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Abstract

State-of-the-art language models in NLP per-
form best when fine-tuned even on small
datasets, but due to their increasing size, fine-
tuning and downstream usage have become ex-
tremely compute-intensive. Being able to effi-
ciently and effectively fine-tune the largest pre-
trained models is thus key in order to reap the
benefits of the latest advances in NLP. In this
tutorial, we provide a comprehensive overview
of parameter-efficient fine-tuning methods.
We highlight their similarities and differ-
ences by presenting them in a unified view.
We explore the benefits and usage scenarios
of a neglected property of such parameter-
efficient models—modularity—such as com-
position of modules to deal with previously
unseen data conditions. We finally high-
light how both properties—parameter effi-
ciency and modularity—can be useful in the
real-world setting of adapting pre-trained mod-
els to under-represented languages and do-
mains with scarce annotated data for several
downstream applications.1

1 Motivation and Objectives

The emergence of large pre-trained language mod-
els (Devlin et al., 2019) has led to a watershed mo-
ment in NLP, accelerating progress and improving
performance across a wide range of NLP bench-
marks. These models have quickly superseded
previous baseline models and are now a core part
of every NLP researcher and practitioner’s toolkit.
While pre-training such models has always been
prohibitively expensive, recent pre-trained models
have been getting so large (Brown et al., 2020) that
even their fine-tuning and downstream usage are
extremely challenging. In practice, the largest mod-
els perform best, even when fine-tuned on small
datasets (Li et al., 2020). Therefore, being able
to efficiently and effectively fine-tune the largest

1Slides are available at: https://tinyurl.com/
modular-fine-tuning-tutorial

pre-trained models is key in order to reap the ben-
efits of the latest advances in NLP. This is a ma-
jor challenge that threatens to further exacerbate
the inequality between resource-rich and resource-
constrained research and production environments.

Recent work has highlighted the benefit of
parameter-efficient methods to fine-tune such large
pre-trained models. These parameter-efficient fine-
tuning methods include soft prompt methods that
preprend a small set of trainable continuous param-
eters to the input or intermediate layers (Li and
Liang, 2021; Lester et al., 2021; Mahabadi et al.,
2022), low-rank methods that train a small number
of parameters in a low-dimensional subspace using
random projections (Li et al., 2018; Aghajanyan
et al., 2021), and adapter methods that insert train-
able transformations at different layers (Houlsby
et al., 2019; Pfeiffer et al., 2020). Other methods
only tune a subset of the model’s parameters (Lee
et al., 2019; Zaken et al., 2021). An alternative set
of methods relies on identifying performant sparse
subnetworks, which can be updated in isolation
(Frankle and Carbin, 2019; Guo et al., 2021; Xu
et al., 2021; Sung et al., 2021). These methods
reduce not only the number of parameters during
fine-tuning but also have been shown to be more
robust than standard fine-tuning and to outperform
it in low-resource conditions (He et al., 2021b; Han
et al., 2021; Mahabadi et al., 2021).

In the first part of this tutorial, we will give
a comprehensive overview of such parameter-
efficient fine-tuning methods. We will highlight
the similarities and differences of a wide array of
these methods by presenting them in a unified view,
which expands on recent work (He et al., 2021a;
Mao et al., 2021) highlighting the connections be-
tween adapters and prefix tuning. Based on this
common view, we will be able to clearly show the
respective benefits and trade-offs of a diverse set
of parameter-efficient fine-tuning methods.

A commonality of parameter-efficient methods—
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illustrated clearly in this framework—is that they
learn a modification vector that is added to the pre-
trained model parameters, which are kept fixed.
This property opens the door to modularity, which
we view as a neglected benefit of the parameter-
efficient usage of pre-trained models.

