation extraction, such as open information extrac-
tion (Christensen et al., 2010; Solawetz and Larson,
2021) and event extraction (Zhang et al., 2020a,
2021), opinion mining (Marasović and Frank, 2018;
Zhang et al., 2019a), machine translation (Bastings
et al., 2017), natural language inference (Zhang
et al., 2020b), and reading comprehension (Guo

et al., 2020). Similarly, AMR has been adopted
for a variety of downstream NLP tasks such as in-
formation extraction (Pan et al., 2015; Garg et al.,
2016; Rao et al., 2017), summarization (Liu et al.,
2015; Liao et al., 2018), machine translation (Song
et al., 2019; Nguyen et al., 2021), question an-
swering (Sachan and Xing, 2016; Mitra and Baral,
2016; Kapanipathi et al., 2021), and dialog (Bonial
et al., 2020; Bai et al., 2021). With the increasing
availability of high-quality meaning representation
parsers, we also see increasing adoption of meaning
representation in wide-range of real-world applica-
tions, from an enterprise-grade contract understand-
ing system (Agarwal et al., 2021) to customizable
targeted sentiment analysis.

2 Tutorial type

We are proposing a 6-hour cutting edge tutorial
to cover in depth on the design, modeling, and
application of meaning representations.

3 Outline of the tutorial

The proposed tutorial is organized as follows:
I. Introduction (15 minutes). We will provide
a high-level overview and evolution of common
meaning representation, discussing key concepts,
unique challenges and examples of applications.
II. Common Meaning Representations (150
minutes) In this section, we will provide an in-
depth review of three common meaning repre-
sentation – PropBank and FrameNet that have
been widely used to train Semantic Role Label-
ing systems, Abstract Meaning Representation, a
sentence-level meaning representation that inherits
PropBank-style semantic roles, and Uniform Mean-
ing Representation, a cross-lingual document-level
meaning representation that to a large extent in-
herits the sentence-level representation of AMR.
We also provide a brief overview of other common
meaning representations as a brief background. We
will also discuss the unique challenges around de-
signing meaning representation. Concretely, we
will organize this section as follows:

• PropBank We start out our discussion with
PropBank-style semantic roles and their the-
oretical underpinnings. In particular, we will
discuss the proto-roles of Dowty (Dowty, 1991).
We will go over the process of developing the
frame files, and how the frame files are used
to annotate each predicate instances in the cor-
pus. We will discuss how to annotate compli-
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cated predicates such as phrasal verbs and light
verb constructions, and end with a brief discus-
sion of how PropBank-style semantic roles are
related to FrameNet (Baker et al., 1998) and
VerbNet (Schuler, 2005).

• Abstract Meaning Representation (AMR)
We next discuss different aspects of AMR, and
cover how AMR represents word senses, se-
mantic roles, named entity types, date entity
types, and relations.

• Uniform Meaning Representation (UMR)
Finally we will discuss Uniform Meaning Rep-
resentations, and discuss how UMR builds on
AMR. We will also discuss the cross-lingual
aspect of UMR.

• Other Related Meaning Representations
We will provide a brief overview on other com-
mon meaning representations such as MRS, etc.

• Comparison of Meaning Representations
We will then present a qualitative comparison
of the three meaning representations on their
commonalities and differences.

• Building Meaning Representation Datasets
Finally, we will close this section with discus-
sions on the general approaches, challenges,
and emerging trend in building datasets for
meaning representations.

III. Modeling Meaning Representation (100
minutes) We will next discuss computational mod-
els for SRL and AMR parsing, from early ap-
proaches to current end-to-end SoTA methods. We
will discuss gaps and challenges in building and
evaluating such models. We will also share a quan-
titative comparison study based on SoTA models
and demonstrates how the differences of the mean-
ing representations lead to differences in model
performance on various examples.

IV. Applying Meaning Representation (75 min-
utes) We will share applications of the meaning
representations for a wide range of tasks from in-
formation extraction to question answering. We
will discuss how the differences in these meaning
representations discussed earlier impact the choice
of which one(s) to use for which downstream tasks.
V. Open Questions and Future work (15 min-
utes) We will conclude the tutorial by raising sev-
eral open research questions in this space (e.g., cre-
ating datasets for training and evaluation at scale)
and ways we as a community might work forward
on these issues.

4 Breadth of the tutorial

This tutorial will have three components. The first
component (45%) will introduce core concepts re-
lated to meaning representations, common mean-
ing representations and key challenges in designing
(including scaling to different languages) and devel-
oping those meaning representations. The second
component (30%) will review the state-of-the-art
models for two common meaning representations:
SRL and AMR. It will also provide a quantitative
comparison study of how the differences in mean-
ing representations impact model performance. Fi-
nally, the last component (25%) will show how
real-world applications as well as research projects
leverage meaning representations for better per-
formance and more transparency and how to de-
cide which meaning representation to use based on
downstream tasks.

5 Diversity of the team

This tutorial is to be given a team of researchers
from five different institutions across academia and
industry, both junior instructors (including 1 assis-
tant professor, and 2 junior industry researcher) and
researchers with extensive experience in academic
and corporate research settings. The team includes
creators, modelers, and users of common meaning
representations. The team also has a good gender
balance (two female and four male instructors).

6 Target audience and objectives

This tutorial welcomes all stakeholders in the NLP
community, including NLP researchers, domain-
specific practitioners, and students. In this tutorial,
attendees will

• Develop fluency in core concepts of common
meaning representations, state-of-the-art mod-
els for producing these meaning representa-
tions, and potential use cases.

• Gain insights into the practical benefits and
challenges around leveraging meaning repre-
sentations for downstream applications.

• Discuss and reflect on open questions related
to meaning representations.

7 Prerequisites

As stated before, our tutorial presumes no prior
knowledge on the core concepts of meaning repre-
sentation. However, a basic understanding of NLP,
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machine learning (especially, deep learning) con-
cepts may be helpful. We intend to introduce the
necessary concepts related to meaning representa-
tion during the introductory section of the tutorial.

8 Reading list

We aim to make the tutorial self-contained, but it
will be helpful if the attendees can get some basic
understanding of this field by going through the
following reading list: PropBank: (Palmer et al.,
2005), AMR: (Banarescu et al., 2013), UMR: (Gy-
sel et al., 2021), SRL models: (Pradhan et al., 2005;
He et al., 2017), and AMR models: (Flanigan et al.,
2014; Lyu and Titov, 2018; Xu et al., 2020).

9 Audience size estimation

We are proposing a cutting edge tutorial on mean-
ing representation. No similar tutorial has been
given in ACL/EMNLP/NAACL/COLING in the
past five years. Since meaning representation is an
important topic in NLP, we expect that this tutorial
will be popular with 50 - 100 attendees.

10 Open Access

We agree to allow the publication of our slides
and video recording of our tutorial in the ACL
Anthology.

11 Technique Equipment

To give this tutorial, we need to have internet ac-
cess and a projector or large screen. No special
requirements needed.

12 Preferred Venue

Due to travel restrictions of our instructors, we
prefer NAACL and ACL over the other venues.

13 Ethics Statement

Infusing meaning representations into NLP models
are shown to be effective in injecting knowledge
into such models. As such, meaning representa-
tions allow deep understanding of languages and
identify more nuanced instances of ethics concerns
(e.g. biases). Furthermore, meaning representa-
tions allow the building of fully interpretable yet
effective models. We hope that this tutorial helps
the audience to develop a deeper appreciation for
such topics and equips them with powerful tools to
mitigate recent concerns that have arisen with NLP
models with regard to explainability and bias.

