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Abstract

A common practice for text retrieval is to use
an encoder to map the documents and the query
to a common vector space and perform a near-
est neighbor search (NNS); multi-hop retrieval
also often adopts the same paradigm, usually
with a modification of iteratively reformulating
the query vector so that it can retrieve different
documents at each hop. However, such a bi-
encoder approach has limitations in multi-hop
settings; (1) the reformulated query gets longer
as the number of hops increases, which further
tightens the embedding bottleneck of the query
vector, and (2) it is prone to error propagation.
In this paper, we focus on alleviating these lim-
itations in multi-hop settings by formulating
the problem in a fully generative way. We pro-
pose an encoder-decoder model that performs
multi-hop retrieval by simply generating the
entire text sequences of the retrieval targets,
which means the query and the documents in-
teract in the language model’s parametric space
rather than L2 or inner product space as in the
bi-encoder approach. Our approach, Genera-
tive Multi-hop Retrieval (GMR), consistently
achieves comparable or higher performance
than bi-encoder models in five datasets while
demonstrating superior GPU memory and stor-
age footprint.'

1 Introduction

Finding the relevant knowledge from a massive
collection of information is often formulated as a
text retrieval problem. A large portion of the text
retrieval literature focuses on finding the single
most relevant paragraph or document (i.e., no hop)
to the given query (Karpukhin et al., 2020; Chen
et al., 2017). When we cannot answer a query with
a single document, the task is often formulated as
a multi-hop retrieval problem, where one needs to
retrieve multiple documents that together provide

Thttps://github.com/amy-hyunji/Generative-Multihop-
Retrieval

sufficient evidence to answer the query (Yang et al.,
2018; Joshi et al., 2017; Dalvi et al., 2021). For
example, to answer the question “Where did the
form of music played by Die Rhoner Sduwintzt
originate?” (Figure 1), we first need to retrieve the
Sform of music played by Die Rhoner Sduwéntzt and
then where the form originated from.

No-hop and multi-hop retrieval tasks are often
approached by encoding both the query and re-
trieval sequences to a common vector space and
then finding the sequence whose embedding is clos-
est to the query. This bi-encoder approach for re-
trieval is often considered as a de facto standard;
heavy computations such as extracting the dense
embeddings of the items in the corpus can be done
offline, and one can search over a large number of
items with low latency through the nearest neighbor
search (NNS) or maximum inner product search
(MIPS) (Lewis et al., 2020; Chen et al., 2020; Wu
et al., 2020; Roller et al., 2021). While such a bi-
encoder approach performs well on many retrieval
tasks, it has also shown to suffer from information
loss when encoding a long query or document into
a fixed-size embedding (Luan et al., 2021; Izacard
et al., 2020). The problem becomes even more crit-
ical in multi-hop retrieval as previously retrieved
items are appended to the query while iterating
through multiple hops. The augmented query gets
longer as the number of hops increases; therefore,
the query embedding gradually becomes incapable
of containing the entire information.

In this paper, we argue that a fully generative ap-
proach to multi-hop retrieval may be the solution;
it overcomes the bottleneck problem by interact-
ing in the whole parametric space of the model
trained on the target corpus during the retrieval pro-
cess, rather than operating on L2 or inner product
space as in bi-encoder approach (Figure 1). We
propose Generative Multi-hop Retrieval (GMR),
an encoder-decoder model that attempts to mem-
orize the entire target corpus in a generative man-
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Figure 1: The figure shows the difference between bi-encoder and Generative Multi-hop Retrieval (GMR) for multi-hop retrieval.
In the first hop retrieval of GMR, to generate the second token, Rhdner, it finds the potential next tokens ([Rhoner, Mille]) by
searching through the prefix tree with the previously generated tokens. We mask out tokens that are not in the potential next
tokens and find the token with the maximum score from unmasked tokens, which in this example is Sduwdntzt. Finally, when it
retrieves the <EOS> token, the generation ends, and the generated output is the retrieval sequence of the query. In the second
hop retrieval, the concatenation of the query and the previously retrieved sequence is the input query for both approaches.

ner and retrieves the most relevant sequence from
the corpus by generating the entire sequence with
the aid of constrained decoding. We also propose
memorization methods (LM and multi-hop memo-
rization) to encourage GMR to memorize the target
corpus. Earlier work in generative retrieval (Tay
et al., 2022; Cao et al., 2021; Bevilacqua et al.,
2022) performs retrieval by generating the entity or
the document id that represents the target paragraph
or document; GMR instead generates the entire text
of the target paragraph, which we believe is more
suitable for multi-hop retrieval that requires mod-
eling the interaction between longer queries and
more fine-grained text segments.
The main contributions of our paper are that:

* We show the limitations of bi-encoder retrieval
in multi-hop retrieval tasks: its performance
decreases as the number of hops increases and
is vulnerable to error propagation.

We show that Generative Multi-hop Retrieval
(GMR) is robust in solving multi-hop retrieval
tasks, performing higher or comparable on five
datasets. It is especially strong in multi-hop
retrieval settings close to real-world scenarios
and datasets with a low unseen rate.

We introduce multi-hop memorization which
effectively memorizes the target corpus and
improves the performance of GMR.

Given that generative retrieval shows high perfor-
mance with high storage efficiency in multi-hop re-
trieval task compared to the traditional bi-encoder

approach, we suggest that generative retrieval has
the potential to be a practical alternative for not
only the no-hop text retrieval tasks, as shown in
Tay et al. (2022); Bevilacqua et al. (2022), but also
for multi-hop retrieval tasks as explored in this
work.

