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Abstract

This tutorial reviews the design of common
meaning representations, SoTA models for
predicting meaning representations, and the
applications of meaning representations in a
wide range of downstream NLP tasks and real-
world applications. Reporting by a diverse
team of NLP researchers from academia and
industry with extensive experience in design-
ing, building and using meaning representa-
tions, our tutorial has three components: (1)
an introduction to common meaning represen-
tations, including basic concepts and design
challenges; (2) a review of SoTA methods
on building models for meaning representa-
tions; and (3) an overview of applications of
meaning representations in downstream NLP
tasks and real-world applications. We will
also present qualitative comparisons of com-
mon meaning representations and a quantita-
tive study on how their differences impact
model performance. Finally, we will share
best practices in choosing the right meaning
representation for downstream tasks.

1 Background

In this tutorial, we primarily discuss one thread of
meaning representations encompassing the Propo-
sition Bank (PropBank) (Palmer et al., 2005), Ab-
stract Meaning Representations (AMR) as well as
Uniform Meaning Representations (UMR), a re-
cent extension to AMR. We will discuss the repre-
sentations themselves, discuss the latest semantic
role labeling (SRL) and AMR parsing techniques
using these representations, and overview applica-
tions of these meaning representations to practical
natural language applications.

These approaches all share the use of the
predicate-specific semantic roles defined in the
Proposition Bank (PropBank) (Palmer et al., 2005).
In such an approach, the particular sense of “afford”
in “The public was afforded a preview of the show”,
is sense-tagged as “afford.02” in PropBank, and
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it requires three semantic roles, Arg0 the provider,
Argl the thing that is provided, and Arg2 the re-
cipient of Argl. We will seek to provide attendees
with good intuitions about the behavior and advan-
tages of how such predicate-specific roles work
across these different meaning representations. We
will also contextualize how such an approach to
semantics compares to other approaches such as
FrameNet(Baker et al., 1998).

AMR can be viewed as an extension of Prop-
Bank to handle wide-coverage sentence represen-
tation. Whereas PropBank is annotated on a
predicate-by-predicate basis and predicates are can
be viewed as independent, Abstract Meaning Rep-
resentation (AMR) (Banarescu et al., 2013) adopts
PropBank-style semantic roles but also connects
the different predicates in a sentence in a graph.
Such an AMR graph seeks to represent the mean-
ing of sentences as a single-rooted directed acyclic
graph, where the nodes are labeled with entity or
predicate types, and edges are labeled with seman-
tic roles (e.g., Arg0, Argl) or general semantic
relations (e.g., time, location).

AMR captures the essential predicate-argument
structure of a sentence that is applicable to a vari-
ety of applications as well as to languages such as
Chinese. Extensions to AMR attempt to increase
coverage beyond the sentence, to add additional se-
mantic phenomena, and to increase cross-linguistic
applicability(Gysel et al., 2021). We discuss these
extensions with a focus on the new Uniform Mean-
ing Representation(UMR) approach, which extends
AMR to add coverage of Aspect, Scope, Person and
Number annotation to the sentence level represen-
tation, adds a document-level representation that
captures temporal and modal dependencies as well
as coreference relations that can go beyond sen-
tence boundaries, and which defines conventions
for AMR-style annotation of languages without ex-
isting PropBank lexicons. The discussion of UMR
will provide attendees with an understanding of
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which semantic phenomena are out of scope for
AMR and how projects like UMR address them.

In this tutorial we will provide an in-depth dis-
cussion of these meaning representations. When
doing so, we will also discuss how they are similar
to or different from other meaning representations
such as semantic dependencies (Oepen et al., 2015),
Minimal Recursion Semantics (MRS) (Copestake
et al., 2005), Discourse Representation Theory
(DRT) (Kamp and Reyle, 2013; Bos et al., 2017) ,
and UCCA (Abend and Rappoport, 2013).