14 Author biographies

Martha Palmer is the Helen & Hubert Croft Pro-
fessor of Engineering in the Computer Science De-
partment, and Arts & Sciences Professor of Dis-
tinction for Linguistics, at the University of Col-
orado, with over 300 peer-reviewed publications.
Her research is focused on capturing elements of
the meanings of words that can comprise automatic
representations of complex sentences and docu-
ments in many languages. She is a co-Director of
CLEAR, an ACL Fellow, and an AAAI Fellow.
Nianwen Xue is a Professor in the Computer Sci-
ence Department and the Language & Linguistics
Program at Brandeis University. His core research
interests include developing linguistic corpora an-
notated with syntactic, semantic, and discourse
structures, as well as machine learning approaches
to syntactic, semantic and discourse parsing. He is
an action editor for Computational Linguistics.
Ishan Jindal is a Research Staff Member with
IBM Research - Almaden. His research interest lies
at the intersection of machine learning and NLP,
primarily in semantic parsing and model analysis
for enterprise use cases. He regularly publishes
papers at ML and NLP conferences.
Jeffrey Flanigan is an Assistant Professor in the
Computer Science and Engineering Department at
University of California Santa Cruz. He research
interests are in semantic parsing and generation,
with a focus on AMR, and using semantic repre-
sentations in downstream applications such as sum-
marization and machine translation. Previously he
has given a tutorial in AMR at NAACL 2015.
Tim O’Gorman is a Senior Research Scientist at
Thorn. He was involved in AMR 2.0 and 3.0 anno-
tations, the Multi-sentence AMR corpus, and up-
dates to PropBank. He co-organized the CoNLL’19
and ’20 Meaning Representation Parsing shared
task. His interests are in the extensions of meaning
representations to cross-sentence phenomena.
Yunyao Li is a Distinguished Research Staff Mem-
ber and Senior Research Manager with IBM Re-
search - Almaden. Her expertise is at the intersec-
tion of NLP, databases, HCI, and information re-
trieval. Her work has resulted in 80+ peer-reviewed
publications and transferred into 20+ commercial
products. She regularly gives talks and tutori-
als, such as Explainability for NLP (AACL’20,
KDD’21), and Deep Learning on Graphs for NLP
(NAACL’21, KDD’21, IJCAI’21). She is an ACM
Distinguished Member.
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Arabic Natural Language Processing

Nizar Habash
Computational Approaches to Modeling Language (CAMeL) Lab

New York University Abu Dhabi
nizar.habash@nyu.edu

Abstract

The Arabic language continues to be the focus
of an increasing number of projects in natural
language processing (NLP) and computational
linguistics (CL). This tutorial provides NLP/CL
system developers and researchers (computer
scientists and linguists alike) with the nec-
essary background information for working
with Arabic in its various forms: Classical,
Modern Standard and Dialectal. We discuss
various Arabic linguistic phenomena and re-
view the state-of-the-art in Arabic processing
from enabling technologies and resources, to
common tasks and applications. The tutorial
will explain important concepts, common wis-
dom, and common pitfalls in Arabic processing.
Given the wide range of possible issues, we in-
vite tutorial attendees to bring up interesting
challenges and problems they are working on
to discuss during the tutorial.

Type of Tutorial: Introductory.

1 Tutorial Description

The purpose of this tutorial is to provide system
developers and researchers in natural language pro-
cessing (NLP) and computational linguistics (CL)
with the necessary background information for
working with the Arabic language (Modern Stan-
dard Arabic, Classical Arabic and Arabic Dialects).
The goal is to introduce Arabic linguistic phenom-
ena that need to be addressed from orthography
and phonology, to morphology, syntax and seman-
tics, as well as to review the state-of-the-art on
Arabic processing from enabling technologies and
resources, to common tasks and applications. Alter-
native approaches will be presented and contrasted
for their value in different application contexts. The
tutorial will explain important concepts, common
wisdom, common pitfalls, as well as basic skills
for handling Arabic text, even when illiterate in the
Arabic script.

2 Tutorial Outline

This tutorial introduces the different challenges
and current solutions to the automatic processing
of Arabic and its dialects. The tutorial has three
parts (60 minutes each). The second part will be
split into two portions, 30 minutes before the coffee
break, and 30 minutes after.

Part 1: Arabic NLP Challenges We present the
main challenges Arabic poses for NLP. Topics in-
clude Arabic script and orthography, orthographic
ambiguity and noise, Arabic morphology, morpho-
logical richness, complexity and ambiguity, Arabic
syntactic and semantic considerations, and Arabic
dialectal variations and their challenges.

Part 2: Arabic NLP Solutions We review the
state-of-the-art in Arabic NLP covering several en-
abling technologies and applications, e.g., translit-
eration schemes, morphological processing (anal-
ysis, disambiguation, tokenization, POS tagging),
orthographic normalization, dialect identification,
text analytics, syntactic parsing, and language mod-
eling. Throughout the presentation we will make
references to the different resources and tools avail-
able including discussing Arabic annotation stan-
dards, tools, and best practices. We will provide
links to recent publications and available toolkits
and resources.

Part 3: Arabic NLP New Frontiers In this sec-
tion, we highlight some of the latest efforts and
open problems in Arabic NLP, from work on sum-
marization to text simplification, spelling and gram-
mar correction, and gender rewriting. We review
the various ongoing Arabic NLP shared tasks and
discuss the directions the field is going into, while
drawing on historical trends and patterns. This part
will interactively draw on the audience and their
interests in Arabic NLP.
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3 Prerequisites

This is an introductory tutorial. No previous knowl-
edge in Arabic is needed. This tutorial is designed
for computer scientists and linguists alike. Ac-
quaintance with basic formal language theory and
knowledge of some programming languages will
be useful.

4 Preparatory Pointers

The following are a set of optional initial pointers
that will help the attendees maximize their learning
experience.

Readings and Lectures

• A panoramic survey of natural language pro-
cessing in the Arab world [Arxiv version with
extended bibliography] (Darwish et al., 2021).

• Arabic Natural Language Processing: Chal-
lenges and Solutions [YouTube] (Habash,
2019).

• The Introduction to Arabic Natural Language
Processing book (Habash, 2010).

Resources

• Masader+: The Arabic NLP data catalogue:
[GitHub] (Alyafeai et al., 2022).

• CAMeL Tools: A suite of Arabic NLP tools
[GitHub] (Obeid et al., 2020).

• Farasa: A full-stack package for Arabic Lan-
guage Processing [Website] (Abdelali et al.,
2016).

Sites

• SIGARAB: The ACL Special Interest Group
on Arabic Natural Language Processing
http://www.sigarab.org/, [Mailing List]

• The Arabic Natural Language Processing
Workshop (WANLP) [Google Scholar]

• The Workshop on Open-Source Arabic Cor-
pora and Processing Tools (OSACT) [Google
Scholar]

Your Ideas and Questions Given the wide range
of possible topics, we invite tutorial attendees to
come prepared with interesting challenges and
problems they are working on to discuss during
the tutorial.

5 Tutorial Instructor

Nizar Habash is a Professor of Computer Science
at New York University Abu Dhabi (NYUAD).
He is also the director of the Computational Ap-
proaches to Modeling Language (CAMeL) Lab.
Professor Habash specializes in natural language
processing and computational linguistics. Before
joining NYUAD in 2014, he was a research scien-
tist at Columbia University’s Center for Compu-
tational Learning Systems. He received his PhD
in Computer Science from the University of Mary-
land College Park in 2003. He has two bachelors
degrees, one in Computer Engineering and one in
Linguistics and Languages. His research includes
extensive work on machine translation, morpholog-
ical analysis, and computational modeling of Ara-
bic and its dialects. Professor Habash has been a
principal investigator or co-investigator on over 25
research grants. And he has over 250 publications
including a book entitled “Introduction to Arabic
Natural Language Processing” (Habash, 2010). His
website is at www.nizarhabash.com.
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Abstract

Large pre-trained deep networks are the stan-
dard building blocks of modern AI applica-
tions. This raises fundamental questions about
how to control their behaviour and how to
make them efficiently interact with each other.
Deep net emergent communication tackles
these challenges by studying how to induce
communication protocols between neural net-
work agents, and how to include humans in
the communication loop. Traditionally, this re-
search had focussed on relatively small-scale
experiments where two networks had to de-
velop a discrete code from scratch for refer-
ential communication. However, with the rise
of large pre-trained language models that can
work well on many tasks, the emphasis is now
shifting on how to let these models interact
through a language-like channel to engage in
more complex behaviors. By reviewing sev-
eral representative papers, we will provide an
introduction to deep net emergent communi-
cation, we will cover various central topics
from the present and recent past, as well as
discussing current shortcomings and suggest
future directions. The presentation is comple-
mented by a hands-on section where partici-
pants will implement and analyze two emer-
gent communications setups from the litera-
ture. The tutorial should be of interest to re-
searchers wanting to develop more flexible AI
systems, but also to cognitive scientists and lin-
guists interested in the evolution of communi-
cation systems.

Brief description and motivation

Just like interaction and communication are pivotal
to humans engaging in complex problem solving
and coordination, communication among artificial
agents allow for effective coordination (both when
they cooperate and when they compete). While
multi-agent communication protocols can be pre-
specified and coded, emergent communication has
emerged as a successful paradigm – agents are left

free to create protocols whose semantics are not
pre-determined by any form of supervision, but are
rather shaped by the need to achieve their goals.