2 Related Work

Multi-hop Retrieval Multi-hop retrieval, which
answers a query by integrating multiple documents,
is often necessary to solve complex queries; it is
an active area of research due to its importance.
There has been a line of previous works in multi-
hop retrieval with non-textual metadata such as
knowledge bases, Wikipedia hyperlinks, or entity
linking which leverage such metadata to solve the
tasks (Asai et al., 2020; Nie et al., 2019; Zhao,
2020; Dhingra et al., 2020). However, they are not
expandable to cases where such metadata does not
exist. Another line of research focuses on expand-
ing the bi-encoder architecture which has shown
high performance on no-hop retrieval to multi-hop
retrieval (Xiong et al., 2021; Zhao et al., 2021).
While such methods have shown good performance,
previous studies (Luan et al., 2021; Izacard et al.,
2020) show that bi-encoder approach suffers from
information loss when condensing text into a fixed-
size vector. Since the input text gets longer as the
number of hops increases in multi-hop retrieval, it
is highly likely for the bi-encoder to fall into the
bottleneck problem when the number of hops is
large. Therefore, to overcome such limitations, it is
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worth exploring the changes in the fundamental ap-
proach; our work suggests that a generative method
can be an effective alternative to the bi-encoder ap-
proach for multi-hop retrieval tasks.

Generative Retrieval Cao et al. (2021) first pro-
pose a generative retrieval model, which achieves
comparable or higher performances on entity re-
trieval tasks compared to bi-encoder models. More-
over, concurrent works DSI (Tay et al., 2022)
and SEAL (Bevilacqua et al., 2022) show gen-
erative retrieval methods in no-hop retrieval set-
tings. DSI (Differentiable Search Engine) gener-
ates structured identifiers of each corpus and shows
higher performance than the bi-encoder approach
in the NQ dataset. SEAL (Search Engines with
Autoregressive LMs) retrieves an item (paragraph
or document) by finding an item containing gen-
erated ngram using FM index. It tests on NQ and
KILT benchmarks and shows that the generative
retrieval model can even outperform well-designed
bi-encoder models such as DPR (Karpukhin et al.,
2020) and GAR (Mao et al., 2021)?. To see the
effectiveness of explicitly generating the entire re-
trieval sequence, we compare GMR with our re-
implementation of DSI® which we expand to a
multi-hop retrieval setting for fair comparison.

3 Generative Multi-hop Retrieval

Multi-hop retrieval is a task of retrieving a set of
sequences (e.g., sentences or paragraphs) from a tar-
get corpus D given a query x. It is often approached
by iterating through multiple hops where the previ-
ously retrieved sequences are appended to the query
and form an augmented query to model the rela-
tionship between the target sequences (Asai et al.,
2020; Xiong et al., 2021; Khattab et al., 2021; Qi
et al., 2021). In this paper, we focus on multi-hop
retrieval tasks that resemble a real-world scenario:
the oracle number of hops and the correct order of
retrieval sequences are not given for each query at
the inference time, and the number of oracle hops
varies in a wide range.

Canonical text retrieval can be formulated as re-
trieving a sequence dy = argmax ., P(d|x), where
x is the query, d is a retrieval sequence in the tar-
get corpus D, and y is the index of retrieved se-
quence in D. The retrieval is considered success-
ful if dy = d, where dy is the ground truth tar-

ZNote that SEAL and GENRE perform multi-hop QA
datasets in no-hop retrieval setting.

3We re-implement DSI as the source code is not released
(Appendix C.1.4).

get. On the other hand, multi-hop retrieval aims
on finding a ser of sequences retrieved through &
hops, %5 = {ds,,--- ,dy, }, given the query. Here,
dy, is the sequence retrieved at the i-th hop, dj, =
argmaxy.p P(d|x,ds_,), where x is the query and
dy_, is sequences retrieved at previous hops. As the
canonical text retrieval of a bi-encoder approach is
modeled as argmax ;. P(d|x) o< argmax ;. p F (d)-
G(x), which is the inner product between the query
vector from an encoder G and the retrieval sequence
vector from an encoder F, its extension to multi-
hop is defined as P(d|x,d;_,) < F(d)-G(x,d;_,). As
the number of hops increases, the augmented query
(x,ds_,) gets longer, and it increases the burden of
query encoder G to encode the long augmented
query into a fixed-size vector. We investigate that
such a burden on the query encoder worsens the
bottleneck problem of the bi-encoder model and
that such models are vulnerable to error propaga-
tion (Section 5.2).

To alleviate such limitations of the bi-encoder
approach in a multi-hop setting, we formulate the
problem in a fully generative way; the generative
approach can interact in the whole parametric space
of the model trained on the target corpus during the
retrieval process rather than operating only on L2 or
inner product space as in bi-encoder approach. We
propose Generative Multi-hop Retrieval (GMR),
an encoder-decoder model that retrieves the most
relevant sequence at each hop from the target cor-
pus by generating the sequence using constrained
decoding as in the right side of Figure 1. The gen-
eration goes over multiple hops to retrieve a set
of sequences. In training time, the objective is to
maximize:

P((dyw'” 7d}‘n)’x) o< HP(dy,‘ ’xvdyq) (1)
i=1

n ‘d\,‘

=T1T1P@) 1x.dy..ds ") @)

i=1j=1

to generate the tokens d(l.j )
text to retrieve dy, at retrieval hops i =1, ,n,

when the query x and the ground truth target se-
quences of the previous hops dy_; are given as an
input to the encoder and all tokens up to the pre-

of the ground trutal

vious step at the current hop (dy(fj )) are given as
the input to the decoder. In inference time, GMR

4While multi-hop retrieval targets to retrieve a set of se-
quences, it is oftentimes difficult to train over all possible
permutations of the set. Therefore, most previous works as-
sume the order heuristically and train the model.
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decides the sequence to retrieve by P(d|x,d;_,) o<
¢, PdW)]x,ds.,,d <), ie. the probability of
generating the token d (/) conditioned on the query
x, text sequences dy_,; retrieved until the i-th hop,
and the tokens d(</) previously generated at the
current hop. To ensure that the generated sequence
is in the corpus, we build a prefix tree and per-
form constrained decoding with the tree (Cao et al.,
2021)°.