In the second part of the tutorial, we will explore
the benefits and usage scenarios of such modular
approaches. We will demonstrate how modular
‘expert’ modules can be learned for specific data
settings (Chen et al., 2019; Rücklé et al., 2020;
Gururangan et al., 2022; Li et al., 2022). More-
over, they can provide further benefits when com-
bined and adapting to previously unseen settings
(Pfeiffer et al., 2021a). We will additionally dis-
cuss how modular approaches can be used to aug-
ment models with new capabilities or knowledge,
such as memory for lifelong learning (Kaiser et al.,
2017), numerical reasoning (Andor et al., 2019),
and factual or linguistic knowledge (Wang et al.,
2021a). A key benefit of modularity is that it en-
ables the storage and composition of modules to
deal with previously unseen data conditions (Ponti
et al., 2021, 2022). We will highlight this benefit
based on prior work (Wortsman et al., 2020; Ponti
et al., 2021; Ansell et al., 2022) and explore appli-
cations that it may enable in the future. Finally, as
an NLP ‘history lesson’, we will revisit modular
approaches that preceded pre-trained models (An-
dreas et al., 2016) and highlight how they may be
relevant for recent approaches. Overall, we will
encourage attendees to think of pre-trained models
not as monoliths but as building blocks than can be
augmented for specific purposes and data settings.

Tying both previous parts together, the third part
of the tutorial will focus on applications: we will
demonstrate how the properties explored so far—
parameter efficiency and modularity—can be use-
ful in practical settings. Specifically, we will fo-
cus on the important real-world setting of adapt-
ing pre-trained models to under-represented lan-
guages and domains with scarce annotated data
for several downstream applications, e.g., cross-
lingual transfer (Pfeiffer et al., 2020, 2022) and
NMT (Bapna and Firat, 2019; Philip et al., 2020; Le
et al., 2021; Üstün et al., 2021). We will highlight
approaches that enable learning language-specific
components using previously presented techniques
such as adapters (Üstün et al., 2020; Pfeiffer et al.,
2020, 2021b; Parović et al., 2022) or sparse subnet-
works (Lin et al., 2021; Ansell et al., 2022). We will

specifically discuss challenges and possible solu-
tions when using such methods to adapt pre-trained
models to extremely low-resource scenarios, such
as test time adaptation (Wang et al., 2021b), pa-
rameter generation (Platanios et al., 2018; Ansell
et al., 2021; Üstün et al., 2022), domain adaptation
(Chronopoulou et al., 2022), and usage of alterna-
tive data sources (Ebrahimi and Kann, 2021; Faisal
and Anastasopoulos, 2022).

1.1 What This Tutorial Does NOT Cover

We focus on parameter-efficient methods for adap-
tation of pre-trained models and thus only briefly
discuss methods to make pre-training itself more
efficient via efficient neural network architectures
(Tay et al., 2020), including mixture-of-experts lay-
ers (Shazeer et al., 2017; Fedus et al., 2021). We
will only briefly mention the emerging but already
extensive literature on prompting,2 and discuss its
connections to the main topic of this tutorial. While
prompting is itself parameter-efficient (requiring
zero parameters) and can be combined with the fine-
tuning methods we discuss, an extensive discussion
of prompting would require its own tutorial. For
similar reasons, we will only briefly highlight the
extensive literature on controllable text generation.
We will also only briefly discuss other techniques
to improve efficiency such as knowledge distilla-
tion as these have been covered by the recent High
Performance Natural Language Processing tutorial
at EMNLP 2020 (Ilharco et al., 2020).

1.2 Tutorial Specifications

Tutorial Type: Cutting-edge, 3 hours

Target Audience: The target audience are re-
searchers and practitioners in NLP who are inter-
ested in 1) extending research on this topic as well
as 2) using state-of-the-art pre-trained models effi-
ciently. In addition, target audience members will
become familiar with diverse ways to make use of
pre-trained models, beyond the standard prompting
or fine-tuning setup.

Prerequisites: The target audience should be fa-
miliar with common neural network architectures
(e.g., attention, Transformers), and also have a ba-
sic understanding of contemporary approaches in
NLP, such as standard pre-trained models.

2For a comprehensive survey discussing prompting meth-
ods, we refer to (Liu et al., 2021).
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2 Tutorial Outline

In what follows, we provide finer-grained descrip-
tions of the main topics covered in the tutorial,
along with tentative time allocation:

2.1 Parameter-efficient Models [1h 10 mins]

1. Overview of Parameter-efficient Models [35
mins]: We will begin the tutorial by introduc-
ing our audience to the range of techniques
and methods used to fine-tune NLP models in
a parameter-efficient way, from prompt tuning
and adapters to pruning-based approaches. We
will motivate the necessity and importance of
research on parameter efficiency, and the main
benefits of these approaches. To highlight a
more pragmatic motivation, a comprehensive
list of current and potential applications will
also be provided.