This utilitarian view of communication is famil-
iar to linguistics (Wittgenstein, 1953). As such,
initial work on multi-agent emergent communica-
tion studied the conditions under which artificial
agents in constrained setups would evolve shared
protocols and the latter’s similarity to human lan-
guage (Kirby and Hurford, 1997; Wagner et al.,
2003; Steels, 1997). Recently, and after a break of
some years, the topic of emergent communication
has re-emerged, partially due to the successful and
widespread use of deep learning in many fields. In
addition to using these simulations to understand
the underpinnings of natural language, much work
in the field today focuses on how deep network
agents could evolve robust protocols, on whether
these protocols are interpretable and how it is pos-
sible to make them more natural-language-like, in
order to enable human-machine communication.
Given this recent turn, we started seeing papers on
this topic appearing at the major NLP conferences
and occasionally being recognized with best-paper
awards (Kottur et al., 2017). We believe this is the
right time to bring together researchers that wish to
know more about the field by offering a structured
tutorial on the theme.

Given the interdisciplinarity of the topic, a com-
putational linguistics conference would allow us
to reach researchers interested in it from diverse
perspectives: AI and NLP researchers who want
to develop flexible and robust agents able to co-
ordinate in natural language, but also cognitive
scientists/linguists wishing to use simulations to
test theories about language evolution.

We will start with an introduction to the emerg-
ing field of emergent communication. We will
discuss foundational work and we will introduce
common experimental setups (i.e., data, training
algorithms, analysis and protocol interpretability
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methods). We will also critically examine the stan-
dard practices in the field. Having established the
basics, we will then move to discussing promising
current directions (i.e., beyond simplistic simula-
tions, linking emergent language to natural lan-
guage and emerging protocols in situated environ-
ments). We will conclude with a hands-on session
to deepen attendees’ understanding of core con-
cepts by grounding them in actual experiments, but
also providing an entry point for researchers who
wish to learn how to design such simulations.

Tutorial Structure

The tutorial is divided into 3 slots of around half
hour, 1 and a half hour, and 1 hour, respectively. We
will have 15 minutes break between each section.

Introduction Early work investigated the neces-
sary conditions for emergence of a shared commu-
nication code among artificial agents. Experiments
often employed hand-crafted models and/or very
simplified environments, and the simulations fo-
cused on studying linguistic properties of the emer-
gent protocols (Batali, 1998; Cangelosi and Parisi,
2002; Christiansen and Kirby, 2003).

Recent progress in deep (reinforcement) learn-
ing and its successful application in several fields
has revamped interest in language emergence. Un-
like earlier work, the use of powerful general-
purpose neural network models enables experi-
ments with agents that can interact and commu-
nicate in complex and dynamic environments. This
has led to the introduction of new setups probing
language-based coordination between deep agents
(Sukhbaatar et al., 2016; Foerster et al., 2016; Mor-
datch and Abbeel, 2018). Examples of collabora-
tive tasks in “deep emergent communication” in-
clude developing a shared code to solve riddles,
crossing intersections or goal-oriented navigation.

Another line of research in deep emergent com-
munication focuses on one of the most basic func-
tions of human communication, namely that of
referring to a specific object in the surrounding
environment. The ability to denote specific items
is the building block for more complex forms of
collaboration, such as object use and manipulation.
Work in this area tends to use a discrimination task
called referential game (Lewis, 1969). In the game,
a sender Agent generates a message that describes
a target object. The message is transmitted to a Re-
ceiver agent that is tasked with recognizing the ob-
ject of interest from a set of candidates. Initial work

in this domain showed that agents evolve an effec-
tive communication policy to denote the content of
realistic images (Lazaridou et al., 2017; Havrylov
and Titov, 2017). However, later experimental find-
ings suggested that the agents’ “language” does not
point to semantically meaningful concepts, relying
instead on low-level visual features. Subsequent
work showed that, unless explicitly constrained,
emergent protocols do not develop core properties
similar to natural languages, such as composition-
ality and efficient coding (Chaabouni et al., 2019;
Rita et al., 2020). This highlights the importance of
bridging the gap between emergent and natural lan-
guages, a topic that we will return to in the second
part of the tutorial.

Communication between agents in typical se-
tups happens through the exchange of either con-
tinuous or discrete messages. In this tutorial, we
will focus on experiments with a discrete channel,
a prerequisite for language-like human-machine
communication. Channel discretization poses an
important optimization challenge, given that it is
not possible to back-propagate gradients through
discrete nodes. We will cover the main approach
to overcome this problem that is based on a widely
policy gradients method, namely a varient of the
REINFORCE algorithm (Williams, 1992).

Given the lack of supervision on the emergent
protocol, it is not sufficient to evaluate agents’ ac-
curacy on the target task. Such performance-based
analysis must be complemented by an analysis of
the evolved protocol. This is a far-from-trivial task,
somewhat akin to linguistic fieldwork. We will
thus end the first part of the tutorial reviewing stan-
dard quantitative and qualitative protocol analysis
methods currently used in the literature. (Brighton
and Kirby, 2006; Lazaridou et al., 2018; Chaabouni
et al., 2020; Lowe et al., 2019)

Current themes in emergent communication
In the second part, we will introduce in more detail
three currently “hot” topics in emergent commu-
nication research, presenting main findings along
with possible research directions.

The first theme is whether deep nets can com-
municate about their visual input on a large scale.
Lazaridou et al. (2017) showed that two interact-
ing agents can develop a shared lexicon to de-
scribe natural images from standard computer vi-
sion datasets. The setup of Lazaridou and col-
leagues used single-symbols messages and sam-
pled images from a limited set of image categories.
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Later work by Havrylov and Titov (2017) and Dessi
et al. (2021) scaled the visual referential game to
variable-length messages and a richer pool of object
categories, respectively. Another line of research
tries to study the biases that emergent protocols
have and whether they are similar to natural lan-
guage features (Chaabouni et al., 2019, 2020). An
example is the work of Rita et al. (2020), it stud-
ies which optimization constraints can lead to the
emergence of languages that exhibit a human-like
word-length distribution. We are still far, however,
from robust and flexible visually-aware interactive
agents. For instance, most simulations employ a
single pair of agents in single-turn interactions, and
there is currently no evidence that the emergent pro-
tocol will support successful communication with
new partners. Additionally, contextual information
is not modeled by the agents’ protocol, whereas
there is ample evidence that human language relies
on contextual knowledge to discriminate objects
(Glaser and Glaser, 1989; Munneke et al., 2013).

A second important theme is the ability to collab-
orate in more realistic, dynamic scenarios. Starting
from the fully cooperative symbolic agents of Foer-
ster et al. (2016), follow-up work looked at how to
integrate different aspects of realistic coordination
as they unfold between human agents. For instance,
Evtimova et al. (2018) studied multi-turn interac-
tions in a multimodal discrimination task. Das et al.
(2019) experimented with embodied agents coop-
erating to solve a target-reaching navigation task
in naturalistic 3D environments. Finally, all these
experimental configurations are tied to a single task.
On the other hand, natural language allows coor-
dination to be carried out for an unlimited number
of goals. However, scaling the an emergent com-
munication setup does not come free of challenges
(Chaabouni et al., 2022; Carroll et al., 2019). Fu-
ture research directions should also investigate the
ability of the emergent lexicon to adapt to new
tasks, without forgetting those previously learnt.

The third research line studies how emergent
protocols can be constrained to resemble natural
language and how such languages can be used to
interact with large pre-trained networks. Several
approaches attempted to interleave game-playing
with supervised tasks such as image labelling
(Lazaridou et al., 2017; Gupta et al., 2019) and
multimodal grounding (Lee et al., 2019), or tried
to optimize the agents’ communication based on
statistics inferred from natural language corpora

(Havrylov and Titov, 2017). However, later evi-
dence found that this type of interlaced learning
does not protect against forms of pragmatic drift
where emergent and natural language interpreta-
tion diverges (Lazaridou et al., 2020). Yao et al.
(2022) used emergent protocols as a pre-training
corpus for image captioning and language mod-
elling, showing performance benefits on down-
stream tasks. This shows how these protocols could
be applied to improve standard NLP tasks, hinting
at some structural similarities between emergent
and natural languages. Language prompting have
recently shown to be effective to extract informa-
tion from large pre-trained models that are able to
excel at many tasks. Such prompts, often manually
designed, can be used to combine several power-
ful and diverse multimodal models (Zeng et al.,
2022). Deng et al. (2022) shows how automatic
prompt discovery, a method similar to language
emergence in deep agents, can improve over sev-
eral other prompting methods.

Future work should bridge the gap between the
language evolved in interactive simulations, usually
consisting of short denotational messages, and the
syntactic and semantic knowledge acquired by deep
networks pre-trained on static large-scale datasets.
Additionally how these emergent languages can be
used to interact with large and powerful pre-trained
models remains an important open challenge.

