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Abstract
We present a new zero-shot dense retrieval (Ze-
roDR) method, COCO-DR, to improve the gen-
eralization ability of dense retrieval by com-
bating the distribution shifts between source
training tasks and target scenarios. To mitigate
the impact of document differences, COCO-
DR continues pretraining the language model
on the target corpora to adapt the model to
target distributions via COtinuous COtrastive
learning. To prepare for unseen target queries,
COCO-DR leverages implicit Distributionally
Robust Optimization (iDRO) to reweight sam-
ples from different source query clusters for im-
proving model robustness over rare queries dur-
ing fine-tuning. COCO-DR achieves superior
average performance on BEIR, the zero-shot re-
trieval benchmark. At BERTBase scale, COCO-
DRBase outperforms other ZeroDR models with
60× larger size. At BERTLarge scale, COCO-
DRLarge outperforms the giant GPT-3 embed-
ding model which has 500× more parame-
ters. Our analysis show the correlation of
COCO-DR’s effectiveness in combating dis-
tribution shifts and improving zero-shot accu-
racy. Our code and model can be found at
https://github.com/OpenMatch/COCO-DR.

1 Introduction

Learning to represent and match queries and
documents by embeddings, dense retrieval (DR)
achieves strong performances in scenarios with
sufficient training signals (Bajaj et al., 2016;
Kwiatkowski et al., 2019). However, in many real
world scenarios, obtaining relevance labels can be
challenging due to the reliance on domain exper-
tise, or even infeasible because of the strict privacy
constraints. Deploying dense retrieval in these sce-
narios becomes zero-shot (ZeroDR, Thakur et al.
(2021)), which requires first training DR models on
source tasks and then generalizing to target tasks
with zero in-domain supervision (Izacard et al.,
2022; Ni et al., 2021; Neelakantan et al., 2022).

∗Work partly done during Yue’s internship at Microsoft.
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Figure 1: The average nDCG@10 of COCO-DR versus
large scale models on the 11 BEIR tasks selected in
Neelakantan et al. (2022). X-axis is in log scale.

ZeroDR poses great challenges to the general-
ization ability of DR models under the distribution
shift between source and target data (Gulrajani and
Lopez-Paz, 2021; Wiles et al., 2022), as it requires
the alignment between queries and their relevant
documents in the embedding space. It is much
harder to generalize than standard classification or
ranking tasks, where a robust decision boundary is
sufficient (Xin et al., 2022).

In this work, we first analyze the distribution
shifts in zero-shot dense retrieval. We illustrate
the significant distribution shifts in both query in-
tent and document language from the source to
target tasks. After that, we show the strong correla-
tion between the distribution shifts and the reduced
zero-shot accuracy of dense retrieval models, which
confirms the negative impact of distribution shifts
on the generalization ability of dense retrieval.

We then present COCO-DR, a ZeroDR model
that combats the distribution shifts between source
and target tasks. In many ZeroDR scenarios, even
though relevancy labels or queries are unavailable,
the target corpus is often available pre-deploy (oth-
erwise there is nothing to index) (Xin et al., 2022;
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Wang et al., 2022). We thus design COCO-DR
to perform COntinuous COntrastive pretraining
(COCO) on the target corpora, which treats two
text sequences from the same document as positive
pairs and sequences from different documents as
negative pairs. This enables COCO-DR to miti-
gate document distribution shifts by improving the
alignment and uniformity of sequence representa-
tions for target tasks.

The distribution shift on the query intent, how-
ever, is more challenging as there only exists a few,
if any, example queries available under ZeroDR sce-
narios. COCO-DR introduces an implicit distribu-
tionally robust optimization (iDRO) method when
fine-tuning on the source retrieval labels. Specifi-
cally, it first clusters the source queries into groups
based on their learned embeddings. Then, it dy-
namically reweights the losses on these query clus-
ters by using the gradient similarity among groups.
This improves model robustness on less represented
query groups in the source, thus implicitly boosts
the generalization ability of the DR model on un-
seen target queries.

COCO-DR is conceptually simple but empiri-
cally powerful. On 18 retrieval tasks included in
BEIR, the standard ZeroDR benchmark (Thakur
et al., 2021), COCO-DR outperforms state-of-the-
art domain adaptation methods (Wang et al., 2022)
which leverage per-task generated pseudo labels
and cross-encoder teachers. COCO-DR also outper-
forms large scale models with orders of magnitude
more parameters. As shown in Figure 1, at only
BERTbase scale with 110M parameters, COCO-
DR outperforms GTRXXL (Ni et al., 2021) and
CPTL (Neelakantan et al., 2022), which use ∼50×
more parameters. At BERTLarge scale, COCO-DR
surpasses CPTXL (Neelakantan et al., 2022), the
largest DR model to date (175B parameters) on its
selected tasks, only using 0.17% of its parameters.

Our analysis confirms that the better generaliza-
tion ability of COCO-DR comes from its ability
to combat the distribution shifts. Continuous con-
trastive learning helps the pretrained model bet-
ter capture target corpora’ sequence representation,
leading to better generalization ability of models
after fine-tuning. Training with iDRO helps COCO-
DR achieve robust performances on source query
clusters that share similar search intents to target
queries, which then lead to better jgeneralization
to corresponding target tasks.

In the rest of this paper, we discuss related work

in Section 2, analyze the distribution shift in Sec-
tion 3, and present COCO-DR in Section 4. Our
experiments are discussed in Section 5 and we con-
clude in Section 6.

2 Related Work

Earlier research has explored various ways to learn
representations for retrieval (Deerwester et al.,
1990; Huang et al., 2013). Recently, with pre-
trained language models (Lee et al., 2019), hard
training negative selection (Karpukhin et al., 2020;
Xiong et al., 2021), and retrieval-oriented pretrain-
ing (Lu et al., 2021; Gao and Callan, 2022), dense
retrieval has shown strong advantages over sparse
retrieval methods, although the advantages are
more observed in supervised settings than zero-
shot scenarios (Thakur et al., 2021).

One research direction to improve zero-shot
dense retrieval is bringing in domain adaption tech-
niques. Xin et al. (2022) employ domain invariant
learning to narrow the representation gap between
source and target domains. Ma et al. (2021) and
Wang et al. (2022) generate pseudo labels for each
target task to train in-domain DR models. These
techniques employ one specially trained retrieval
model for each target task and improve zero-shot
retrieval accuracy.

Another way to improve ZeroDR is to scale up
model size and source training data. Ni et al. (2021)
and Neelakantan et al. (2022) leverage models with
billions of parameters (T5-XXL and GPT-3) and
large-scale training data to increase the generaliza-
tion capacity of DR model. Izacard et al. (2022)
and Xu et al. (2022) enlarge the size of training
data with retrieval-oriented pretraining tasks. As
illustrated in Figure 1, the benefit of scale follows
the scaling law of language models (Kaplan et al.,
2020): A linear increment of zero-shot accuracy re-
quires exponentially more training data and model
parameters.

Combining dense models with sparse retrieval
yields better zero-shot retrieval performances on
BEIR (Formal et al., 2022; Xu et al., 2022). The
reranking models, using stronger cross-encoders,
can be used as teachers to improve the robustness
of dense retrieval models (Wang et al., 2022).