Since GMR generates a sequence in a uni-
directional way (left to right) during the retrieval
process, it cannot know the information at the end
of a sequence in advance if the model has not been
previously trained to generate the sequence. How-
ever, the training set for the target multi-hop re-
trieval task may not cover all the sequences in the
corpus. This may negatively affect the performance,
especially when the length of the sequence is long
and the training set does not contain enough se-
quences in the target corpus. To alleviate the issue,
we propose LM memorization and multi-hop mem-
orization, two corpus memorization methods that
aim to store the target corpus in the parameters. By
training GMR with the methods, it is able to lever-
age the memorized information in the parameters
on multi-hop retrieval tasks (Appendix A).

LM memorization LM (Language Modeling)
memorization is an intermediate task applied be-
fore training on a multi-hop retrieval task. During
LM memorization, GMR is trained on the texts in
the corpus using the standard LM objective func-
tion: when a corpus D with texts d (d € D) is given,
the model learns to maximize the LM probabil-
ity P(d) = [T, P(d7)|d(<)) for all d in D. By
training the retrieval task on top of the parameters
trained on LM memorization, the model is able to
be aware of the contents at the end of the sequence
it generates beforehand since it has seen the se-
quence during the LM memorization. To make the
input of LM memorization similar to that of multi-
hop retrieval task, we make the first m (randomly
chosen) tokens of the text to generate to serve as
the encoder input when maximizing P(d) so that
the model is trained to maximize P(d=" |d(<™)) =

M, P(aV|d(<m, d=m=<i)) where d<™ is the in-

SThe prefix tree is built by aggregating the tokenization
result of texts in the corpus. Tokens that create strings that
are not a sub-string of any text in the corpus are masked out,
and only the next top-k tokens from the unmasked and thus
valid set of tokens are passed to the model as the potential
next tokens list.

put to the encoder.

Multi-hop Memorization While LM memoriza-
tion has the benefit that it can be easily applied
to GMR on all datasets, one limitation is that
it is an unconditional generation task (i.e., not
depending on a query) while multi-hop retrieval
is a conditional generation task where a query
is always given. Therefore, we propose an ad-
vanced conditional variant: multi-hop memoriza-
tion. Multi-hop memorization is a task of maxi-
mizing P(Dy|x’) where x is a pseudo-multi-hop
query generated from a query generation model
0° and D;, = (a'y/1 ;- ,dy ) is a list of pseudo target
sequences.

We perform data augmentation to construct the
training data for multi-hop memorization, { (x', Dy }.
First, using the original retrieval dataset {(x,Dy)},
we train a query generator Q) to generate query x
given the concatenation of ground truth target se-
quences for the query. After training Q, we sample
pseudo-target sequences Dy = (dy, .-+ ,dy, ) from
the target corpus D and generate the corresponding
pseudo query x’ by feeding Dy to Q. This sampling-
generation step is repeated to create enough set of
pairs { (', D))}

For the method to be beneficial for multi-hop
retrieval, we simulate the target distribution of the
original dataset D, when sampling D,/: each ad-
joining dy; and dygﬂ in Dy are relevant. Therefore,
we first find important words or phrases (e.g., en-
tity, subject) I; for each sequence d € D. Then,
for all d € D, we construct Dy = (dy -+ ,dy ) by
first setting dy; = d. This is an iterative process
that d)’f~+| is sampled from the set of text sequences
{d": la, N1ar| > 1}, stopped when |Dy/| = k where
k is rancllomly chosen.

Following the described approach, the con-
structed dataset {(x, D))} becomes similar to the
original data. We apply filtering to ensure the qual-
ity (Appendix A). Since the objective function of
multi-hop memorization has the same form with
that of multi-hop retrieval, we perform the train-
ing in a multi-task manner, using {(x’,D})} and
{(x,Dy)} together as the training data at once, rather
than the two-phase training as in LM memoriza-
tion.

5We use pre-trained T5-large to initialize Q.
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4 Experimental Setup
4.1 Fixed and Dynamic Multi-hop Retrieval

We formulate two settings of multi-hop retrieval
tasks: fixed and dynamic multi-hop retrieval set-
tings. Our ultimate goal of multi-hop retrieval tasks
in the inference step is to retrieve a set of relevant
items when given an input query x. However, since
k, the oracle number of items in a set, varies de-
pending on x and the task, it is difficult to know k
beforehand in a real-world scenario. Therefore, in
most cases, k is fixed to a certain number.

Fixed and Dynamic multi-hop retrieval settings
differ by whether the retrieval process continues
until the maximum retrieval hops k or stops in the
middle (Appendix B.1). Fixed setting is commonly
used in previous multi-hop retrieval tasks, which
a model retrieves till the maximum retrieval hop.
Whereas dynamic setting is more applicable to solv-
ing multi-hop retrieval tasks close to a real-world
scenario; rather than iterating until the given max-
imum number of hops, the model itself predicts
when to stop the process by generating the special
token (DONE) and stops in the middle.

4.2 Datasets

We use five datasets with various characteristics
(Appendix B.2).

HotpotQA (Yang et al., 2018) is an open domain
multi-hop question answering dataset, which re-
quires two Wikipedia pages to answer the query.
Entailment TreeBank (EntailBank) (Dalvi et al.,
2021) is a reasoning tree construction task where it
forms a tree with a hypothesis as the root node and
evidence sentences as leaf nodes. We experiment
on Task3: retrieve leaf nodes from the corpus when
given a question and an answer as an input.
StrategyQA (Geva et al., 2021) is an open-domain
multi-hop question answering dataset where the
reasoning steps are implicit in the question. It re-
quires strategies to answer the question.
Explagraphs-Open (EG-Open) (Saha et al., 2021)
is a generative and structured commonsense-
reasoning task. We reformulate it to open-domain
retrieval task (Explagraphs-Open), which consid-
ers a single path (subject-relation-object) as a re-
trieval sequence.