Hands-on session The final part of the tutorial
consists in an interactive hands-on session using
EGG (Kharitonov et al., 2021), a Python toolkit
designed to offer an easy entry point into emer-
gent communication simulations. By providing
implementations of common neural network archi-
tectures and simulation setups, it allows developers
to quickly code and run a language emergence ex-
periment on both CPU and GPU devices.

In this interactive coding session, we will guide
the audience through two experimental setups. In a
first configuration, we experiment with a realistic
scenario involving natural data. We will provide
pre-trained agents that, through a large-scale visual
discrimination task, successfully converged on a
shared communication policy. We will then probe
the agents’ communication skills by analysing the
messages triggered by unseen input images. This
exercise will give the audience a flavor for common
challenges involved in interpreting agents’ proto-
col.

In the second half of the session, we will show
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how emergent protocols could be used to interact
with (large) language models. We will show how
automatic discovery of prompts can be used to ex-
tract information from pre-trained task-agnostic
networks for downstream NLP tasks. This will
show the connection between emergent communi-
cation and modern NLP.

Further information

Presenters Marco Baroni is ICREA research
professor at Universitat Pompeu Fabra. Angeliki
Lazaridou is staff research scientist at DeepMind.
Marco and Angeliki co-authored one of the earliest
and most influential papers on emergent commu-
nication among deep net agents (Lazaridou et al.,
2017) as well as a recent survey of the area (Lazari-
dou and Baroni, 2020). Marco has extensive teach-
ing experience, including interdisciplinary classes
aimed at computer scientists, linguists and cogni-
tive scientists, and lectures and tutorials in inter-
national venues such as ESSLLI, ACL and the CI-
FAR Deep Learning Summer School (where he pre-
sented an introduction to deep net emergent com-
munication). He was recently awarded an ERC Ad-
vanced Grant to work on emergent communication.
Angeliki’s work in the area was recognized with
a 2019 ICML best-paper mention (Jaques et al.,
2019). She co-initiated the Emergent Communi-
cation Neurips Workshop series (which ran suc-
cessfully for 6 years). Roberto Dessì is a 3rd-year
PhD student at Facebook AI Research and Univer-
sitat Pompeu Fabra. His work focuses on scaling
up emergent communication research, including
a paper on the topic to appear at NeurIPS 2021.
Roberto was a co-organizer of the last two Emer-
gent Communication workshops and is currently
the maintainer of the EGG toolkit for emergent
communication simulations.

Tutorial type and breadth We propose a tuto-
rial on an emerging area that has not been previ-
ously covered in ACL/EMNLP/NAACL/COLING
tutorials. While we are active researchers in the
field and we will review some of our own work, the
tutorial attempts to survey the area as a whole, as
shown by the fact that the majority of references in
this proposal are to papers we did not author.

Audience: target, background and size We tar-
get two audience types: AI/NLP researchers who
might look at emergent communication protocols
as a tool to build more flexible multi-agent AI sys-

tems; and linguists/cognitive scientists interested in
how emergent communication simulations might
provide insights into the origins and nature of hu-
man and animal communication. The only strict
prerequisite consists in basic programming skills
in Python, in order to follow the hands-on part of
the tutorial. We do not expect the audience to have
a technical background in linguistics. While we
will rely on standard notions from machine learn-
ing, such as cost functions and backpropagation,
attendees can get a good high-level view of the area
even without this background. This is the first time
the tutorial has been offered, but several regular
talks by Lazaridou and Baroni introducing the area
have registered high attendance. On the one hand,
the tutorial has broad interdisciplinary appeal and
introduces a novel area to NLP.

Recommended reading While not strictly nec-
essary, participants would benefit from a look at
the survey of Lazaridou and Baroni (2020).

Diversity We are a diverse team of instructors,
gender-wise and seniority-wise (one senior profes-
sor, one senior researcher, one advanced-stage PhD
student). We are affiliated with one university and
two different industry labs. We expect that the tu-
torial topic will attract a diverse audience, as it is
of interest to both AI/NLP practitioners and lin-
guists/cognitive scientists. While the focus is not
on natural language per se, we observe that emer-
gent communication research looks at typological
research on language variety for inspiration, and it
is not reliant on language-specific resources.

Ethics Autonomous agent communication raises
ethical issues specifically in terms of transparency
(see, e.g., https://ec.europa.eu/dig
ital-single-market/en/high-level
-expert-group-artificial-intelli
gence). Problems related to the development of
opaque protocols (including bias control) and how
to spur the emergence of interpretable inter-agent
communication will be discussed in the tutorial.

Materials and technical requirements We will
use slides and provide scripts for the hands-on part
section, where we will use Google Colab and the
EGG library (Kharitonov et al., 2021). Attendees
should bring a laptop and all materials will be made
publicly available.
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Abstract
Causal inference is becoming an increasingly
important topic in deep learning, with the po-
tential to help with critical deep learning prob-
lems such as model robustness, interpretabil-
ity, and fairness. In addition, causality is natu-
rally widely used in various disciplines of sci-
ence, to discover causal relationships among
variables and estimate causal effects of interest.
In this tutorial, we introduce the fundamentals
of causal discovery and causal effect estima-
tion to the natural language processing (NLP)
audience, provide an overview of causal per-
spectives to NLP problems, and aim to inspire
novel approaches to NLP further. This tuto-
rial is inclusive to a variety of audiences and
is expected to facilitate the community’s de-
velopments in formulating and addressing new,
important NLP problems in light of emerging
causal principles and methodologies.

1 Introduction

Establishing causal relationships is a fundamen-
tal goal of scientific research (Pearl, 2000; Spirtes
et al., 2001). It naturally boils down to questions
of causality when we need to quantify the effec-
tiveness of a vaccine, the persuasive power of a
public health ad, or the impact of a lockdown pol-
icy: How would the treatment (e.g., vaccine) af-
fect the outcome (e.g., infection rates) compared
to a counterfactual world with no treatment? Once
formally identified, the direction and strength of
causal relationships play a key role in the formula-
tion of clinical treatments, public policy, and other
long-standing prescriptive strategies. With such
broad applications, a growing body of literature
focuses on the interplay between NLP and causal
inference (Tan et al., 2014; Wood-Doughty et al.,
2018; Sridhar and Getoor, 2019; Veitch et al., 2020;
Keith et al., 2020; Feder et al., 2021c).

Despite the interdisciplinary interest in causal
inference with text, research in this space seems
to remain scattered across domains without clear

definitions, notations, benchmark datasets, and an
understanding of the state of the art and challenges
that remain. For example, it is unclear how deficien-
cies in NLP methods (such as their inaccuracy with
low-resource languages and their tendency to prop-
agate biases in the data) affect downstream causal
estimates. In addition, hyperparameter selection
and modeling assumptions in NLP are motivated
by accuracy and tractability considerations; how
these choices affect downstream causal estimates
is underexplored.

This tutorial aims to address three questions: (1)
What is causality? (2) How can the causal formu-
lation help improve NLP models? (3) How can
causality help NLP and computational social sci-
ence to discover causal phenomena in our society?

Specifically, we will first introduce the funda-
mentals of causality for the NLP audience, then re-
view research using the causal formulation to help
NLP models (in terms of robustness, fairness, and
interpretability), and finally introduce how causal-
ity can help NLP and computational social science
to discover causal relations behind social phenom-
ena.

2 Tutorial Overview

This introductory tutorial aims to introduce causal-
ity to the NLP research community. While causal-
ity plays a major role in scientific research, it has
only now started to disseminate into the NLP com-
munity. This is why this tutorial will first focus
on providing a generalized introduction to causal-
ity and its importance and relevance to the NLP
community. We will then dive into the intersection
of causality and NLP, and divide it into two dis-
tinct areas: using causal formalisms to make NLP
methods more interpretable, robust and fair, and
discovering causal relations in social phenomena
that involve text variables. Accordingly, we divide
the content of the tutorial into the following three
parts:
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1. Introduction to Causality. We will give a
broad coverage of central concepts, principles, and
technical developments in causal modeling; iden-
tification of causal effects (known as causal effect
estimation); and finding causal relations by ana-
lyzing observational data (known as causal discov-
ery). We will focus on representations and usage
of causal models (Pearl, 2000; Spirtes et al., 2001),
how causality is different from and connected to as-
sociation, and recent machine learning methods for
causal discovery and causal representation learn-
ing (Spirtes et al., 2001; Peters et al., 2017; Spirtes
and Zhang, 2016; Shimizu et al., 2006; Zhang and
Hyvärinen, 2009; Xie et al., 2020, 2022; Huang
et al., 2022; Yao et al., 2022).