The increasing availability of meaning represen-
tation datasets such as PropBank as well as signifi-
cant advances in modeling techniques have led to
increased interest and progress in computational
models for meaning representation parsers. In this
tutorial, we will discuss models for SRL and AMR
tasks. We will start with the traditional SRL mod-
els that rely heavily on syntactic feature templates
(Xue and Palmer, 2004; Pradhan et al., 2005; Zhao
et al., 2009; Akbik and Li, 2016), go on to ad-
vanced neural SRL models (He et al., 2017, 2018),
and include more recent work (Marcheggiani and
Titov, 2020; Fei et al., 2021a,b). For AMR parsing,
we will cover early approaches and SoTA meth-
ods for graph-based methods (Flanigan et al., 2014;
Foland and Martin, 2017; Lyu and Titov, 2018; Cai
and Lam, 2019; Zhang et al., 2019b; Zhou et al.,
2020), transition-based methods (Wang et al., 2015;
Wang and Xue, 2017; Ballesteros and Al-Onaizan,
2017; Fernandez Astudillo et al., 2020; Zhou et al.,
2021), grammar-based methods(Peng et al., 2015;
Artzi et al., 2015; Chen et al., 2018) sequence-to-
sequence methods(Konstas et al., 2017; Xu et al.,
2020), and other methods (Pust et al., 2015; Welch
et al., 2018; Lindemann et al., 2020; Cai and Lam,
2020; Lee et al., 2020; Lam et al., 2021). We will
discuss whole-document AMR parsing (Anikina
etal., 2020; Fu et al., 2021).

There is a wide range of NLP tasks that leverage
meaning representations as an effective way to in-
fuse knowledge into their models for better perfor-
mance and interpretability. For instance, SRL has
been widely used to build better models for infor-
mation extraction, such as open information extrac-
tion (Christensen et al., 2010; Solawetz and Larson,
2021) and event extraction (Zhang et al., 2020a,
2021), opinion mining (Marasovi¢ and Frank, 2018;
Zhang et al., 2019a), machine translation (Bastings
et al., 2017), natural language inference (Zhang
et al., 2020b), and reading comprehension (Guo

et al., 2020). Similarly, AMR has been adopted
for a variety of downstream NLP tasks such as in-
formation extraction (Pan et al., 2015; Garg et al.,
2016; Rao et al., 2017), summarization (Liu et al.,
2015; Liao et al., 2018), machine translation (Song
et al., 2019; Nguyen et al., 2021), question an-
swering (Sachan and Xing, 2016; Mitra and Baral,
2016; Kapanipathi et al., 2021), and dialog (Bonial
et al., 2020; Bai et al., 2021). With the increasing
availability of high-quality meaning representation
parsers, we also see increasing adoption of meaning
representation in wide-range of real-world applica-
tions, from an enterprise-grade contract understand-
ing system (Agarwal et al., 2021) to customizable
targeted sentiment analysis.

2 Tutorial type

We are proposing a 6-hour cutting edge tutorial
to cover in depth on the design, modeling, and
application of meaning representations.

3 Outline of the tutorial

The proposed tutorial is organized as follows:

I. Introduction (15 minutes). We will provide
a high-level overview and evolution of common
meaning representation, discussing key concepts,
unique challenges and examples of applications.
II. Common Meaning Representations (150
minutes) In this section, we will provide an in-
depth review of three common meaning repre-
sentation — PropBank and FrameNet that have
been widely used to train Semantic Role Label-
ing systems, Abstract Meaning Representation, a
sentence-level meaning representation that inherits
PropBank-style semantic roles, and Uniform Mean-
ing Representation, a cross-lingual document-level
meaning representation that to a large extent in-
herits the sentence-level representation of AMR.
We also provide a brief overview of other common
meaning representations as a brief background. We
will also discuss the unique challenges around de-
signing meaning representation. Concretely, we
will organize this section as follows:

e PropBank We start out our discussion with
PropBank-style semantic roles and their the-
oretical underpinnings. In particular, we will
discuss the proto-roles of Dowty (Dowty, 1991).
We will go over the process of developing the
frame files, and how the frame files are used
to annotate each predicate instances in the cor-
pus. We will discuss how to annotate compli-



cated predicates such as phrasal verbs and light
verb constructions, and end with a brief discus-
sion of how PropBank-style semantic roles are
related to FrameNet (Baker et al., 1998) and
VerbNet (Schuler, 2005).

e Abstract Meaning Representation (AMR)
We next discuss different aspects of AMR, and
cover how AMR represents word senses, se-
mantic roles, named entity types, date entity
types, and relations.

e Uniform Meaning Representation (UMR)
Finally we will discuss Uniform Meaning Rep-
resentations, and discuss how UMR builds on
AMR. We will also discuss the cross-lingual
aspect of UMR.

e Other Related Meaning Representations
We will provide a brief overview on other com-
mon meaning representations such as MRS, etc.

e Comparison of Meaning Representations
We will then present a qualitative comparison
of the three meaning representations on their
commonalities and differences.

e Building Meaning Representation Datasets
Finally, we will close this section with discus-
sions on the general approaches, challenges,
and emerging trend in building datasets for
meaning representations.