More generally speaking, continuous pretrain-
ing and distributionally robust optimization (DRO)
are two techniques for improving model gener-
alization on other applications. Continuous pre-
training BERT’s masked language modeling tasks
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on target domain corpora have shown benefits on
both language tasks (Gururangan et al., 2020) and
the reranking step of search systems (Wang et al.,
2021b). The benefits of DRO are more ambiva-
lent (Gulrajani and Lopez-Paz, 2021; Wiles et al.,
2022) and are more observed when explicit group
partitions are available (Oren et al., 2019; Sagawa
et al., 2020; Zhou et al., 2021).

3 Distribution Shifts in Dense Retrieval

In this section, we first introduce the preliminaries
of dense retrieval. Then we discuss the standard
zero-shot dense retrieval settings and study the im-
pact of distribution shifts on ZeroDR accuracy.

3.1 Preliminaries on Dense Retrieval
In dense retrieval, the query q and document d are
represented by dense vectors (Huang et al., 2013)
and the relevance score f(q, d; θ) is often calcu-
lated by simple similarity metrics, e.g., dot prod-
uct (Lee et al., 2019):

f(q, d; θ) = ⟨g(q; θ), g(d; θ)⟩ . (1)

Here g(·; θ) denotes the text encoder and θ is the
collection of parameter of g, which is often initial-
ized by BERT (Devlin et al., 2019). The learning
objective for dense retrieval can be expressed as

θ∗ = argmin
θ

ℓ(θ) =

− Eq∼p(·)Ed+∼ppos(q)Ed−∼pneg(q) log pθ
(
d+ | q, d−

)
,

(2)

where p(·) is the distribution of queries, and d+

and d− are sampled from the distribution of pos-
itive and negative document for q (denoted as
ppos(q) and pneg(q)), respectively. In practice, the
negative documents can either be BM25 nega-
tives (Karpukhin et al., 2020) or mined by DR
models from the past episode (Xiong et al., 2021).

During training, we aim to maximize the prob-
ability of selecting the ground-truth document d+

over the negative document d− as

pθ(d
+|q,d−) = exp (f(q, d+; θ))

exp (f(q, d+; θ)) + exp (f(q, d−; θ))
,

(3)

This dense retrieval configuration has shown
strong empirical performances in a wide range of
supervised scenarios, where the training and test-
ing data are drawn from the same distributions,
and a large amount of relevance labels are avail-
able (Karpukhin et al., 2020; Xiong et al., 2021;
Qu et al., 2021).

3.2 ZeroDR and Distribution Shifts

Unlike supervised settings, the empirical advan-
tages of dense retrieval are more ambivalent in
zero-shot scenarios (Thakur et al., 2021). We first
discuss the common setups of ZeroDR and then
investigate the impact of distribution shifts on zero-
shot performance of dense retrieval models.

ZeroDR Task. A retrieval task is considered
zero-shot if no task-specific signal is available. Un-
less in large commercialized scenarios like web
search, zero-shot is often the norm, e.g., when
building search systems for a new application, in
domains where annotations require specific exper-
tise, or in personalized scenarios where each user
has her own corpus.

Besides relevance labels, the availability of in-
domain queries is also a rarity—often only a few
example queries are available. The most accessi-
ble in-domain information is the corpus, which is
a prerequisite to build search systems. Sparse re-
trieval needs to pre-build the inverted index before
serving any query; dense retrieval systems have to
pre-compute the document embeddings.

These properties of zero-shot retrieval lead to a
common ZeroDR setup where models can leverage
the target corpus to perform unsupervised domain
adaptation, but their supervised training signals
only come from the source retrieval task, namely
MS MARCO (Xin et al., 2022; Wang et al., 2022).

In this paper, we follow the standard practice in
recent ZeroDR research, with MS MARCO pas-
sage retrieval (Bajaj et al., 2016) as the source re-
trieval task, the tasks collected in the BEIR bench-
mark (Thakur et al., 2021) as the zero-shot target,
and the corpora of BEIR tasks available at training
time for unsupervised domain adaptation.

Distribution Shifts. Before discussing our Ze-
roDR method, we first study the distribution shifts
between the source training task (MARCO) and
the zero-shot target tasks (BEIR).

Following the analysis in Thakur et al. (2021),
we use pairwise weighted Jaccard similarity (Ioffe,
2010) to quantify the distribution shifts both at the
query side and the document side. The document
distribution shift is measured directly at the lexicon
level, by the similarity of their unigram word dis-
tributions. The query distribution shift is measured
on the distribution of query types, using the nine-
type categorization from Ren et al. (2022) (more
details in Appendix C.1). As shown in (Ren et al.,
2022), search intent types are more representative
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Figure 2: Distribution shifts and zero-shot retrieval performances of ANCE trained on MS MARCO. X-axes are the
similarity between MS MARCO and BEIR. Y-axes are NDCG@10 differences on BEIR.

than lexicon for short queries.
Figure 2 plots the distribution shifts from

MARCO to BEIR tasks and the corresponding per-
formance differences between dense retrieval and
sparse retrieval. We use BM25 as the sparse re-
trieval method and ANCE starting from pretrained
BERT (Xiong et al., 2021) and coCondenser (Gao
and Callan, 2022) as representative DR models.

The average similarity between MS MARCO
and BEIR tasks are 32.4% and 34.6% for queries
and documents, indicating the existence of signif-
icant distribution shifts from MARCO to BEIR.
Furthermore, these shifts are correlated with the
performance degradation of dense retrieval models,
as DR models perform much worse than BM25 on
BEIR tasks that are less similar to MS MARCO.
The contrastive learning on MARCO does not ad-
dress this challenge; ANCE initialized from coCon-
denser still underperforms BM25 on BEIR tasks
where distribution shifts are severe.

4 COCO-DR Method

To combat the distribution shifts from training
source to zero-shot targets, COCO-DR introduces
two training techniques: COntinuous COntrastive
pretraining (COCO) and implicit Distributionally
Robust optimization (iDRO). The first continuously
pretrains the language model on target corpora
to handle document distribution shifts. The latter
improves the model robustness during fine-tuning,
which then lead to better generalization for unseen
target queries. This section describes these two
components in detail.

4.1 Continuous Contrastive Pretraining
Sequence Contrastive Learning (SCL) aims to im-
prove the alignment of similar text sequences in
the pretrained representations and the uniformity of
unrelated text sequences (Meng et al., 2021), which
benefits supervised dense retrieval (Gao and Callan,

2022; Ma et al., 2022). In zero-shot settings, how-
ever, SCL-pretrained models still suffer from the
distribution shifts, as observed in Figure 2.

COCO addresses this challenge via continuously
pretraining the language model on the target cor-
pora, using the contrastive learning settings widely
adopted in recent research (Ni et al., 2021; Gao and
Callan, 2022; Neelakantan et al., 2022).

Specifically, for each document di in target cor-
pora, we randomly extract two disjoint sequences
si,1 and si,2 from di to form the positive pair in:

Lco =
n∑

i=1

ℓ(si,1, si,2)) (4)

=
n∑

i=1

− log
exp(⟨g(si,1), g(si,2)⟩)∑

j=1,2

∑
s−∈B exp(⟨g(si,j), g(s−)⟩)

.

The contrastive loss with sequence representations
g(s) and in batch negatives s− ∈ B.