Specifically, we will answer the following ques-
tions: How can we define causality? Is causality
an indispensable notion in science and machine
learning? Why do we care about causality? How
can we infer the causal effect of one variable on
another? How can one learn causality from purely
observational data? How can we recover latent
causal variables and their relations?

2. Causality to Help Improve NLP Models. In
this part of the tutorial, we will first motivate the
audience by introducing why and how the causal
perspective helps in a class of machine learning or
AI tasks (Schölkopf et al., 2021; Pearl and Barein-
boim, 2011; Schölkopf et al., 2012; Zhang et al.,
2013, 2020). Briefly, although deep learning mod-
els achieve impressive performance by using cor-
relations for prediction tasks, there are still limita-
tions in their robustness, interpretability and fair-
ness, which could be improved using causality.

With these motivations, we will then extend the
causal formulation to NLP. Here, we will identify
and highlight existing limitations in NLP meth-
ods, and will propose three application areas where
causal ideas might help: interpretability (Guidotti
et al., 2018), robustness (e.g., McCoy et al., 2019)
and fairness (e.g., Zhao et al., 2017). For each
potential application area, we will highlight the
relevance of causal thinking in solving important
open problems in NLP (Feder et al., 2021c; Veitch
et al., 2021; Kilbertus et al., 2017).

3. Causality for NLP and Computational Social
Science. Distinct from how causality can help
improve NLP models in Part 2, we can also see
another important use of NLP: identifying causal
relations for NLP and computational social science.

For example, does there exist gender bias in the
upvotes of online posts (Veitch et al., 2020)? Do
social media opinions affect the strictness of the
COVID-19 social distancing policies (Jin et al.,
2021b)? What are the reasons behind popular
tweets? Many of these social problems involve
text data. For example, online posts, news articles,
scientific papers, conversation records, and many
others are all text variables. If we want to investi-
gate causal questions, such as the effect of certain
contents or features of text on a certain outcome,
then we need to run statistical causal models with
text modeling.

In this part, we will first introduce how to con-
duct text-involved causal effect estimation discov-
ery and causal discovery. Then, we will cover
some real-world examples where we can apply
these methods (Veitch et al., 2020; Feder et al.,
2021b; Jin et al., 2021b; Ding et al., 2022; Keidar
et al., 2022), and finally run through some exercise
questions.

3 Tutorial Outline

For the three-hour tutorial, we will use 2.5 hours to
cover three main topics: introduction of causality,
how causality can help improve NLP models, and
how causality can be applied to NLP and computa-
tional social science. And finally, we will use the
remaining 30 minutes for an interactive exercise
and Q&A.

An outline of the tutorial content is as follows:
1. Introduction to causality (60-min lecture + 5-

min break)
• Motivations: What is causality? Why is

causality helpful for NLP?
• Main content: Basics of causal effect esti-

mation, causal discovery, and causal repre-
sentation learning.

• Example work: Pearl (2000); Feder et al.
(2021b); Xie et al. (2020); Yao et al. (2022).

2. Causality to help improve NLP models (60-
min lecture + 5-min break)
• Motivations: If the goal is to help improve

NLP models, how can causality help? What
are some use case examples?

• Main content: Inspirations from causality to
help a variety of NLP topics: model robust-
ness, domain adaptation, debiasing models,
interpretability, and fairness.

• Example work: Schölkopf et al. (2021);
Feder et al. (2021c); Veitch et al. (2021);
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Jin et al. (2021c); Stolfo et al. (2022); Hup-
kes et al. (2022).

3. Applications of causality for NLP and compu-
tational social science (20-min lecture)
• Motivations: If the goal is to identify causal

phenomena in our society, how can we learn
causality on variables that involve text?

• Main content: Use of SCMs and potential
outcomes for NLP social applications such
as explaining social media behavior, polit-
ical phenomena, effective education, and
gender bias in the research community. We
will also cover cases where causal discov-
ery and inference can help verify linguistic
theories.

• Example work: Veitch et al. (2020); Jin et al.
(2021b); Ding et al. (2022).

4. Interactive exercise (20 min)
• Given a social application of NLP, we will

let the audience draw the causal graph, and
brainstorm interesting research questions.

• Given a fairness question in NLP, we will
let the audience draw the causal graph, and
discuss the causal formulation.

5. Q&A (10 min)

4 Tutorial Breadth

As for the contents of this tutorial, we will mainly
cover beginner-friendly introductory materials of
NLP, from the studies of established causality re-
searchers out of the NLP domain, such as Judea
Pearl, Donald Rubin, Bernhard Schölkopf, Clark
Glymour, and Peter Spirtes. Apart from the
work from these causality researchers, when it
comes to the more specific connection of NLP
and causality, we will cover the research work of
various researchers: Dyanya Sridhar (Mila), Vic-
tor Veitch (University of Chicago), Zach Wood-
Doughty (Northwestern University), Justin Grim-
mer (Stanford), Brandon M. Stewart (Princeton),
Margaret E. Roberts (UCSD), Reid Pryzant (Mi-
crosoft), and many others.

5 Organizing Committee

Zhijing Jin (she/her) is a PhD at Max Planck Insti-
tute and ETH Zürich supervised by Prof Bernhard
Schölkopf. Her research aims to (1) improve NLP
models by connecting NLP with causal inference
(Jin et al., 2021c,b; Ni et al., 2022), and (2) ex-
pand the impact of NLP by promoting NLP for

social good (Jin et al., 2021a; Field et al., 2021;
Gonzalez et al., 2022). She has published at many
NLP and AI venues (e.g., AAAI, ACL, EMNLP,
NAACL, COLING, AISTATS), and NLP for health-
care venues (e.g., AAHPM, JPSM). To foster the
causality research community, she serves as the
Publications Chair for the 1st conference on Causal
Learning and Reasoning (CLeaR) (Schölkopf et al.,
2022). She is also actively involved in AI for social
good, as the organizer of NLP for Positive Impact
Workshop at ACL 2021 (Field et al., 2021) and
EMNLP 2022, and RobustML workshop at ICLR
2021. To support the NLP research community,
she organizes the ACL Year-Round Mentorship
program from 2021.

Amir Feder (he/him) is a postdoc at Columbia
University, working with Prof David Blei. Amir de-
velops methods that integrate causality into natural
language processing to generate more robust and
interpretable models. He is also interested in in-
vestigating and developing linguistically informed
algorithms for predicting and understanding hu-
man behavior. Amir is currently also a visiting
researcher (part time) at Google Research’s Medi-
cal Brain Team, where he works on methods that
leverage causal methodology for medical language
models. He is a co-organizer of the First Work-
shop on Causal Inference and NLP (CI+NLP) at
EMNLP 2021 (Feder et al., 2021a).

Kun Zhang (he/him) is an associate professor at
Carnegie Mellon University and MBZUAI. His
research interests lie in causal discovery and
causality-based learning. He develops methods
for automated causal discovery from various kinds
of data, investigates learning problems including
transfer learning and deep learning from a causal
view, and studies philosophical foundations of cau-
sation and machine learning. He co-authored a
best student paper for the Conference on Uncer-
tainty in Artificial Intelligence (UAI) and a best
finalist paper for the Conference on Computer Vi-
sion and Pattern Recognition (CVPR), and received
the best benchmark award of the 2nd causality
challenge. He has taken essential roles at many
events of causal inference, including the general
and program co-chair of the 1st Conference on
Causal Learning and Reasoning (CLeaR 2022),
program co-chair of the UAI 2022, co-organizer of
the 9th Causal Inference Workshop at UAI 2021,
co-organizer of NeurIPS 2020 Workshop on Causal
Discovery and Causality-Inspired Machine Learn-
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ing, 2020, co-editor of a number of journal special
issues on causality, and many others.

6 Diversity Efforts

Our organizing committee includes both junior
and senior instructors, as well as diverse genders,
racial/ethnic backgrounds, and affiliations across
America, Europe and Asia, which will help make
people from various backgrounds feel more wel-
come to our workshop.

The topic of our workshop is causal inference,
which can serve as a helpful tool for many NLP
tasks, and the methods can scale up to various lan-
guages and domains. In addition, we advertise the
tutorial to diversity-oriented venues (e.g., Widen-
ing NLP, QueerInAI, BlackInAI, WiML).

7 Target Audience & Prerequisites

There is no required audience background. Pre-
ferred knowledge includes the basics of statistics
(e.g., understanding of probability distribution of
single variables, joint probability distributions, and
conditional probability distributions), and the ba-
sics of NLP (e.g., understanding of sentence em-
beddings, and the setup of simple NLP tasks such
as classification).