2. A Unified View of Parameter Efficiency [35
mins]: We will provide the audience with a uni-
fied view of the parameter-efficient methods pre-
sented thus far. We will employ this view to
highlight the key dimensions along which exist-
ing approaches differ as well as detail the result-
ing trade-offs that different approaches make.
As part of this section, we will also provide a
systematic general overview of the performance
and computational efficiency of representative
methods on an array of diverse benchmarks. In
general, we will aim to provide the audience
with a sense of the ‘design space’ of parameter-
efficient methods so that they will not only be
able to employ current methods, but expand and
build upon them in future research.

2.2 Coffee Break [30 mins]

2.3 Modular Models [55 minutes]

1. Learning Modular Experts [25 minutes]: We
will first highlight how modular experts can be
learned in different settings and how these ex-
perts can be used to adapt to novel data distri-
butions. We will also discuss how experts can
provide access to new capabilities or new types
of knowledge, such as numerical reasoning or
factual and linguistic knowledge.

2. Storing and Composing Modules [15 min-
utes]: Having described the general setting and
scenarios where modularity can be useful, we

will highlight how modularity can lead to ex-
tremely efficient storage as well as composi-
tion of modules to adapt to unseen data settings:
in the long run, the modular design leads to
(re)composable and more sustainable NLP meth-
ods.

3. Modularity Before Pre-training [15 minutes]:
We will finally revisit classic modular ap-
proaches and describe how some of the tech-
niques and lessons from prior work may be ap-
plicable to the current generation of models.

2.4 Application: Multilingual and
Low-Resource NLP [55 minutes]

1. Parameter-efficient Methods for Multilin-
gual NLP [25 minutes]: In the last part of the
tutorial, we will describe how the previosly dis-
cussed methods can be used to adapt pre-trained
models to low-resource scenarios, with a fo-
cus on adapting pre-trained multilingual models
to under-represented languages and domains,
and enhancing multilingual NMT models for
such resource-poor languages. This part fo-
cuses mainly on how language-specific com-
ponents can be learned effectively, and how they
can be combined with domain-specific and task-
specific components, reaping the benefits of the
modular design (from the previous part). This
section will also discuss very recent methods
based on efficient multilingual and language-
specific contextual parameter generation and
learning language-specific sub-networks. We
will also highlight connections to pre-neural re-
search on parameter-efficient methods for multi-
lingual NLP.

2. Adapting to Extremely Low-resource Lan-
guages [15 minutes]: In addition, we will
discuss challenges when learning such modu-
lar components in the extremely low-resource
settings that are common when dealing with
under-represented languages. Going beyond
data scarcity, we will highlight challenges when
learning languages with a different script, word
order, or rich morphology. We will then describe
strategies that can be used to effectively adapt
models to such languages, including the use of
external information (e.g., linguistic typology)
to condition and enrich the modular design.

3. Open Research Directions [15 minutes]: In
the last section, we will provide the audience
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with an overview of research directions in this
area and key pointers that will help them to pur-
sue their own research, and apply the current
technology in downstream NLP applications.
Some time will also be reserved for a short QA
session with the presenters.

3 Diversity

The third part of the tutorial focuses on how the de-
scribed methods can be applied to improve models
especially for low-resource and under-represented
languages. This aligns with a long-term aim and
promise of multilingual NLP to bring language
technology to virtually any language of the world.
We aim to make scripts available that demonstrate
how the discussed methods can be applied in this
setting. We hope this will help to diversify the au-
dience, especially in the emerging regions such as
Africa and Central and South America, and make
the tutorial accessible to both beginners and ad-
vanced researchers.

4 Ethics Statement

The methodology introduced in the tutorial poten-
tially inherits standard undesirable biases stemming
from pretraining language models on large (and un-
verified) multilingual text collections. During the
tutorial, we will ensure to remind NLP researchers
and practitioners to bear in mind these biases, and
apply appropriate data filtering and debiasing tech-
niques before deploying any text encoders and rel-
evant methodology to real-world language technol-
ogy applications.
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