RuleTaker-Open (RT-Open) (Clark et al., 2021)
is a synthetic rule-based dataset to measure
the model’s reasoning ability over rules. We
reformulate it to open-domain retrieval task
(RuleTaker-Open) which considers nodes of the

graph (sentences) as a retrieval sequence (Ap-
pendix B.3).

4.3 Bi-Encoder Retrieval Models

For each dataset, we compare the results with a
bi-encoder retrieval model (BE) as a baseline. For
the HotpotQA dataset, we use MDR (Xiong et al.,
2021), a widely used bi-encoder model for the cor-
responding dataset. For the rest of the datasets, we
compare with ST5 (Ni et al., 2021).

We train and inference BE similar to GMR for both
fixed and dynamic settings. In a fixed setting, BE
maximize P(d),|x,d,_,) by concatenating the query
x and the retrieval sequences of the previous steps
dy_; as an input to the query encoder. In a dynamic
setting, we add a special token DONE to the corpus,
and BE is trained to retrieve the special token after
the last hop (Appendix B.4).

MDR is an iterative bi-encoder retrieval model
which extends DPR (Karpukhin et al., 2020) to a
multi-hop retrieval.

STS is an encoder-decoder model’ that serves as
our baseline bi-encoder to compare the perfor-
mance with GMR using the same number of pa-
rameters and architecture, TS (Raffel et al., 2020).

4.4 Evaluation Metric

In the fixed multi-hop retrieval, we evaluate Hot-
potQA following the MDR evaluation metric®. For
the rest, we first calculate the recall rate (R@k)
of each query and average over the number of
queries (Dalvi et al., 2021; Saha et al., 2021). In
the dynamic multi-hop retrieval, since the number
of predicted retrieval sequences varies, we measure
the F1 score (F1@k) by retrieving a maximum of &
sequences. For RT-Open, we newly define an eval-
uation metric (Appendix B.3) that measures the
graph construction success rate.

S Experimental Results

In Section 5.1, we compare the results of GMR and
bi-encoder models in fixed and dynamic settings
with five different datasets. In Section 5.2, we show
the limitations of bi-encoder retrieval models, dis-
cuss the effect of unseen rate in GMR, and show
GMR’s efficiency on storage and inference time.

7We use ST5-EncDec which extracts sequence embedding
by the first output of decoder
8https://github.com/facebookresearch/ MDR
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Table 1: Recall rate (R@5) of fixed setting and F1 score (F1@5, F1 @10, F1@20 where each number indicates the maximum
retrieval step) of dynamic setting on the test set. We compare results between GMR and ST5 (bi-encoder retrieval) where GMR
outperforms ST5 for all four datasets. GMRy, is GMR with LM memorization, and GMR,, is GMR with Multi-hop memorization.
The bold text shows the best score of each dataset. Results with * are evaluated by success rate (Appendix B.3).

EntailTree StrategyQA EG-Open RT-Open*
ST5 GMR  GMR. ST5 GMR GMR; GMRy ST5 GMR GMR;, GMRy ST5 GMR  GMR.
Fixed R@5 315 53.6 54.3 374 44.9 455 45.6 27.0 329 324 34.6
Dynamic F1@5 249 48.2 47.4 38.1 41.9 42.6 43.1 25.0 355 35.7 36.2
Dynamic F1@10 19.4 52.1 51.7 36.9 443 45.0 45.2 24.6 40.0 40.8 42.1 - - -
Dynamic F1@20 16.9 525 522 36.5 46.6 47.1 47.9 254 415 413 42.6 17.0 51.0 65.5

Table 2: Recall rate of HotpotQA official full-wiki dev set.
Scores of DPR, MDR- and MDR are from Table 3 of Xiong
et al. (2021). MDR- indicates a variant of MDR without linked
negatives, memory bank, and shared encoder.

Method | DPR  MDR- MDR | fixGMR fix-GMR,
Top-2 252 599 659 577 55.0
Top-10 | 454 706 775 68.8 65.3
Top20 | 521 731 80.2 73.9 714

5.1 Results

Bi-Encoder (BE) vs. GMR Table 1 shows the
overall performance of the bi-encoder baseline
(BE) and GMR variants on four datasets (Entail-
Tree, EG-Open, StrategyQA, RT-Open) in fixed
and dynamic multi-hop retrieval settings. We fur-
ther compare results between our base model
(GMR) and GMR with memorization methods:
multi-hop memorization (GMR,,) and LM memo-
rization (GMRy). Across all datasets, GMR consis-
tently shows a higher recall rate of top-5 in the fixed
setting and a higher F1 score in the dynamic setting
than bi-encoder models. Also, in most cases, both
LM memorization and multi-hop memorization
methods help improve the performance of GMR
(Section 5.2). Moreover, the dynamic setting con-
sistently outperforms the fixed setting for both BE
and GMR (Appendix C.1.1), which suggests that
the dynamic setting is more adaptable to multi-hop
retrieval with a larger number of hops.

Table 2 compares the result between GMR and
MDR (Xiong et al., 2021) on HotpotQA. While the
score of GMR is lower than that of MDR, it is com-
parable to MDR- (a variant of MDR without linked
negative, memory bank, and shared encoder). One
reason why the performance of GMR is similar
to MDR-, not MDR, would be that the techniques
such as hard negative training or memory bank are
crucial for higher performance yet are not appli-
cable to GMR; this suggests an important future
direction to close the gap. Also, since HotpotQA
is a fixed to two-hop setting, bi-encoder models
would suffer less from bottleneck and error propa-

Table 3: Recall rate (R@5) of fixed setting on the test set.
We compare results between GMR and DSI* to show the
effectiveness of explicitly generating the entire sequence in a
multi-hop retrieval task. GMR outperforms both DSI* models
on all three datasets.