This contrastive learning is used in combination
with language modeling (Gao and Callan, 2022) to
continuous pretrain on target corpora (Gururangan
et al., 2020). It adapts the language models to tar-
get corpora before fine-tuning on source labels, to
reduce the impact of document distribution shifts.

4.2 Distributionally Robust Optimization
The query distribution shifts are more challenging,
as often target queries are only available, if any, at
a small amount. For example, applying COCO on
a few queries is unlikely useful.

To address this challenge, we exploit the as-
sumption from distributional robust optimization
(DRO): a model trained to be more robust on the
source domain is likely to better generalize to un-
seen data (Sagawa et al., 2020; Wiles et al., 2022).
In addition, as explicit target domain/group infor-
mation is unavailable, we perform implicit DRO
(iDRO) to improve models’ robustness regarding
to source query clusters during fine-tuning.
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iDRO Loss. Specifically, we first cluster source
queries using K-Means (Lloyd, 1982) on their em-
bedding similarities (dot-product) from COCO, and
then optimize the following iDRO loss:

LiDRO(θ) =

K∑

i=1

αiωiℓi(θ), (5)

αi ∝ [ℓi(θ)]
β;β ≥ 0. (6)

It weights the per cluster dense retrieval loss ℓi(θ)
in Eqn. 2 of K total clusters using two parameters.
The first one, αi, up-weights clusters with higher
training loss, with the emphasize on harder clusters
defined by hyperparameter β. The second one ω ∈
RK is learned to maximize the loss decreases on
all clusters, which we derive a closed form solution
in the rest of this section.

Dynamic Cluster Weighting. An ideal choice
of ωt at training step t would provide biggest re-
duction on the training loss of all query clusters,
but is difficult to obtain. To derive a closed form
solution of ωt, we approximate the loss reduction
using first order Taylor expansion:

ℓg =
K∑

i=1

(ℓi(θ − η∇θLiDRO(θ))− ℓi(θ)) (7)

≈ −η

K∑

i=1

K∑

j=1

αiαjω
t
i (∇θℓi(θ))

T∇θℓj(θ). (8)

Eqn. 7 is the loss reduction on all clusters, after a
stochastic gradient descent operation with step size
η. Eqn. 8 is its first order expansion.

In addition, we avoid potential rapid change of
cluster weights for optimization stability, by adding
a KL divergence regularization between ω at differ-
ent steps. This leads to the following optimization
target:

min
ω(t)

ℓg + τDKL(ω
(t)||ω(t−1)), (9)

s.t.
K∑

i=1

ω
(t)
i = 1. (10)

The strength of KL regularization is controlled by
hyperparameter τ . By using Lagrangian multiplier
(details in Appendix E), the optimal weight for
each group ωt∗

i can be calculated as

ωt∗
i =

ω
(t−1)
i exp

(
1
τ

∑K
j=1 rij

)

∑K
i=1 ω

(t−1)
i exp

(
1
τ

∑K
j=1 rij

) ; (11)

rij = [ℓi(θ)ℓj(θ)]
β (∇θℓi(θ))

T∇θℓj(θ). (12)

Intuitively, the optimal solution considers the gradi-
ent and loss similarity between different groups rij .
It favors clusters sharing more ‘common needs’ (Pi-
ratla et al., 2022) with others to improve the model
robustness across all clusters.

COCO and iDRO operate at different training
stages of dense retrieval. COCO continuously pre-
trains the language model to adapt to the target
documents, while iDRO improves the robustness
of dense retrieval in the fine-tuning stage for better
generalization on unseen queries. The two together
forms COCO-DR that aims to improve zero-shot
retrieval accuracy by combating the distribution
shift from both the query and the document side.

5 Experiments

In this section, we first describe our experiment
setups and evaluate COCO-DR. Then we analyze
the efficacy of COCO and iDRO.

5.1 Experimental Setups

Our experiments use the tasks collected in
BEIR (Thakur et al., 2021), a recent standard bench-
mark for zero-shot dense retrieval. The dataset
details are in Appendix A.

Baselines. We consider various baselines, in-
cluding standard sparse and dense retrieval models
on BEIR. We also follow (Wang et al., 2022) to fur-
ther compare COCO-DR with dedicated ZeroDR
approaches based on unsupervised domain adapta-
tion: these models are first pretrained on the target
corpus and then fine-tuned on MS MARCO. We
list the details of baselines in Appendix B.

Implementation Details. For COCO-DR, we
use the same architecture as BERT (Devlin et al.,
2019) and consider both Base and Large size in our
experiments. The architecture of COCO-DRBase is
the same as BERTBase: 12 layer Transformer, 768
hidden size. Similarly, the architecture of COCO-
DRLarge model is the same as BERTLarge, using 24
layer and 1024 hidden size. Our implementation
uses PyTorch (Paszke et al., 2019) with Hugging
Face Transformers (Wolf et al., 2020) and Open-
Match (Liu et al., 2021) codebase.

In COCO stage, we initialize our model with
Condenser (Gao and Callan, 2021), and continu-
ously pretrain the model for 8 epochs (around 200K
steps) on the corpus of BEIR and MS MARCO. We
optimize the model using AdamW (Loshchilov and
Hutter, 2019) with a peak learning rate 1e-4/1e-5
for Base/Large, weight decay 0.01, and linear learn-
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Sparse Dense Late-Inter. COCO-DR (Ours)
BM25 DPR ANCE Contriever GenQ† GPL†,# GTRXL

‡ GTRXXL
‡ CPTL

‡,♯ CPTXL
‡,♯ ColBERT Base Large

Parameters# — 110M 110M 110M 66M*18 66M*18 1.2B 4.8B 6B 175B 110M 110M 335M
MS MARCO 0.228 0.354 0.388 0.407 0.408 — 0.439 0.442 — — 0.401 0.419 0.424
TREC-COVID 0.656 0.575 0.654 0.596 0.619 0.700 0.584 0.501 0.642 0.649 0.677 0.789 0.804
BioASQ 0.465 0.232 0.306 — 0.398 0.442 0.317 0.324 — — 0.474 0.429 0.449
NFCorpus 0.325 0.210 0.237 0.328 0.319 0.345 0.343 0.342 0.380 0.407 0.305 0.355 0.354
NQ 0.329 0.398 0.446 0.498 0.358 0.483 0.559∗ 0.568∗ — — 0.524 0.505 0.547
HotpotQA 0.603 0.371 0.456 0.638 0.534 0.582 0.591 0.599 0.648 0.688 0.593 0.616 0.641
FiQA-2018 0.236 0.274 0.295 0.329 0.308 0.344 0.444 0.467 0.452 0.512 0.317 0.307 0.329
Signal-1M 0.330 0.238 0.249 — 0.281 0.276 0.268 0.273 — — 0.274 0.271 0.285
TREC-NEWS 0.398 0.366 0.382 — 0.396 0.421 0.350 0.346 — — 0.393 0.403 0.432
Robust04 0.408 0.344 0.392 — 0.362 0.437 0.479 0.506 — — 0.391 0.443 0.482
ArguAna 0.414 0.414 0.415 0.446 0.493 0.557 0.531 0.540 0.469 0.435 0.233 0.493 0.515
Touché-2020 0.367 0.208 0.240 0.230 0.182 0.255 0.230 0.256 0.309 0.291 0.202 0.238 0.263
Quora 0.789 0.842 0.852 0.865 0.830 0.836 0.890 0.892 0.677 0.638 0.854 0.867 0.872
DBPedia-entity 0.313 0.236 0.281 0.413 0.328 0.384 0.396 0.408 0.412 0.432 0.392 0.391 0.407
SCIDOCS 0.158 0.107 0.122 0.165 0.143 0.169 0.159 0.161 — — 0.145 0.160 0.178
Fever 0.753 0.589 0.669 0.758 0.669 0.759 0.717 0.740 0.756 0.775 0.771 0.751 0.793
Climate-Fever 0.213 0.176 0.198 0.237 0.175 0.235 0.270 0.267 0.194 0.223 0.184 0.211 0.247
SciFact 0.665 0.475 0.507 0.677 0.644 0.674 0.635 0.662 0.744 0.754 0.671 0.709 0.722
CQADupStack 0.299 0.281 0.296 0.345 0.347 0.357 0.388 0.399 — — 0.350 0.370 0.393
Avg CPT Sub 0.484 0.397 0.437 0.502 0.464 0.516 0.511 0.516 0.517 0.528 0.473 0.521 0.541
Avg 0.428 0.352 0.389 — 0.410 0.459 0.453 0.458 — — 0.431 0.462 0.484