8 Recommended Reading List

We compiled a recommended reading list of causal-
ity and NLP papers at (Jin, 2021).1 Among the
papers, the top three recommended readings are
Guo et al. (2020), Schölkopf et al. (2021) and Feder
et al. (2021b).

9 Other Information

Tutorial Type: Introductory.
Tutorial Materials: We will make available on
our GitHub (Jin, 2021) all tutorial presentation ma-
terials, including slides, captioned video record-
ings, codes, and the recommended paper list.

10 Ethical Considerations

The theme of the tutorial focuses on introducing the
method of causal inference to NLP. The introduc-
tion materials will stay on the technical side. There
will not be direct links to applications that will raise
ethical concerns. Additionally, since one of the in-
structor’s research background is NLP for social

1https://github.com/zhijing-jin/
Causality4NLP_Papers

good, we will introduce some use cases of NLP
and causal inference for social good applications.
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Abstract

State-of-the-art language models in NLP per-
form best when fine-tuned even on small
datasets, but due to their increasing size, fine-
tuning and downstream usage have become ex-
tremely compute-intensive. Being able to effi-
ciently and effectively fine-tune the largest pre-
trained models is thus key in order to reap the
benefits of the latest advances in NLP. In this
tutorial, we provide a comprehensive overview
of parameter-efficient fine-tuning methods.
We highlight their similarities and differ-
ences by presenting them in a unified view.
We explore the benefits and usage scenarios
of a neglected property of such parameter-
efficient models—modularity—such as com-
position of modules to deal with previously
unseen data conditions. We finally high-
light how both properties—parameter effi-
ciency and modularity—can be useful in the
real-world setting of adapting pre-trained mod-
els to under-represented languages and do-
mains with scarce annotated data for several
downstream applications.1

1 Motivation and Objectives

The emergence of large pre-trained language mod-
els (Devlin et al., 2019) has led to a watershed mo-
ment in NLP, accelerating progress and improving
performance across a wide range of NLP bench-
marks. These models have quickly superseded
previous baseline models and are now a core part
of every NLP researcher and practitioner’s toolkit.
While pre-training such models has always been
prohibitively expensive, recent pre-trained models
have been getting so large (Brown et al., 2020) that
even their fine-tuning and downstream usage are
extremely challenging. In practice, the largest mod-
els perform best, even when fine-tuned on small
datasets (Li et al., 2020). Therefore, being able
to efficiently and effectively fine-tune the largest

1Slides are available at: https://tinyurl.com/
modular-fine-tuning-tutorial

pre-trained models is key in order to reap the ben-
efits of the latest advances in NLP. This is a ma-
jor challenge that threatens to further exacerbate
the inequality between resource-rich and resource-
constrained research and production environments.

Recent work has highlighted the benefit of
parameter-efficient methods to fine-tune such large
pre-trained models. These parameter-efficient fine-
tuning methods include soft prompt methods that
preprend a small set of trainable continuous param-
eters to the input or intermediate layers (Li and
Liang, 2021; Lester et al., 2021; Mahabadi et al.,
2022), low-rank methods that train a small number
of parameters in a low-dimensional subspace using
random projections (Li et al., 2018; Aghajanyan
et al., 2021), and adapter methods that insert train-
able transformations at different layers (Houlsby
et al., 2019; Pfeiffer et al., 2020). Other methods
only tune a subset of the model’s parameters (Lee
et al., 2019; Zaken et al., 2021). An alternative set
of methods relies on identifying performant sparse
subnetworks, which can be updated in isolation
(Frankle and Carbin, 2019; Guo et al., 2021; Xu
et al., 2021; Sung et al., 2021). These methods
reduce not only the number of parameters during
fine-tuning but also have been shown to be more
robust than standard fine-tuning and to outperform
it in low-resource conditions (He et al., 2021b; Han
et al., 2021; Mahabadi et al., 2021).

In the first part of this tutorial, we will give
a comprehensive overview of such parameter-
efficient fine-tuning methods. We will highlight
the similarities and differences of a wide array of
these methods by presenting them in a unified view,
which expands on recent work (He et al., 2021a;
Mao et al., 2021) highlighting the connections be-
tween adapters and prefix tuning. Based on this
common view, we will be able to clearly show the
respective benefits and trade-offs of a diverse set
of parameter-efficient fine-tuning methods.

A commonality of parameter-efficient methods—

23

https://tinyurl.com/modular-fine-tuning-tutorial
https://tinyurl.com/modular-fine-tuning-tutorial


illustrated clearly in this framework—is that they
learn a modification vector that is added to the pre-
trained model parameters, which are kept fixed.
This property opens the door to modularity, which
we view as a neglected benefit of the parameter-
efficient usage of pre-trained models.

In the second part of the tutorial, we will explore
the benefits and usage scenarios of such modular
approaches. We will demonstrate how modular
‘expert’ modules can be learned for specific data
settings (Chen et al., 2019; Rücklé et al., 2020;
Gururangan et al., 2022; Li et al., 2022). More-
over, they can provide further benefits when com-
bined and adapting to previously unseen settings
(Pfeiffer et al., 2021a). We will additionally dis-
cuss how modular approaches can be used to aug-
ment models with new capabilities or knowledge,
such as memory for lifelong learning (Kaiser et al.,
2017), numerical reasoning (Andor et al., 2019),
and factual or linguistic knowledge (Wang et al.,
2021a). A key benefit of modularity is that it en-
ables the storage and composition of modules to
deal with previously unseen data conditions (Ponti
et al., 2021, 2022). We will highlight this benefit
based on prior work (Wortsman et al., 2020; Ponti
et al., 2021; Ansell et al., 2022) and explore appli-
cations that it may enable in the future. Finally, as
an NLP ‘history lesson’, we will revisit modular
approaches that preceded pre-trained models (An-
dreas et al., 2016) and highlight how they may be
relevant for recent approaches. Overall, we will
encourage attendees to think of pre-trained models
not as monoliths but as building blocks than can be
augmented for specific purposes and data settings.

Tying both previous parts together, the third part
of the tutorial will focus on applications: we will
demonstrate how the properties explored so far—
parameter efficiency and modularity—can be use-
ful in practical settings. Specifically, we will fo-
cus on the important real-world setting of adapt-
ing pre-trained models to under-represented lan-
guages and domains with scarce annotated data
for several downstream applications, e.g., cross-
lingual transfer (Pfeiffer et al., 2020, 2022) and
NMT (Bapna and Firat, 2019; Philip et al., 2020; Le
et al., 2021; Üstün et al., 2021). We will highlight
approaches that enable learning language-specific
components using previously presented techniques
such as adapters (Üstün et al., 2020; Pfeiffer et al.,
2020, 2021b; Parović et al., 2022) or sparse subnet-
works (Lin et al., 2021; Ansell et al., 2022). We will

specifically discuss challenges and possible solu-
tions when using such methods to adapt pre-trained
models to extremely low-resource scenarios, such
as test time adaptation (Wang et al., 2021b), pa-
rameter generation (Platanios et al., 2018; Ansell
et al., 2021; Üstün et al., 2022), domain adaptation
(Chronopoulou et al., 2022), and usage of alterna-
tive data sources (Ebrahimi and Kann, 2021; Faisal
and Anastasopoulos, 2022).

1.1 What This Tutorial Does NOT Cover

We focus on parameter-efficient methods for adap-
tation of pre-trained models and thus only briefly
discuss methods to make pre-training itself more
efficient via efficient neural network architectures
(Tay et al., 2020), including mixture-of-experts lay-
ers (Shazeer et al., 2017; Fedus et al., 2021). We
will only briefly mention the emerging but already
extensive literature on prompting,2 and discuss its
connections to the main topic of this tutorial. While
prompting is itself parameter-efficient (requiring
zero parameters) and can be combined with the fine-
tuning methods we discuss, an extensive discussion
of prompting would require its own tutorial. For
similar reasons, we will only briefly highlight the
extensive literature on controllable text generation.
We will also only briefly discuss other techniques
to improve efficiency such as knowledge distilla-
tion as these have been covered by the recent High
Performance Natural Language Processing tutorial
at EMNLP 2020 (Ilharco et al., 2020).

1.2 Tutorial Specifications

Tutorial Type: Cutting-edge, 3 hours

Target Audience: The target audience are re-
searchers and practitioners in NLP who are inter-
ested in 1) extending research on this topic as well
as 2) using state-of-the-art pre-trained models effi-
ciently. In addition, target audience members will
become familiar with diverse ways to make use of
pre-trained models, beyond the standard prompting
or fine-tuning setup.