Model EntailTree StrategyQA EG-Open
atomic-DSI* 28.0 - 23.4
naive-DSI* 717 - 8.6
fix-GMR 53.6 449 329

gation problems (Appendix 5.2) compared to the
other datasets that require larger numbers of hops.
Results in Table 1 on RT-Open dataset, a task to
construct a reasoning graph for the given query in
the dynamic setting, suggest that GMR is strong
at retrieving sequences interdependent to one an-
other. GMR and GM R, outperform BE on success
rate” by 300% and 385%, respectively, and con-
struct more complex and diverse reasoning graphs
through the retrieval process (Appendix C.1.2).

While BE needs to create and store a large index
of embeddings and often loads it on GPUs for low
latency, GMR only needs to create a prefix tree on
CPUs, which leads to higher efficiency on offline
computation, storage (Appendix C.1.3), and GPU
memory; GMR shows 69.7% and 79.5% decrease
of storage and GPU memory, respectively, com-
pared to BE with the same number of parameters
(STS). During inference time, GMR can be time-
inefficient if it has to generate every word in the
retrieval target text. In practice, however, one can
stop generation as soon as the partially generated
text can uniquely identify the target text. By lever-
aging the optimization, GMR with greedy search
is able to achieve a 40% inference time reduction
with respect to ST5 in HotpotQA. Note that without
the optimization, GMR is 24.6 times slower than
STS, signifying the importance of early stopping.

9F1 cannot be calculated on RT-Open because the ground
truth retrieval sequence is not known at each step.

1422



EntailBank StrategyQA

Explagraphs-Open

Figuare 2 i—Ioi)-Ru@Sor;C]e Z(y-a;(is)éover I;un;be; of xhof)s (x-
axis). The red dotted line and the solid black line show per-
formance of the ST5 (bi-encoder) and GMR, respectively. For
all three datasets, ST5 tends to degrade as the number of hops
increases, whereas GMR shows relatively consistent perfor-
mance.

Importance of Explicit Generation in Multi-hop
Retrieval Task GMR performs retrieval by ex-
plicitly generating the entire retrieval sequence
using constrained decoding, unlike the previous
generative retrieval methods, in order for the re-
trieval model to better grasp and understand the
relationship between the input query and retrieval
sequences. We compare GMR with our implemen-
tation of DSI (Tay et al., 2022), a concurrent work
that assigns an id for each document in the cor-
pus and retrieves relevant documents by generating
ids. We expand DSI (which experiments only on
no-hop settings) to multi-hop settings to retrieve
the id of a relevant document and construct an aug-
mented query by adding the text of the retrieved id
at the end of the input query as in GMR. Table 3'°
shows that GMR outperforms DSI on all datasets,
implying the benefit of generating the entire se-
quence in a multi-hop retrieval task. GENRE (Cao
et al., 2021), which performs document retrieval
by generating the title of the target Wikipedia page
with constrained decoding, is not directly applica-
ble to our multi-hop settings since most retrieval
sequences in the datasets do not have such titles.

5.2 Analysis

Limitation of Bi-Encoder Retrieval Models We
investigate limitations of bi-encoder in multi-hop
retrieval and show (1) bottleneck problem: perfor-
mance of bi-encoder consistently decreases as the
number of hops increases, and (2) error propaga-
tion: the bi-encoder approach is more vulnerable to
error propagation than generative approach.

For ease of analysis, we compare the perfor-
mance of the bi-encoder retriever (ST5) and gen-
erative retriever (GMR) on three datasets (Strat-

108ince DSI is not open-sourced, we reproduced the model
ourselves (DSI*). We show NQ results of DSI* in Appendix
C.1.4. We skip the result of DSI-semantic as we could not
reproduce the result. ‘-’ in the table indicates that the model
failed on all test cases. We hypothesize it is due to its difficulty
in generalization to datasets with a large size corpus. We plan
to update the table when the official code of DSI is released.

egyQA, EG-Open, EntailBank) under the setting
where we assume that a ground truth order of the
sequences to retrieve exists. The goal is to retrieve
the one gold target sequence d,, of each i-th hop.
The performance is measured as hop-R@5 . =
1{d,, € top-5,.pP(d|x,dy_,)}, where top-5 is a
function that returns a set of the five sequences
with the largest probabilities.

(1) Bottleneck Problem As shown in previous
works (Luan et al., 2021; Izacard et al., 2020), bi-
encoder approaches have an inherent limitation that
their performance degrades proportionally to the
size of the embedding. Luan et al. (2021) espe-
cially shows that the performance decreases more
severely as the length of the encoded sequence
gets longer. We hypothesize that such a limitation
would be even more problematic in multi-hop re-
trieval with a large number of hops; as the previ-
ously retrieved sequences are added at the end of
the input query, it results in a longer input sequence
compared to the canonical retrieval tasks.

To test the hypothesis, we experiment over ST5
(bi-encoder) and GMR, where the ground truth re-
trieval targets up to the previous hops are given
to seclude the effect of error propagation from
the analysis. The result in Figure 2 shows that
hop-R@5, .. (y-axis) at each hop (x-axis) of the
bi-encoder retriever deteriorates more severely than
GMR as the number of hops increases. We could
observe that such limitation also occurs in Hot-
potQA (Appendix C.2.1), where the highest error
case of the bi-encoder approach is when it fails to
retrieve the second hop correctly although the first
hop is correctly retrieved.

It seems like the bi-encoder retriever finds it
more difficult to encode the lengthened query into
a fixed-size embedding. In contrast, the generative
retriever is more robust in modeling the informa-
tion, possibly because it can mimic the behavior
of powerful one-tower cross-encoders (where all
tokens in the query and retrieval sequence perform
attention to each other), unlike the shallow bottle-
necked interaction of bi-encoder. We also check
that the finding of the previous works still holds
in our multi-hop setup: the performance of the bi-
encoder retriever monotonically decreases as the
embedding size decreases using an additional linear
layer at the top of the model (Appendix C.2.2).