Table 1: nDCG@10 on the BEIR benchmark. The best result for each task is marked bold, and the best result among
fair baselines (using BERT-base or smaller models as the backbone) is underlined. Avg CPT Sub is the average
performance on 11 BEIR tasks used in Neelakantan et al. (2022). ∗: Unfair comparison, NQ is used in training for
GTR. †: Train an independent model for each task. ‡: Larger Model, more training data. #: Use cross-encoders
reranking teachers. ♯: Can only be accessed with paid APIs.

ing rate decay. The model is trained with 8 Nvidia
A100 80GB GPUs and FP16 mixed-precision train-
ing. The batch size for each GPU is set to 200.
Maximum number of tokens per sequence is 128.

The iDRO stage trains on MARCO passage
retrieval with AdamW, 5e-6 learning rate, linear
learning rate schedule, and batch size 64 for each
GPU. Following Xiong et al. (2021), the model is
first trained using BM25 negatives and then on self-
negatives from the DR model. We update the query
clusters with K-Means (K = 50) when refreshing
negative samples. The running time for COCO and
iDRO are around 1.5 days each for COCO-DRBase
and around 3 days for COCO-DRLarge.

Evaluation Details. When evaluating on the
BEIR benchmark, we use sequences of 64 tokens
for the questions and 128 for the documents in
all datasets except TREC-NEWS, Robust04, Sci-
Fact and ArguAna. In particular, we set the doc-
ument length to 256 for TREC-NEWS, Robust04
and SciFact as they have larger document length on
average. For ArguAna, we set both question and
document length to 128 as it has longer queries.

Hyperparameters. The main hyperparameters
in COCO-DR includes the number of groups K,
the temperature parameter τ and the importance
factor β. We keep β = 0.25 in COCO-DR and
study the effect of N and τ in Sec. 5.3.

5.2 Overall Results

Table 1 shows the results on BEIR. Due to space
limits, we only present the strongest baselines—
other reported numbers are directly comparable, if
they follow the standard ZeroDR settings on BEIR.

COCO-DRBase outperforms all previous meth-
ods on the average retrieval accuracy of all BEIR
tasks, with large margin improvements over pre-
vious systems at BERTBase scale. It is also com-
petitive and often better than models with signifi-
cantly more parameters. COCO-DRBase achieves
better average performance than GTRXXL and CPTL

despite only using around 2% of their parame-
ters. With more parameters, COCO-DRLarge out-
performs the giant CPTXL model (175B) by 2.5%,
when evaluated on a subset of 11 datasets used in
their experiment. It is worth noting that CPTXL can
only be accessed with paid APIs. One inference
for 18 BEIR tasks costs around 1.4 million dollars1.
Scaling up models is not the only solution for zero-
shot capacity. Better methodologies to tackle the
distribution shifts can also improve the generaliza-
tion of dense retrieval models, while being much
“greener” (Schwartz et al., 2020).

COCO-DR also outperforms GPL, the strong
domain adaptation model for ZeroDR (Wang et al.,
2022). Note that GPL leverages a query generation
model to produce pseudo relevance labels for each
BEIR task, uses a cross-encoder to filter the pseudo

1The embedding model price ($0.2 per 1k tokens) at
https://openai.com/api/pricing as of Oct. 2022.
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Method (→) COCO-DR Base COCO-DR Large coCondenser Condenser
Dataset (↓) Full -iDRO -COCO Full -iDRO -COCO Base (2022) Base Large Base Large
TREC-COVID 0.789 0.771 0.763 0.804 0.797 0.745 0.715 0.758 0.745 0.728 0.780
BioASQ 0.429 0.424 0.353 0.449 0.450 0.413 0.318 0.341 0.410 0.330 0.381
NFCorpus 0.355 0.354 0.333 0.354 0.353 0.349 0.307 0.326 0.350 0.282 0.317
NQ 0.505 0.503 0.506 0.547 0.536 0.519 0.494 0.503 0.516 0.472 0.492
HotpotQA 0.616 0.610 0.592 0.641 0.644 0.614 0.566 0.584 0.616 0.572 0.591
FiQA-2018 0.307 0.302 0.312 0.329 0.322 0.328 0.285 0.303 0.326 0.254 0.280
Signal-1M 0.271 0.275 0.281 0.285 0.285 0.296 0.274 0.274 0.295 0.266 0.284
TREC-NEWS 0.403 0.398 0.426 0.432 0.426 0.413 0.389 0.400 0.416 0.375 0.423
Robust04 0.443 0.443 0.446 0.482 0.467 0.466 0.399 0.442 0.461 0.385 0.418
ArguAna 0.493 0.479 0.473 0.515 0.513 0.488 0.411 0.460 0.484 0.439 0.469
Touché-2020 0.238 0.238 0.257 0.263 0.258 0.249 0.190 0.240 0.246 0.236 0.244
Quora 0.867 0.868 0.862 0.872 0.869 0.865 0.863 0.860 0.862 0.855 0.852
DBPedia-entity 0.391 0.389 0.382 0.407 0.401 0.388 0.356 0.364 0.386 0.362 0.364
SCIDOCS 0.160 0.161 0.154 0.178 0.176 0.171 0.140 0.150 0.171 0.143 0.161
Fever 0.751 0.757 0.739 0.793 0.783 0.741 0.678 0.751 0.724 0.725 0.736
Climate-Fever 0.211 0.209 0.202 0.247 0.240 0.233 0.184 0.208 0.226 0.206 0.216
SciFact 0.709 0.688 0.615 0.722 0.709 0.696 0.600 0.602 0.686 0.581 0.661
CQADupStack 0.370 0.365 0.349 0.393 0.385 0.367 0.330 0.342 0.363 0.313 0.343
Avg 0.462†,‡,♭,♮ 0.457 0.447 0.484†,‡,♭,♮ 0.478 0.463 0.417 0.440 0.460 0.418 0.445

Table 2: Ablation study of COCO-DR without iDRO (-iDRO) or continuous contrastive (-COCO). Apart from
(2022), all the results are based on our own implementations. Superscripts indicate statistically significant results
with p-value < 0.01 over -iDRO†, -COCO‡, coCondenser♭, Condenser♮.
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Figure 3: Average NDCG@10 on BEIR of COCO-DR
with different hyperparameters. The best baseline is
GPL according to table 1.

labels, and trains one retrieval model for each task.
COCO-DR does not rely on any of these techniques
and uses one single model for all tasks. Its only
modifications are on the model pretraining and fine-
tuning strategies. More detailed comparisons with
other domain adaptation approaches are in Sec. 5.4.