Prerequisites: The target audience should be fa-
miliar with common neural network architectures
(e.g., attention, Transformers), and also have a ba-
sic understanding of contemporary approaches in
NLP, such as standard pre-trained models.

2For a comprehensive survey discussing prompting meth-
ods, we refer to (Liu et al., 2021).
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2 Tutorial Outline

In what follows, we provide finer-grained descrip-
tions of the main topics covered in the tutorial,
along with tentative time allocation:

2.1 Parameter-efficient Models [1h 10 mins]

1. Overview of Parameter-efficient Models [35
mins]: We will begin the tutorial by introduc-
ing our audience to the range of techniques
and methods used to fine-tune NLP models in
a parameter-efficient way, from prompt tuning
and adapters to pruning-based approaches. We
will motivate the necessity and importance of
research on parameter efficiency, and the main
benefits of these approaches. To highlight a
more pragmatic motivation, a comprehensive
list of current and potential applications will
also be provided.

2. A Unified View of Parameter Efficiency [35
mins]: We will provide the audience with a uni-
fied view of the parameter-efficient methods pre-
sented thus far. We will employ this view to
highlight the key dimensions along which exist-
ing approaches differ as well as detail the result-
ing trade-offs that different approaches make.
As part of this section, we will also provide a
systematic general overview of the performance
and computational efficiency of representative
methods on an array of diverse benchmarks. In
general, we will aim to provide the audience
with a sense of the ‘design space’ of parameter-
efficient methods so that they will not only be
able to employ current methods, but expand and
build upon them in future research.

2.2 Coffee Break [30 mins]

2.3 Modular Models [55 minutes]

1. Learning Modular Experts [25 minutes]: We
will first highlight how modular experts can be
learned in different settings and how these ex-
perts can be used to adapt to novel data distri-
butions. We will also discuss how experts can
provide access to new capabilities or new types
of knowledge, such as numerical reasoning or
factual and linguistic knowledge.

2. Storing and Composing Modules [15 min-
utes]: Having described the general setting and
scenarios where modularity can be useful, we

will highlight how modularity can lead to ex-
tremely efficient storage as well as composi-
tion of modules to adapt to unseen data settings:
in the long run, the modular design leads to
(re)composable and more sustainable NLP meth-
ods.

3. Modularity Before Pre-training [15 minutes]:
We will finally revisit classic modular ap-
proaches and describe how some of the tech-
niques and lessons from prior work may be ap-
plicable to the current generation of models.

2.4 Application: Multilingual and
Low-Resource NLP [55 minutes]

1. Parameter-efficient Methods for Multilin-
gual NLP [25 minutes]: In the last part of the
tutorial, we will describe how the previosly dis-
cussed methods can be used to adapt pre-trained
models to low-resource scenarios, with a fo-
cus on adapting pre-trained multilingual models
to under-represented languages and domains,
and enhancing multilingual NMT models for
such resource-poor languages. This part fo-
cuses mainly on how language-specific com-
ponents can be learned effectively, and how they
can be combined with domain-specific and task-
specific components, reaping the benefits of the
modular design (from the previous part). This
section will also discuss very recent methods
based on efficient multilingual and language-
specific contextual parameter generation and
learning language-specific sub-networks. We
will also highlight connections to pre-neural re-
search on parameter-efficient methods for multi-
lingual NLP.

2. Adapting to Extremely Low-resource Lan-
guages [15 minutes]: In addition, we will
discuss challenges when learning such modu-
lar components in the extremely low-resource
settings that are common when dealing with
under-represented languages. Going beyond
data scarcity, we will highlight challenges when
learning languages with a different script, word
order, or rich morphology. We will then describe
strategies that can be used to effectively adapt
models to such languages, including the use of
external information (e.g., linguistic typology)
to condition and enrich the modular design.

3. Open Research Directions [15 minutes]: In
the last section, we will provide the audience
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with an overview of research directions in this
area and key pointers that will help them to pur-
sue their own research, and apply the current
technology in downstream NLP applications.
Some time will also be reserved for a short QA
session with the presenters.

3 Diversity

The third part of the tutorial focuses on how the de-
scribed methods can be applied to improve models
especially for low-resource and under-represented
languages. This aligns with a long-term aim and
promise of multilingual NLP to bring language
technology to virtually any language of the world.
We aim to make scripts available that demonstrate
how the discussed methods can be applied in this
setting. We hope this will help to diversify the au-
dience, especially in the emerging regions such as
Africa and Central and South America, and make
the tutorial accessible to both beginners and ad-
vanced researchers.

4 Ethics Statement

The methodology introduced in the tutorial poten-
tially inherits standard undesirable biases stemming
from pretraining language models on large (and un-
verified) multilingual text collections. During the
tutorial, we will ensure to remind NLP researchers
and practitioners to bear in mind these biases, and
apply appropriate data filtering and debiasing tech-
niques before deploying any text encoders and rel-
evant methodology to real-world language technol-
ogy applications.

5 Presenters

Name: Sebastian Ruder
Affiliation: Google Research
Email: ruder@google.com
Website: http://ruder.io
Sebastian is a research scientist at Google Research
where he works on transfer and cross-lingual
learning and on parameter-efficient models.
He was the Program Co-Chair for EurNLP
2019 and has co-organized the 4th Workshop
on Representation Learning for NLP at ACL
2019 and the First Workshop on Multilingual
Representation Learning at EMNLP 2021 and
2022. He has taught tutorials on “Transfer learning
in natural language processing”, “Unsupervised
Cross-lingual Representation Learning“, and
“Multi-domain Multilingual Question Answering”

at NAACL 2019, ACL 2019, and EMNLP 2021
respectively. He has also co-organized and taught
at the NLP Session at the Deep Learning Indaba
2018, 2019, and 2022.

Name: Jonas Pfeiffer
Affiliation: Google Research
Email: jonaspfeiffer@google.com
Website: https://pfeiffer.ai
Jonas is a research scientist at Google Research.
He is interested in modular and compositional
representation learning in multi-task, multilingual,
and multi-modal contexts. Jonas has received the
IBM PhD Research Fellowship award in 2020. He
has given invited talks in academia (e.g. University
of Cambridge, ETH, EPFL, NYU), industry (e.g.
Facebook AI Research, IBM Research), as well
as at Machine Learning Summer/Winter Schools
(e.g. Lisbon ML Summer School (LxMLS) 2021,
Advanced Language Processing Winter School
(ALPS) 2022).

Name: Ivan Vulić
Affiliation: University of Cambridge & PolyAI
Email: iv250@cam.ac.uk
Website: https://sites.google.com/
site/ivanvulic/
Ivan is a Principal Research Associate and a
Royal Society University Research Fellow in
the Language Technology Lab at the University
of Cambridge, and a Senior Scientist at PolyAI.
His research interests are in multilingual and
multimodal representation learning, and transfer
learning for low-resource languages and appli-
cations such as task-oriented dialogue systems.
He has extensive experience giving invited
and keynote talks, and co-organising tutorials
(e.g., ECIR 2013, WSDM 2014, EMNLP 2017,
NAACL-HLT 2018, ESSLLI 2018, ACL 2019, 2
tutorials at EMNLP 2019, AILC Lectures 2021,
ACL 2022) and workshops in areas relevant to the
tutorial proposal (e.g., VL’15, SIGTYP 2019-2021,
DeeLIO 2020-2022, RepL4NLP 2021, MML 2022,
publication chair of ACL 2019, program chair of
*SEM 2021, tutorial co-chair of EMNLP 2021).
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1 Tutorial Introduction

Autoregressive (AR) models have achieved great
success in various sequence generation tasks (Bah-
danau et al., 2015; Vaswani et al., 2017). How-
ever, AR models can only generate the target se-
quence word-by-word due to the AR mechanism
and hence suffer from slow inference. Recently,
non-autoregressive (NAR) models, which generate
all the tokens in parallel by removing the sequential
dependencies within the target sequence, have re-
ceived increasing attention in sequence generation
tasks such as neural machine translation (NMT, Gu
et al., 2018), automatic speech recognition (ASR,
Salazar et al., 2019), and text to speech (TTS, Ren
et al., 2019).

Recently, non-autoregressive (NAR) models
have received much attention in various sequence
generation tasks, which generate all tokens in par-
allel by ignoring the sequential dependency within
the target sequence. Gu et al. (2018) proposed
the first NAR translation model for the efficient
inference of neural machine translation, and NAR
generation has subsequently been applied to a wide
range of sequence generation tasks, where the two
most successful application scenarios are ASR and
TTS. The major challenge faced by NAR genera-
tion is the multi-modality problem: there may exist
multiple correct outputs for the same source input,
but the naive NAR model is unable to capture the
multi-modal data distribution. Therefore, the direct
application of NAR generation will usually lead to
significant performance degradation compared to
the autoregressive counterpart.