(2) Error Propagation We perform experi-
ments to analyze the robustness of the retriev-
ers on error propagation. We simulate the case
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Table 4: Error propagation rate of a bi-encoder model (BE)
and GMR on three datasets: StrategyQA (Str), EG-Open (Exp),
and EntailBank (Ent). Details of Minor and Major tasks are in
Section 5.2.

Minor Major

Str Exp Ent ‘ Str Exp Ent
BE 23.6%  46.9% 14.0% 712%  911%  55.1%
GMR 1.7% 49.3% 11.1% 207%  758%  39.6%

where it has retrieved an irrelevant sequence at
the previous hop. At i-th hop, the retriever is
given a query x, ground truth retrieval target un-
til the i — 1-th hop (d,_, ,), and an irrelevant se-
quence derror; , at the i — 1-th hop, and we test
whether the retriever can still correctly retrieve
the ground truth target at the i-th hop. We eval-
uate the robustness of the retrieval model by the er-
ror propagation rate (error propagation rate (%) =
(1—%) %100), which is the relative

hop-R@5,, .,
drop rate of hop-R@5,,. . (hop-R@5,,. . =
]]‘{dyi S top'sdeDP(d|x7dy<i71 ;derror;_, ) }) from the
oracle setup hop-R@5_ .. We experiment over
two tasks (major and minor) which differ by how
relevant derror, , is to the ground truth target at the
i — 1-th hop d,, ,: (1) minor task is when we find
the most relevant sequence excluding the ground
truth from the corpus set using BM25 and (2) ma-
Jjor task is when we randomly sample any sequence
from the corpus set.

Results in Table 4 indicate that the bi-encoder
approach is highly vulnerable to error propagation,
where the average error propagation rate is 28.2%
and 72.5% for minor and major tasks, respectively.
On the other hand, somewhat surprisingly, GMR
is much more robust to error propagation: 20.7%
and 45%, respectively. We hypothesize that such
robustness is due to its cross encoding capability
over all input tokens (query and retrieval sequences
at the previous hops) and its ability to leverage
the distribution of sequential text tokens, learned
during pretraining, on the retrieval task.

Effect of Unseen Rate of GMR The unseen
rate indicates the rate of queries in the test set
that needs to retrieve sequences never seen dur-
ing training as the ground truth target. Therefore,
datasets with high unseen rates can be considered
similar to a zero-shot retrieval setting. Comparing
the relative F1@20 (Table 1) of GMR to corre-
sponding bi-encoder models in dynamic settings,
the improvement is 305.4% on datasets with low un-
seen rates (EntailTree, RT-Open), whereas 145.6%
on datasets with high unseen rates (StrategyQA,

EG-Open), implying the importance of reducing
the unseen rate for GMR.

We thus train GMR with LM memorization
(GMR_) where the model is first trained on target
corpus using standard language modeling objec-
tive and then finetuned on retrieval task (Section 3).
Table 1 shows that LM memorization is consis-
tently helpful in StrategyQA and RT-Open, while
the gain is inconsistent in other datasets. We hy-
pothesize that such inconsistency is because the
training objective function of LM memorization
is not aligned well with that of multi-hop setting
retrieval task; the memorization objective function
P(d) = H‘jﬂlP(d(j”d(q)) resembles the no-hop
retrieval training objective function of maximizing
P(dy|x) rather than that of the multi-hop retrieval,
P((dy,,--- ,dy,)|x), which goes through multiple
retrieval hops. Its strength is that it can be easily ap-
plied to any dataset, but it does not show consistent
improvement on different multi-hop datasets.

We also train GMR with multi-hop memoriza-
tion (GMR},), where the objective function is sim-
ilar to that of multi-hop retrieval; we generate
pseudo-multi-hop data {(x’ ,D’y)} and use it as ad-
ditional training data for the retrieval task (Sec-
tion 3). The unseen rates of StrategyQA and EG-
Open are greatly reduced by applying the method,
and GMR,, consistently outperforms both GMR
and GMR;: the unseen rates of StrategyQA and
EG-Open are reduced by 40.4% and 60%, respec-
tively. While the method is difficult to apply as-is
to datasets with low unseen rates due to the filtering
process (Appendix A), it is also not necessary as
most retrieval sequences in the target corpus are
covered by the training set.

6 Conclusion

In this paper, we show that the bi-encoder approach
has limitations in multi-hop retrieval; the bottle-
neck problem becomes a more severe problem as
the number of hops increases, and is more suscep-
tible to error propagation. We present Generative
Multi-hop Retrieval (GMR), an encoder-decoder
model that performs retrieval by generating the en-
tire target sequences with the aid of constrained
decoding. We show that GMR is more robust on
multi-hop retrieval tasks where it achieves higher
or comparable performance in five datasets. We
also introduce two corpus memorization methods,
LM memorization and multi-hop memorization,
to further improve GMR’s performance. Our ex-
perimental results demonstrate that in multi-hop
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retrieval, a generative approach is highly competi-
tive with bi-encoder methods and deserves further
explorations in the community.

Limitations

As shown in Table 2, GMR is still not as good
as a well-designed bi-encoder retrieval (MDR) for
HotpotQA. We suspect that there are largely two
reasons: first, HotpotQA has exactly two hops,
whereas GMR seems to be more advantageous
when the number of hops is large and dynamic;
second, bi-encoder retrieval is a relatively mature
research area, whereas generative retrieval is quite
new and the community is yet to discover advanced
techniques that fully leverage it. Early stopping of
GMR (Section 5.1) helps inference speed but de-
grades the performance as it is difficult to calculate
the total beam score with early stopping; it does not
generate till the last token of the target sequence
which it also cannot calculate the beam score over
all tokens. More research will be needed to achieve
both.
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A Generative Multi-hop Retrieval

LM memorization For the path retrieval task
(RT-Open, EG-Open), the subject and the relation
are given, and the model generates the object of the
sentence. For paragraph retrieval tasks (HotpotQA,
EntailBank, StrategyQA), the first 70% of the sen-
tence is given as input, and the model generates the
rest.