5.3 Ablation Study

We perform two groups of ablations on COCO-
DR’s hyperparameters and components.

Hyperparameters. Figure 3 shows the effect of
two main hyperparameters, K for K-Means clus-
tering and τ for temperatures in iDRO. When K
becomes very large, the performance decreases as
there exist fragmented clusters that are not close
to any target BEIR tasks. As a result, focusing
on these clusters hurts the average performance
on BEIR tasks. When τ is too big, the weight for
each group will be the same. On the contrary, if
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Figure 4: The performance of COCO-DR and its vari-
ants over different training stages on TREC-COVID and
SciFact. Epi-1 stands for the result after BM25 warmup,
and Epi-2,3,4 are results of training with self-negative
(ANCE). More results are in Appendix G.

τ is too small, the model focuses too much on a
few specific groups. Nevertheless, iDRO is robust
and outperforms the best baseline in most studied
hyperparameter regions.

Designed Components. Table 2 shows the per-
formance of COCO-DR variations and the pretrain-
ing baselines. COCO and iDRO improve the av-
erage performance on BEIR datasets by 3.9% and
1.1% relatively. The stronger relative gains from
COCO is expected, as it leverages the available
in-domain corpora, while iDRO is designed for a
harder challenge: to improve model generalization
ability w.r.t. unseen target queries solely using
training signals from the source.

Compared with coCondenser which is pretrained
on MS MARCO only (-COCO) and uses the stan-
dard DR loss during finetuning (-iDRO), each de-
sign individually leads to improvements over a ma-
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Figure 5: Left: The relation between the gain of COCO v.s. the gain on BEIR tasks. Middle: ℓuniform & ℓalign plot for
COCO-DR and its variants on BEIR tasks. Right: The relation between the gain on BEIR tasks v.s. the gain on
nearest MS MARCO groups.

jority of (COCO on 16; iDRO on 14) the 18 tasks
included in BEIR. These two focus on different dis-
tribution shifts and operate at different stages of the
training pipeline. Combining them in COCO-DR
provides the best overall effectiveness.

Figure 4 zooms in the performances of COCO-
DR and its variations on two BEIR tasks, TREC-
COVID and SciFact, at different fine-tuning stages
on the source task. It shows that COCO also helps
stabilize the fine-tuning step on MS MARCO and
reduces the oscillation between different training
iterations. The benefit of iDRO is strong on biomed-
ical tasks as shown in Figure 4, as MS MARCO
indeed has relevent search intents in the BioMed
domain. In Section 5.4 and 5.5, we analyze the
benefits of the two designs in detail.

5.4 Influence of COCO Pretraining
To further understand the benefit of continuous con-
trastive pretraining, we perform three experiments
on it, including: (1) comparison with other unsu-
pervised domain adaptation (UDA) approaches, (2)
the correlations between pretraining and zero-shot,
and (3) the pretrained sequence representations.

Comparison with UDA methods. In Table 3 we
compare COCO-DR with methods besides dense
retrieval on the five domain specific tasks used in
the experimental settings of Wang et al. (2022).1

COCO-DR outperforms all previous approaches,
even those used a reranking model upon first stage
retrieval. The latter previously was viewed as the
“generalization upper bound” since they use strong
cross-encoder models that have access to term-
level matching signals (Wang et al., 2022). Previ-
ous methods that conducted contrastive pretraining

1We omit BioASQ here as Wang et al. (2022) evaluated on
its subset that is not public.

FiQA SciFact TREC- CQAD- Robust04 Avg.Model Covidv2 upStack
Sparse Retrieval
BM25 (2009) 0.239 0.661 0.601 0.315 0.387 0.461
Domain Adaptation Methods
UDALM (2021) 0.233 0.336 0.571 0.246 0.263 0.330
MoDIR (2022) 0.296 0.502 0.660 0.297 — —
Retrieval-Oriented Pretraining
SimCSE (2021) 0.267 0.550 0.683 0.290 0.379 0.434
ICT (2019) 0.270 0.585 0.697 0.313 0.374 0.448
MLM (2019) 0.302 0.600 0.695 0.304 0.388 0.458
TSDAE (2021a) 0.293 0.628 0.761 0.318 0.394 0.479
Condenser (2021) 0.270 0.627 0.654 0.306 0.345 0.440
Condenser (ours) 0.250 0.617 0.732 0.334 0.411 0.469
In-Domain Generated Pseudo Labels
QGen (2021) 0.287 0.638 0.724 0.330 0.381 0.472
GPL (2022)
w/ DistillBERT (2019) 0.328 0.664 0.726 0.345 0.414 0.495
w/ TSDAE (2021a) 0.344 0.689 0.746 0.351 0.430 0.512
Reranking with Cross-Encoders, considered as “upper bound” (2022)
Cross Encoder (MiniLM (2020))
w/ BM25 0.331 0.676 0.712 0.368 0.467 0.511
w/ TSDAE+GPL (2022) 0.364 0.683 0.714 0.381 0.483 0.525
Our Method
COCO-DRBase w/o iDRO 0.302 0.688 0.785 0.365 0.443 0.517
COCO-DRBase 0.307 0.709 0.807 0.370 0.443 0.527†

COCO-DRLarge 0.329 0.722 0.807 0.393 0.482 0.547†

Table 3: Comparison to domain adaptation methods on
the BEIR tasks used in (Wang et al., 2022). † indicates
statistically significant results over the strongest baseline
without using reranking models (GPL w/ TSDAE).

such as ICT (Lee et al., 2019) and SimCSE (Gao
et al., 2021) underperformed simple BM25 in zero-
shot retrieval. These results corroborate the neces-
sity of continuous contrastive learning.

Pretraining versus Zero-Shot. In Figure 5(a)
we plot the reduction of the sequence contrastive
learning loss after using COCO pretraining on
BEIR corpora (versus pretraining only on MARCO
corpus), as well as the corresponding zero-shot im-
provements on each BEIR task. There is a notable
correlation between them. On BioASQ, COCO
reduces contrastive loss by 50% which yields 22%
gains in zero-shot. Note that the pretrained mod-
els are fine-tuned solely on MS MARCO, but they
provide attributable gains in zero-shot afterward.

Pretrained Representations. Following Wang
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Target TREC-COVID Query MS MARCO Nearest Query
does SARS-CoV-2 have any subtypes, and if so what are they? (+0.174) different types of hiv virus (+0.041)
how long can the coronavirus live outside the body (+0.057) how long does hep c live outside body (+0.056)
what are best practices in hospitals and at home in maintaining quarantine? (+0.045) define medical quarantine (+0.055)
is remdesivir an effective treatment for COVID-19 (+0.025) how are antiviral drugs effective in treating infection? (+0.031)
what are the impacts of COVID-19 among African-Americans that differ from the rest
of the U.S. population? (+0.030)

what ethnic group does sickle cell anemia affect (+0.026)

Table 4: Case study: Examples for nearest source queries of a target query in TREC-COVID and their performance
gains after COCO-DR training. The number in brackets denotes the nDCG@10 gain from iDRO.

and Isola (2020), we use alignment and unifor-
mity to illustrate the quality of learned represen-
tations on BEIR corpora (details in Appendix H).
Figure 5(b) plots the results of COCO-DR on BEIR
corpora with different pretraining components, be-
fore finetuning. Without contrastive learning, Con-
denser representations are not well aligned, which
results in degeneration on target tasks. Contrastive
learning on MS MARCO does not capture the se-
quence representations on BEIR, COCO-DR w/o
COCO has low uniformity. COCO-DR provides a
balanced alignment and uniformity which leads to
better generalization (Wang and Isola, 2020).