In this tutorial, we will provide a comprehen-
sive introduction to non-autoregressive sequence
generation. First, we start with the background of
sequence generation, giving the motivation of NAR
generation and the challenge faced by NAR models.
We will briefly introduce the autoregressive gen-
eration mechanism and autoregressive sequence

models that evolve from recurrent neural networks
(Schuster and Paliwal, 1997) to self-attention net-
works (Vaswani et al., 2017). We point out their
problems caused by the autoregressive mechanism,
including exposure bias (Ranzato et al., 2016), er-
ror propagation, fixed generation direction, causal
attention, and most importantly, the high inference
latency. We will then introduce the NAR model
that solves the above-mentioned problems by gen-
erating all target tokens in parallel, and point out
the multi-modality challenge faced by NAR models
(Gu et al., 2018).

Second, we will introduce research work that
aims to improve the performance of NAR genera-
tion, mainly focusing on non-autoregressive trans-
lation in this part. The involved work covers ef-
forts over knowledge distillation (Kim and Rush,
2016; Zhou et al., 2020; Sun and Yang, 2020; Ding
et al., 2021; Shao et al., 2022b), better training ob-
jectives (Shao et al., 2019, 2020; Ghazvininejad
et al., 2020; Du et al., 2021, 2022; Tu et al., 2020;
Shao et al., 2021; Shao and Feng, 2022; Li et al.,
2022b; Anonymous, 2023), latent modeling (Gu
et al., 2018; Kaiser et al., 2018; Ma et al., 2019;
Ran et al., 2021; Song et al., 2021; Shu et al., 2020;
Bao et al., 2021, 2022), more expressive NAR mod-
els (Wang et al., 2017; Libovický and Helcl, 2018;
Sun et al., 2019; Huang et al., 2022), improved
decoding approaches (Lee et al., 2018; Ghazvinine-
jad et al., 2019; Gu et al., 2019; Ran et al., 2020;
Saharia et al., 2020; Deng and Rush, 2020; Geng
et al., 2021; Stern et al., 2018, 2019; Xia et al.,
2022; Shao et al., 2022a), etc.

Third, we will introduce NAR models on other
sequence generation tasks, where the two most suc-
cessful application scenarios are ASR and TTS.
The idea of NAR generation was first pervading in
ASR, where Graves et al. (2006) proposed the CTC
network which predicts outputs independently, but
the recurrent network architecture prevents it from
parallel decoding. With the emergence of paralleliz-
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able self-attention network (Vaswani et al., 2017),
CTC-based NAR models soon became a promis-
ing direction in ASR (Higuchi et al., 2020; Chen
et al., 2020). In TTS, parallel generation is partic-
ularly necessary due to the extremely large length
of output sequence. The first attempt is Parallel
WaveNet (Oord et al., 2018) which keeps the au-
toregressive mechanism but enables parallel gen-
eration with inverse autoregressive flow (Kingma
et al., 2016). NAR models are subsequently pro-
posed for TTS (Ren et al., 2019, 2020a; Prenger
et al., 2019), which caught up with AR models
in a short time and soon became the mainstream
method for TTS.

We will also introduce other applications of
NAR models like language modeling (Huang et al.,
2021; Li et al., 2022a), image/video captioning
(Gao et al., 2019; Yang et al., 2021), dialogue gen-
eration (Wu et al., 2020; Le et al., 2020), and even
object detection (Carion et al., 2020). It is observed
that NAR models perform well on some tasks but
suffer from performance degradation on other tasks.
This phenomenon can be explained from the per-
spective of multi-modality (Gu et al., 2018) or tar-
get token dependency (Ren et al., 2020b).

Finally, we will conclude this tutorial by summa-
rizing the strengths and challenges of NAR models
and discussing current concerns and future direc-
tions of NAR generation.

2 Type of Tutorial

The type of tutorial is cutting-edge. Non-
autoregressive generation is a newly emerging
topic, which has attracted increasing attention from
researchers and achieved remarkable advancement
in the past several years. This is the second tuto-
rial on this topic in the history of ACL, EMNLP,
NAACL, EACL, COLING, and AACL (Gu and
Tan, 2022).

3 Tutorial Outline

Part I: Introduction (20 min)
• Autoregressive sequence generation
• Problems of AR generation

– High inference latency
– Exposure bias
– Error propagation

• Non-autoregressive generation
• Multi-modality challenge

Part II: Non-Autoregressive Machine Transla-
tion (80 min)

• Knowledge distillation
• Training objectives

– Token-level
– Ngram-level
– Sequence-level

• Latent modeling
– Variational autoencoder
– Vector quantization
– Word alignment

• Expressive NAR models
– CTC
– DA-Transformer

• Decoding approaches
– Iterative decoding
– Semi-autoregressive decoding
– Speculative decoding

Part III: Non-Autoregressive Sequence Gener-
ation (60 min)

• Non-autoregressive ASR
• Non-autoregressive TTS
• Other generation tasks

– language modeling
– Image/video captioning
– Dialogue generation
– Object detection

• What kind of tasks are NAR models good at?
– Multi-modality
– Target token dependency

Part IV: Conclusion (20 min)

4 Breadth

This tutorial will provide a comprehensive intro-
duction to non-autoregressive sequence generation.
We anticipate that at least 90% of the tutorial will
cover work by other researchers.

5 Diversity

In the past, NAR sequence generation usually in-
volves one or two languages. Recently, some re-
searchers have found that NAR models are good at
multilingual translation (Song et al., 2022), which
may stimulate the progress of NAR generation in
multilingual scenarios.

Yang Feng is a senior instructor and Chenze
Shao is a junior instructor.
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6 Prerequisites

The attendees have to understand the basics of
neural networks and the sequence-to-sequence
framework, including word embeddings, encoder-
decoder models, and the Transformer architecture.

7 Reading List

We recommend attendees to read the following
papers before the tutorial:

• Vaswani et al. (2017): the parallelizable Trans-
former network based on attention mecha-
nisms.

• Gu et al. (2018): first propose non-
autoregressive generation for parallel decod-
ing and point out the multi-modality problem.

• Kim and Rush (2016): train the student model
with the teacher output, alleviating the multi-
modality by reducing data complexity.

• Shao et al. (2021): train NAR models with
sequence-level objectives, which evaluate
model outputs as a whole and optimize the
overall translation quality.

• Shu et al. (2020): use latent variables to model
the non-determinism in the translation pro-
cess.

• Ghazvininejad et al. (2019): iteratively refine
model outputs by repeatedly masking out and
regenerating partial target tokens.

• Graves et al. (2006): the early exploration of
non-autoregressive generation, and the pro-
posed CTC loss is widely used in recent NAR
models.

• Ren et al. (2019): non-autoregressive text-to-
speech model, which matches autoregressive
models in terms of speech quality.

• Ren et al. (2020b): a study on NAR models
that analyzes the difficulty of NAR generation
on different generation tasks

8 Tutorial Presenters

Yang Feng is a professor in Institute of Comput-
ing Technology, Chinese Academy of Sciences
(ICT/CAS). She got her PhD degree in ICT/CAS

and then worked in University of Sheffield and In-
formation Sciences Institute, University of South-
ern California, and now leads the natural language
processing group in ICT/CAS. Her research inter-
ests are natural language process, mainly focus-
ing on machine translation and dialogue. She was
the recipient of the Best Long Paper Award of
ACL 2019. She served as a senior area chair of
EMNLP 2021 and area chairs of ACL, EMNLP,
COLING etc., and she is serving as an Action Edi-
tor of ACL Roling Review and an editorial board
member of the Northern European Journal of Lan-
guage Technology. She has given a tutorial in
the 10th CCF International Conference on Natu-
ral Language Processing and Chinese Computing
(NLPCC2021) and has been invited to give talks
in NLPCC, CCL(China National Conference on
Computational Linguistics) etc.

Chenze Shao is a fifth-year PhD student in Insti-
tute of Computing Technology, Chinese Academy
of Sciences. His research interests are natural lan-
guage processing and neural machine translation.
His recent research topic is non-autoregressive
(NAR) sequence generation. He has published pa-
pers on NAR generation in CL, ACL, EMNLP,
NAACL, AAAI and NeurIPS.

9 Other Information

Technical Requirements This tutorial does not
have special requirements for technical equipment.

Ethics Statement The technique of non-
autoregressive generation improves the efficiency
of text generation and may reduce the cost of
generating malicious text.

Open Access. All of our tutorial materials can be
shared in the ACL Anthology.
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