Multi-Hop Memorization For a conditional
memorization method, we experiment GMR with
multi-hop memorization in which we generate
pseudo-multi-hop queries x’ and train a retriever
with not only the original training dataset { (x,Dy)},
where x is a query and D, is a list of target se-
quences, but also with generated pseudo-datasets
{(x',Dy)}, where Dy is a list of pseudo target se-
quences, during the retrieval step. To keep the dis-
tribution of {(x’,Dy/)} similar to {(x,Dy)}, we en-
sure that elements in the sequence Dy are intercon-
nected to one another by constructing the set to
have more than one other elements with the same
important words or phrases (e.g., entity, subject).
For StrategyQA, we consider the entities as im-
portant words or phrases and extract the entities by
NER (Named Entity Recognition) ''. We remove

e use NER model provided from huggingface
(https://huggingface.co/pipelines)
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sentences that do not contain any entity or contains
more than four entities from the target corpus. We
found that such removal of sentences with many
entities is critical in the performance as sentences
with lots of entities tend to be irrelevant to one an-
other although they do have one common entity,
which deviates from our original purpose of sam-
pling: to ensure that elements in a sequence D, are
interconnected to one another. For EG-Open, as the
items in the target corpus are a path, we consider
the subject and the object as important words.

We add a filtering process for both when sam-
pling a list of pseudo target sequences Dy and when
generating multiple pseudo-multi-hop queries x'.
When sampling D/, we remove sequences that
contains all element in a sequence D, where D, €
{Dy}. After generating multiple pseudo-multi-hop
queries x' with sampled D,/, we remove queries
that do not generate till the end token; the sentence
stops the generation in the middle due to its higher
beam score compared to when generating till the
end. We keep the number of items in Dy to be
within the same range as in D,,.

In Table 5, we show examples of pseudo-multi-
hop data ({(x',Dy)}) of StrategyQA and EG-Open.
By adding pseudo-multi-hop data to the original
training dataset, we could reduce the unseen rate
of StrategyQA and EG-Open by 40.4% and 60%,
respectively, and increase the performance on both
datasets. While the method is difficult to apply to
datasets with low unseen rates due to the filtering
process of removal when a set of target sequence
contains a set in the original retrieval dataset as
a subset, it is also not necessary as most retrieval
sequences in the target corpus are covered by the
training set. We leave the method of generating
effective pseudo-multi hop data for datasets with
low unseen rate as future work.

B Experimental Setup

B.1 Fixed and Dynamic Multi-hop Retrieval

We formulate two settings of multi-hop retrieval:
fixed and dynamic multi-hop retrieval settings. In
the inference step of the multi-hop retrieval, we
eventually aim on retrieving a set of items by re-
trieving for k hops when given an initial input query
x. However, since k varies depending on x and task,
it is difficult to know the exact number of k before-
hand in a real-world scenario. Therefore due to this
limitation of real-world setting, we fix the num-
ber of retrieval step k for all datasets and queries,

Algorithm 1 Inference step of Fixed Conditional Retrieval

Require: trained retriever R, fixed number of iteration step &,
input query ¢, and target corpus {d;}

Y’ := An empty set to store all retrieved sequences
s := a number of iteration step with an initial value of 1

while s < k do
Y =R(x,Y’)
Y'.add(y')
end while

return Y’

Algorithm 2 Inference step of Dynamic Conditional Re-
trieval

Require: trained retriever R, fixed number of iteration step &,
input query ¢, and target corpus {d;} U {0}

Y’ := An empty set to store all retrieved sequences
s := number of iteration step which initial value is 1

while s < k do
Y =R(x,Y")

/I If retriever retrieves null element, stop the iteration
and fill the set with the null element
if y/ == 0 then
Fill Y/ with @ so that len(Y’) == k break
else
Y’.add(y")
end if

end while

return Y’

which is k = 5 in this paper.'? Fixed conditional
retrieval task is an expansion of canonical text re-
trieval task and dynamic conditional retrieval task
is more likely on solving multi-hop retrieval task
by stopping the retrieval process before filling all .
In fixed multi-step, the number of items to retrieve
is given as an oracle, whereas in dynamic multi-
step, the model also needs to determine when to
stop retrieving the next item.

Fixed Multi-hop Retrieval Setting Fixed Multi-
hop Retrieval Setting is a basic setup for multi-hop
retrieval tasks, where we assume the given k as the
oracle number of hops and iterate till the maximum
retrieval hop k. In training process, when given
a query x with 3 elements in an oracle set %, =
{d,,,dy,,d,,}, the training examples for the query
is {(x,dy,), (x;dy, . dy,), (x;dy,:dy,,dy;) } where ; is
a string concatenation operator and each element
is (input, ground truth output). In the inference
process, when given a trained retriever and a target

12We fix k to 5 since it is near the average for all datasets.
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Table 5: Examples of pseudo-multi-hop data. The top two examples are pseudo-multi-hop data from StrategyQA and the bottom

two examples are from EG-Open dataset.

Input Output

Output 1

Mary, Queen of Scots was Queen of Scotland in the 1500s

Output 2

Did Mary, Queen of Scots know Jesus?

According to the Gospel of Matthew, Joseph and Mary resettled in Nazareth after

returning from the flight from Bethlehem to Egypt

Output 3

She accompanied Joseph to Bethlehem, where Jesus was born

Outputl

All generations of the iPhone use Apple’s iOS mobile operating system software

. . . Output2
Is the iPhone still the most popular computer brand in the

world?

"upset" about the price drop, Apple gave store credit to early adopters

Output3

Apple stores stock only Mac brand computers

Outputl

everyone; synonym of; people

. . . Output2
belief: Everyone is abusive. / argument: Some people are

just harmful to others.

people; not has property; abusive

Output3

abusive; synonym of; harmful

Outputl

social media; causes; connected

. . . . . . Output2
belief: Social media is negative. / argument: Social media

keeps us connected.

connected; capable of; causing content

Output3

causing content; not capable of; negative

corpus, it iterates k times to find a set of retrieval
sequences related to a given query as in Algorithm
1.