5.5 Influence of Implicit DRO

The assumption of iDRO is that it improves the
model robustness on rare query clusters in source,
which helps generalize to unseen target. To ver-
ify this, we find MARCO query clusters closest
to queries in each BEIR task (based on average
dot product in COCO-DR embeddings). Then we
plot the improvements of iDRO on BEIR tasks
(zero-shot NDCG@10) and on their closest source
clusters (training loss) in Figure 5(c).

From the figure, we observe the connections be-
tween the two sides: iDRO improved the training
loss on the majority (12 out of 18) of source query
clusters closest to BEIR. Moreover, such improve-
ments have been successfully propagated to the
BEIR tasks, as there exists a clear positive corre-
lations among the performance gain on the MS
MARCO and the corresponding target tasks. In
Table 4, we show example query pairs with this
connection on TREC-COVID to further support
this argument. There are resemblance of the search
intents between the source and target queries. The
improvements of iDRO on the source queries thus
also lead to the gains on unseen queries in BEIR.

6 Conclusion

COCO-DR improves ZeroDR accuracy by com-
bating the distribution shifts using continuous con-

trastive learning and implicit distributionally robust
optimization. COCO helps models better capture
the sequence representations of target corpora in
pretraining. Implicit DRO improves model robust-
ness by reweighting query clusters in fine-tuning.

COCO-DR achieves strong zero-shot perfor-
mance while maintaining a lightweight system with
one unified model for all 18 target tasks. Different
than prior works that scaling up the DR model to
billions of parameters (e.g. CPT-text), we provide
a more efficient and sustainable way to improve
the zero-shot generalization ability. Our analyses
observed clear correlations on COCO-DR’s ability
to mitigate the distribution shifts and to general-
ize. Better ZeroDR accuracy is observed on tasks
where continuous contrastive learning has a lower
pretraining loss, and where iDRO successfully iden-
tifies and improves source query clusters similar to
target queries.

Limitations

In this work, we propose COCO-DR to combat the
distribution shift issue for zero-shot dense retrieval.
Despite the strong performance of our two key de-
signs (COCO and iDRO), we mainly verify their
efficacy from their empirical performance on BEIR
tasks. More theoretical analyses are required to
gain deeper understandings of these two designs.
For COCO, more powerful tools are needed to es-
tablish the connection between contrastive pretrain-
ing and the performance on ZeroDR target tasks.
For iDRO, the key assumption is that the robustness
over rare query clusters will lead to better zero-shot
performance on target out-of-domain tasks. How-
ever, there are no theoretical groundings to connect
these two terms for DR models. These analyses
will go beyond our empirical observations and re-
veal the true inner workings of COCO-DR.
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A Datasets Details

Target domain datasets used in our experiments are
collected in the BEIR benchmark (Thakur et al.,
2021)1 and include the following domains:

• Bio-Medical Information Retrieval: TREC-
COVID (Voorhees et al., 2021), NFCor-
pus (Boteva et al., 2016), and BioASQ (Tsat-
saronis et al., 2015).

• Open-domain Question Answering (QA): Hot-
potQA (Yang et al., 2018), NQ (Kwiatkowski
et al., 2019), and FiQA (Maia et al., 2018).

• Argument Retrieval: Webis-Touché2020 (Bon-
darenko et al., 2020) and ArguAna (Wachsmuth
et al., 2018).

• News Retrieval: TREC-NEWS (Soboroff et al.,
2018) and Robust04 (Voorhees et al., 2004).

• Tweet Retrieval: Signal-1m (Suarez et al., 2018).

• Duplicate Question Retrieval: Quora (Thakur
et al., 2021) and CQADupStack (Hoogeveen
et al., 2015).

• Entity Retrieval: DBPedia (Hasibi et al., 2017)

• Citation Prediction: SCIDOCS (Cohan et al.,
2020)

• Fact Checking: SciFact (Wadden et al., 2020),
FEVER (Thorne et al., 2018), and Climate-
FEVER (Diggelmann et al., 2020)

We list the statistics of the BEIR benchmark in
Table 5.

Metric To measure the effectiveness of search
algorithms or retrieval models, the benchmark
uses Normalized Discounted Cumulative Gain
(nDCG@10) (Wang et al., 2013) as the evaluation
metric. The higher value indicates better perfor-
mance.

B Baselines

We use the baselines from the current BEIR leader-
board (Thakur et al., 2021) and recent papers. For
the main experiments, the baselines can be divided
into four groups: dense retrieval, dense retrieval

1https://github.com/beir-cellar/beir

with generated queries2, lexical retrieval, and late
interaction.

B.1 Baselines for Main Experiments
Dense Retrieval For dense retrieval, the base-
lines are the same dual-tower model as ours.
We consider DPR (Karpukhin et al., 2020),
ANCE (Xiong et al., 2021), Contriever (Izac-
ard et al., 2022), and two recently-proposed giant
model, namely GTR (Ni et al., 2021) and CPT-
text (Neelakantan et al., 2022) in this paper.

• DPR uses a single BM25 retrieval example and
in-batch examples as hard negative examples to
train the model. Different from the original pa-
per (Thakur et al., 2021) that train the DPR on
QA datasets, we train DPR on MS MARCO (Ba-
jaj et al., 2016) Dataset for fair comparison. No-
tice that this also lead to better results according
to Xin et al. (2022).

• ANCE constructs hard negative examples from
an ANN index of the corpus. The hard nega-
tive training instances are updated in parallel dur-
ing fine-tuning of the model. The model is a
RoBERTa (Liu et al., 2019) model trained on MS
MARCO for 600k steps.

• Contriever conducts unsupervised contrastive
pretraining with data augmentations and momen-
tum queues on Wikipedia and CC-Net (Wenzek
et al., 2020) corpora for 500k steps.

• GTR initializes the dual encoders from the T5
models (Raffel et al., 2019). It is first pre-trained
on Community QA3 with 2 billion question-
answer pairs then fine-tuned on NQ and MS
Marco dataset.

• CPT-text initializes with the large GPT mod-
els (Brown et al., 2020), and pre-trained on web-
scale Internet data with neighboring pieces of
text as positive pairs for the contrastive objective.

Dense Retrieval with Generated Queries

• GenQ first fine-tunes a T5-base (Raffel et al.,
2019) model on MS MARCO for 2 epochs and
then generate 5 queries for each passage as ad-
ditional training data for the target domain to

2We separate them from dense retrieval since they usually
rely on Seq2seq models to generate pseudo query-document
pairs, and they train a model for each dataset independently
instead of using a single model for all datasets.