III. Modeling Meaning Representation (100
minutes) We will next discuss computational mod-
els for SRL and AMR parsing, from early ap-
proaches to current end-to-end SoTA methods. We
will discuss gaps and challenges in building and
evaluating such models. We will also share a quan-
titative comparison study based on SoTA models
and demonstrates how the differences of the mean-
ing representations lead to differences in model
performance on various examples.

IV. Applying Meaning Representation (75 min-
utes) We will share applications of the meaning
representations for a wide range of tasks from in-
formation extraction to question answering. We
will discuss how the differences in these meaning
representations discussed earlier impact the choice
of which one(s) to use for which downstream tasks.
V. Open Questions and Future work (15 min-
utes) We will conclude the tutorial by raising sev-
eral open research questions in this space (e.g., cre-
ating datasets for training and evaluation at scale)
and ways we as a community might work forward
on these issues.

4 Breadth of the tutorial

This tutorial will have three components. The first
component (45%) will introduce core concepts re-
lated to meaning representations, common mean-
ing representations and key challenges in designing
(including scaling to different languages) and devel-
oping those meaning representations. The second
component (30%) will review the state-of-the-art
models for two common meaning representations:
SRL and AMR. It will also provide a quantitative
comparison study of how the differences in mean-
ing representations impact model performance. Fi-
nally, the last component (25%) will show how
real-world applications as well as research projects
leverage meaning representations for better per-
formance and more transparency and how to de-
cide which meaning representation to use based on
downstream tasks.

S Diversity of the team

This tutorial is to be given a team of researchers
from five different institutions across academia and
industry, both junior instructors (including 1 assis-
tant professor, and 2 junior industry researcher) and
researchers with extensive experience in academic
and corporate research settings. The team includes
creators, modelers, and users of common meaning
representations. The team also has a good gender
balance (two female and four male instructors).

6 Target audience and objectives

This tutorial welcomes all stakeholders in the NLP
community, including NLP researchers, domain-
specific practitioners, and students. In this tutorial,
attendees will

e Develop fluency in core concepts of common
meaning representations, state-of-the-art mod-
els for producing these meaning representa-
tions, and potential use cases.

e Gain insights into the practical benefits and
challenges around leveraging meaning repre-
sentations for downstream applications.

e Discuss and reflect on open questions related
to meaning representations.

7 Prerequisites

As stated before, our tutorial presumes no prior
knowledge on the core concepts of meaning repre-
sentation. However, a basic understanding of NLP,



machine learning (especially, deep learning) con-
cepts may be helpful. We intend to introduce the
necessary concepts related to meaning representa-
tion during the introductory section of the tutorial.

8 Reading list

We aim to make the tutorial self-contained, but it
will be helpful if the attendees can get some basic
understanding of this field by going through the
following reading list: PropBank: (Palmer et al.,
2005), AMR: (Banarescu et al., 2013), UMR: (Gy-
sel et al., 2021), SRL models: (Pradhan et al., 2005;
He et al., 2017), and AMR models: (Flanigan et al.,
2014; Lyu and Titov, 2018; Xu et al., 2020).

9 Audience size estimation

We are proposing a cutting edge tutorial on mean-
ing representation. No similar tutorial has been
given in ACL/EMNLP/NAACL/COLING in the
past five years. Since meaning representation is an
important topic in NLP, we expect that this tutorial
will be popular with 50 - 100 attendees.

10 Open Access

We agree to allow the publication of our slides
and video recording of our tutorial in the ACL
Anthology.

11 Technique Equipment

To give this tutorial, we need to have internet ac-
cess and a projector or large screen. No special
requirements needed.

12 Preferred Venue

Due to travel restrictions of our instructors, we
prefer NAACL and ACL over the other venues.

13 Ethics Statement

Infusing meaning representations into NLP models
are shown to be effective in injecting knowledge
into such models. As such, meaning representa-
tions allow deep understanding of languages and
identify more nuanced instances of ethics concerns
(e.g. biases). Furthermore, meaning representa-
tions allow the building of fully interpretable yet
effective models. We hope that this tutorial helps
the audience to develop a deeper appreciation for
such topics and equips them with powerful tools to
mitigate recent concerns that have arisen with NLP
models with regard to explainability and bias.

14 Author biographies

Martha Palmer is the Helen & Hubert Croft Pro-
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Her research is focused on capturing elements of
the meanings of words that can comprise automatic
representations of complex sentences and docu-
ments in many languages. She is a co-Director of
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