3Unfortunately, this corpus is not publicly available.
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Split (→) Train Dev Test Avg. Word Lengths

Task (↓) Domain (↓) Dataset (↓) Title Relevancy #Pairs #Query #Query #Corpus Avg. D / Q Query Document

Passage-Retrieval Misc. MS MARCO ✗ Binary 532,761 —- 6,980 8,841,823 1.1 5.96 55.98

Bio-Medical Bio-Medical TREC-COVID ✓ 3-level —- —- 50 171,332 493.5 10.60 160.77
Information Bio-Medical NFCorpus ✓ 3-level 110,575 324 323 3,633 38.2 3.30 232.26
Retrieval (IR) Bio-Medical BioASQ ✓ Binary 32,916 —- 500 14,914,602 4.7 8.05 202.61

Question Wikipedia NQ ✓ Binary 132,803 —- 3,452 2,681,468 1.2 9.16 78.88
Answering Wikipedia HotpotQA ✓ Binary 170,000 5,447 7,405 5,233,329 2.0 17.61 46.30
(QA) Finance FiQA-2018 ✗ Binary 14,166 500 648 57,638 2.6 10.77 132.32

Tweet-Retrieval Twitter Signal-1M (RT) ✗ 3-level —- —- 97 2,866,316 19.6 9.30 13.93

News News TREC-NEWS ✓ 5-level —- —- 57 594,977 19.6 11.14 634.79
Retrieval News Robust04 ✗ 3-level —- —- 249 528,155 69.9 15.27 466.40

Argument Misc. ArguAna ✓ Binary —- —- 1,406 8,674 1.0 192.98 166.80
Retrieval Misc. Touché-2020 ✓ 3-level —- —- 49 382,545 19.0 6.55 292.37

Duplicate-Question StackEx. CQADupStack ✓ Binary —- —- 13,145 457,199 1.4 8.59 129.09
Retrieval Quora Quora ✗ Binary —- 5,000 10,000 522,931 1.6 9.53 11.44

Entity-Retrieval Wikipedia DBPedia ✓ 3-level —- 67 400 4,635,922 38.2 5.39 49.68

Citation-Prediction Scientific SCIDOCS ✓ Binary —- —- 1,000 25,657 4.9 9.38 176.19

Wikipedia FEVER ✓ Binary 140,085 6,666 6,666 5,416,568 1.2 8.13 84.76
Fact Checking Wikipedia Climate-FEVER ✓ Binary —- —- 1,535 5,416,593 3.0 20.13 84.76

Scientific SciFact ✓ Binary 920 —- 300 5,183 1.1 12.37 213.63

Table 5: Statistics of datasets in the BEIR benchmark. The table is taken from the original BEIR benchmark
paper (Thakur et al., 2021).

continue to fine-tune the TAS-B (Hofstätter et al.,
2021) model.

• GPL is a recent work that improve the per-
forance of GenQ with cross-encoder rerank-
ing. It first generates queries for documents
from the target domain, then use an additional
cross-encoder (Wang et al., 2020) to rank each
(query, document)-pair and then train a dense re-
trieval model on these generated, pseudo-labeled
queries1.

Lexical Retrieval Lexical retrieval is a score
function for token matching calculated between
two high-dimensional sparse vectors with token
weights.

• BM25 (Robertson et al., 2009) is the most com-
monly used lexical retrieval function. We use the
BM25 results reported in Thakur et al. (2021) for
comparison.

Late Interaction We also consider a late inter-
action baseline, namely ColBERT (Khattab and
Zaharia, 2020). The model computes multiple con-
textualized embeddings for each token of queries
and documents, and then uses a maximum similar-
ity function to retrieve relevant documents. This
type of matching requires significantly more disk
space for indexes and has a higher latency.

1In the original paper, they have tried on multiple
backbones including DistillBERT (Sanh et al., 2019), TS-
DAE (Wang et al., 2021a), TAS-B (Hofstätter et al., 2021) for
evaluations, and we select the best model that based on TAS-B
for comparison in our main experiments.

B.2 Additional Domain Adaptation Baselines
We further compare COCO-DR with additional
baselines focus on domain adaptation to special-
ized domains including UDALM (Karouzos et al.,
2021), MoDIR (Xin et al., 2022), SimCSE (Gao
et al., 2021), ICT (Lee et al., 2019), MLM (Liu
et al., 2019), TSDAE (Wang et al., 2021a), and
Condenser (Gao and Callan, 2021). Note that
these models are first pre-trained on the target
corpus and then fine-tuned on the MS MARCO
dataset.

• UDALM is a domain adaptation method that
originally designed for sentiment analysis. It
applies the multi-task training to jointly learn
from the target task and the MLM task.

• MoDIR is a momentum-based method to ensure
stable and efficient adversarial learning for do-
main adaptation.

• SimCSE is a simple approach proposed for sen-
tence similarity calculation. Specifically, it re-
gards the document text twice with different
dropout as the positive sample pairs to enable
contrastive learning.

• ICT selects one sentence from a whole document
as the pseudo query to that document for pre-
training.

• MLM random masks 15% tokens in a text and de-
signs a cloze-style test for pre-training the model.

• TSDAE leverages an additional denoising au-
toencoder to pre-train the dense retriever model
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Dataset (↓) Query Intent Document Lexical ANCE (BERTBase) ANCE (coCondenser)
Similarity Similarity v.s. BM25 v.s. BM25

TREC-COVID 0.4845 0.2789 -0.002 +0.102
BioASQ 0.4380 0.2806 -0.159 -0.124
NFCorpus 0.2367 0.2426 -0.088 +0.001
NQ 0.5127 0.5092 +0.117 +0.174
HotpotQA 0.5078 0.3275 -0.147 -0.019
FiQA-2018 0.4950 0.3721 +0.059 +0.067
Signal-1M 0.1708 0.3334 -0.081 -0.056
TREC-NEWS 0.2280 0.4194 -0.016 +0.002
Robust04 0.6656 0.4323 -0.016 +0.008
ArguAna 0.1690 0.3421 +0.001 +0.046
Touché-2020 0.0391 0.3785 -0.127 -0.127
Quora 0.5629 0.4141 +0.063 +0.071
DBPedia-entity 0.2235 0.3189 -0.032 +0.051
SCIDOCS 0.1636 0.2945 -0.036 -0.008
Fever 0.1621 0.3689 -0.084 -0.002
Climate-Fever 0.1732 0.3689 -0.015 -0.014
SciFact 0.1809 0.2335 -0.158 -0.092
CQADupStack 0.4254 0.3196 -0.003 +0.043

Table 6: Detailed statistics for (1) query intent similarity and document lexical similarity between MS MARCO
and BEIR tasks (2) the performance gap between ANCE starting from BERTbase and coCondenser and BM25. The
positive value indicates ANCE performs better than BM25.

with 60% random tokens deleted in the input
document.

• Condenser improves the representation of [CLS]
token by enforcing it to aggregate with the token
embedding. In this way, the head model can then
condition on late [CLS] to make LM predictions
to enforce [CLS] to capture the global meaning
of the input text.

C Details for Similarity Calculation

In this section, we provide more details on how to
calculate the distribution shifts between the source
training task (MS MARCO) and the zero-shot
target tasks (BEIR). We first define the types of
queries used in Section 3.2, and then give more de-
tails about the calculation of the weighted Jaccard
similarity (Ioffe, 2010) used in this study.

C.1 Types of Queries

We adopt the same method as (Ren et al., 2022)
to partition the training queries into 9 types:
for queries starting with the following 7 words,
’what’, ‘when’, ‘who’, ‘how’, ‘where’, ‘why’,
‘which’, they fall into the corresponding cate-
gory. Besides, queries starting with the first word
is/was/are/were/do/does/did/have/has/had/
should/can/could/would/am/small’, are clas-
sified as Y/N queries. The rest of the queries
belong to declarative queries.

C.2 Calculation of Weighted Jaccard
Similarity

We follow (Thakur et al., 2021) to use the weighted
Jaccard similarity J(S, T ) to measure the unique
word overlap for all words present in the source
dataset S and the target dataset T .

Denote Sk as the frequency of word k in the
source dataset S and Tk for the target dataset
T respectively. The weighted Jaccard similarity
J(S, T ) between S and T is defined as:

J(S, T ) =

∑
k min (Sk, Tk)∑
k max (Sk, Tk)

, (13)

where the sum is over all unique words k present
in dataset S and T .

D Statistics for Query and Document
Similarities

Table 6 lists the exact pairwise weighted Jaccard
similarity between MS MARCO and different
BEIR tasks. For tasks comes from biomedical do-
mains (e.g. BioASQ, NFCorpus) and scientific do-
mains (e.g. SCIDOCS, SciFact), the lexical overlap
between them and MS MARCO is small. For these
datasets, ANCE can hardly outperform BM25. On
the other hand, for those tasks which ANCE outper-
forms BM25 by a wide margin (e.g. NQ, Quora),
they tend to have a larger weighted Jaccard similar-
ity score with MS MARCO.
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E Details of iDRO

This section exhibits the details for deriving the
optimal weight ω(t) for the training step t. Note
that the overall objective can be expressed as

min
ω(t)

ℓg + τDKL(ω
(t)||ω(t−1)), (14)

s.t.
K∑

i=1

ω
(t)
i = 1, (15)

where τ is the temperature to control the strength
of the regularization. Then, the KKT conditions
can be expressed as

L = −
K∑

i=1

K∑

j=1

ωiαiαj (∇θℓi(θ))
T∇θℓj(θ) (16)

+ τ
K∑

i=1

(
log

(
ω(t)

ω(t−1)

)
− 1

)
(17)

+ γ

(
K∑

i=1

ω
(t)
i − 1

)
(18)

Setting the corresponding gradients to 0 gives the
global optimum as

∂L
∂ω

(t)
i

= −
K∑

j=1

rij + τ log

(
ω(t)

ω(t−1)

)
+ γ̂ = 0; (19)

K∑

i=1

ω
(t)
i = 1, (20)

where

rij =

K∑

i=1

αiαj (∇θℓi(θ))
T∇θℓj(θ),

γ̂ = γ + τ.

From the above Eqn. 19, we have

ω
(t)
i = ω

(t−1)
i exp


1

τ




K∑

j=1

rij − γ̂




 . (21)

By plugging the Eqn. 21 to Eqn. 20, we obtain

exp

(
γ̂

τ

)
=

K∑

i=1

exp

(
1

τ

K∑

i=1

ω
(t−1)
i rij

)
. (22)

Finally, by combining the Eqn. 21 and Eqn. 22, the
weight for i-th group can be expressed as

ωt∗
i =

ω
(t−1)
i exp

(
1
τ

∑K
j=1 rij

)

∑K
i=1 ω

(t−1)
i exp

(
1
τ

∑K
j=1 rij

) . (23)

Dataset (↓) COCO-DR GroupDRO (2020)
TREC-COVID 0.789 0.793
BioASQ 0.429 0.411
NFCorpus 0.355 0.352
NQ 0.505 0.494
HotpotQA 0.616 0.609
FiQA-2018 0.307 0.300
Signal-1M 0.271 0.274
TREC-NEWS 0.403 0.408
Robust04 0.443 0.438
ArguAna 0.493 0.493
Touché-2020 0.238 0.243
Quora 0.867 0.866
DBPedia-entity 0.391 0.390
SCIDOCS 0.160 0.162
Fever 0.751 0.746
Climate-Fever 0.211 0.211
SciFact 0.709 0.712
CQADupStack 0.370 0.367
Avg 0.462 0.459

Table 7: Comparision between iDRO and Group-
DRO (Sagawa et al., 2020). COCO-DR achieves better
performance on the majority of BEIR tasks.

F Comparision with GroupDRO

We further compare iDRO with Group-
DRO (Sagawa et al., 2020), which assigns
higher weights to groups with higher training
loss. Note that GroupDRO requires gold labels
for group assignments which is unavailable for
ZeroDR. To adopt GroupDRO in our settings, we
use the cluster information derived from K-means
clustering as group labels, which is the same as
(Sohoni et al., 2020). To ensure fair comparison,
we use the model after COCO pretraining as
initialization, and use GroupDRO to reweight
different groups during fine-tuning the model on
MS MARCO.

Table 7 shows the performance of GroupDRO
on BEIR tasks. From the results, we find that al-
though GroupDRO achieves better performance on
some specific tasks (e.g. TREC-COVID and Sci-
Fact), it fails to perform well on the majority of
tasks, especially for general-domain datasets such
as NQ, HotpotQA and Fever. This is because dur-
ing GroupDRO training, it assigns higher weights
for large-loss groups while neglecting other groups.
As a result, although it will lead to better worse-
group performance, it cannot improve the average
performance. In contrast, iDRO leverages gradi-
ent similarities to dynamically reweight different
groups to avoid sacrificing the average performance
on all tasks.
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Figure 6: The performance of COCO-DR and its variants over different training stages on 6 of BEIR tasks.

G Performance on Different Training
Stages of COCO-DR

Figure 6 exhibits the performance on different
episodes on six BEIR tasks from different domains,
used in (Wang et al., 2022). From the results,
we observe that COCO is more beneficial for the
biomedical domains than others such as news and
finance. The more significant gain is mainly due
to the limited overlap between biomedical corpus
and MS MARCO, as well as the extremely large
size of the biomedical corpora. For other two
tasks (Robust04 and FiQA-2018), the DR models
can already achieve better or comparable perfor-
mance compared with BM25 when finetuning on
MS MARCO only, which indicates the distribution
shift issue is not severe on these datasets. There-
fore, the relative gain of COCO on them is smaller.

For the iDRO part, it provides additional perfor-
mance gains on 5 of 6 datasets. As these datasets
are all domain specific text retrieval tasks (Wang
et al., 2022), the results justify the benefits of iDRO
for improving the DR model’s performance on un-
seen target queries.

H Calculation of Alignment and
Uniformity

Recently, Wang and Isola (2020) propose two
terms, namely alignment and uniformity to mea-

sure the quality of representations. In particular,
we denote the whole data distribution as pdata and
the distribution of positive pairs as ppos. Then, the
two metrics can be calculated as

ℓalign ≜ E(x,x+)∼ppos∥f(x)− f(x+)∥2, (24)

ℓuniform ≜ logE
(x,y)

i.i.d.∼ pdata
e−2∥f(x)−f(y)∥2 . (25)

Notably, alignment is the expected distance be-
tween the representations of positive text pairs, and
uniformity measures how well the text representa-
tions are uniformly distributed (Gao et al., 2021).
In our experiments, we use the code released by
the original authors to calculate these two metrics.1

1Link: https://github.com/SsnL/align_uniform
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