Dynamic Multi-hop Retrieval Setting Dynamic
Multi-hop Retrieval Setting is a setting where the
retriever has to predict the correct number of oracle
hops k (when to stop retrieving). It differs from the
fixed multi-hop retrieval setting, which assumes
that the oracle number of hops for each input query
is given and fixed. It can be considered efficient
compared to the commonly used fixed multi-hop
setting because (1) in real-world scenarios, we may
not know the exact number of texts to retrieve in ad-
vance and the number differs by the query; (2) the
model has to retrieve till the maximum hop even if
it has already retrieved all the relevant sequences
in fixed multi-hop setting, which would not only
cause unnecessary extra time and computation but

also harm the downstream tasks performance (Qi
et al., 2021) by providing hard negative (false pos-
itive) sequences which are difficult to distinguish
to the downstream module. The additional ability
to detect the stopping point of the retrieval hop
(dynamic multi-hop retrieval) can resolve the fixed
multi-hop retrieval issues above.

For the setting, we additionally add a null el-
ement (0)"? to the given target corpus in fixed
multi-hop setting D; in this setup, a retrieved se-
quence is an item in DU{0}. In the training pro-
cess, for a query, we add one extra step at the
end of each end step from the fixed multi-hop re-
trieval training set: given all oracle sequences as
conditions, retrieve null element @. For example,
when given a query x with 3 elements in an oracle

13We add special token DONE to the model and the corpus
which is the null element during training and inference.
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Table 6: Overview of the five datasets. Seq Len column
shows the average number of retrieval sequence tokens
for each retrieval sequence in given target corpus. Unseen
Rate column shows the rate of test queries consisting of
only the retrieval sequences unseen during the training
process.

Dataset Corpus (MB) Seq Len  Unseen Rate
HotpotQA 1,595 78.6 18.9%
EntailBank 0.7 12.5 2.7%
StratgyQA 7.0 13.1 98.2%
EG-Open 0.5 9.6 95.5%

RT-Open 0.7 13.1 0.0%

set 2, = {dy,,d,,,dy,}, the training examples for
the query is {(x,dy,), (x;dy,,d,,), (x;dy,3dy,,d),),
(x;dy,:dy,;dy,,0)} where ; is a string concatena-
tion operator and each element is (input, ground
truth output). In the inference process, when given
a trained retriever and a target corpus, as in fixed
multi-hop retrieval, it iterates k times to find a set of
retrieval sequences related to a given query. How-
ever, when the retriever retrieves the null element,
it ends the iteration as in Algorithm 2.

B.2 Datasets
B.2.1 Datasets Details

Table 6'4 shows the overview of the five
datasets. HotpotQA can be download in
https://hotpotqa.github.io/, and the rest of the
dataset can be download in https://allenai.org/data.
Note that all datasets are in English.

HotpotQA Yang et al. (2018) propose an open
domain multi-hop question answering dataset,
which requires aggregating multiple Wikipedia
passages through logical reasoning or sequential
processing. The number of retrieval sequences is
fixed to two. HotpotQA consists of two types of
questions: comparison and bridge. Comparison
questions, a rationale/evidence type of multi-hop
dataset, do not necessitate iterative retrieval since
the two entities can be retrieved by the query itself.
However, bridge questions consist of evidence in
the reasoning chain from where it has to retrieve
the second step based on the first one. We use the
official Wikipedia dump provided by Yang et al.
(2018), use 2% of the official train dataset as a dev
set, and report the scores on the official dev set.

14For RT-Open unseen rate, we calculate it with prediction
result since there are no gold retrieval sequences.

Entailment TreeBank (EntailBank) Dalvi et al.
(2021) propose a reasoning tree construction task
where it forms a tree with a hypothesis as the root
node and evidence sentences are leaf nodes. The
dataset has three settings, and among them, we ex-
periment on Task3, an open setting. Task3 consists
of two steps; the first is to select a leaf node from
the corpus set when given a question and an an-
swer, and the second is to construct a reasoning
tree through the selected leaf node. We perform
the first step, the leaf node retrieval. Since the leaf
node and the root node are not directly connected,
there is a less tight connection between the input
query and gold outputs than in other datasets. We
experiment on the first step of Task3 (leaf node
retrieval). As in the paper, we use both Entail-
Bank and WorldTreeV2 (Xie et al., 2020) datasets
when training a retrieval model. We compare the re-
sults with STS since there is no released bi-encoder
model, and as in the paper, we use both EntailBank
and WorldTreeV2 (Xie et al., 2020) datasets when
training a retrieval model.

StrategyQA Geva et al. (2021) propose a multi-
hop open-domain question answering dataset
where the reasoning steps are implicit in the ques-
tion and need some strategy to answer the question.
When given a question, the model retrieves the ev-
idence sentences from the corpus. Since only the
train dataset contains evidence annotation, we split
it into 75/5/20 (%) and used it as a train/val/test set,
respectively. Also, based on the given corpus, we
split the given paragraph-level corpus to sentence
level using NLTK (Bird et al., 2009) to match the
granularity of the evidence and add the annotated
evidence sentences to the corpus.

RuleTaker-Open (RT-Open) Clark et al. (2021)
propose a synthetic rule-based dataset to measure
the model’s reasoning ability over the rules ex-
pressed in natural language. Based on the released
dataset, we create a new task, RuleTaker-Open, to
make the task close to a real-world setting. Given
a query, the model retrieves nodes of the graph,
which is a sentence from the corpus, and the nodes
are connected in order to construct a graph. De-
tails of the construction method are described in
Appendix B.3.

Explagraphs-Open (EG-Open) Saha et al.
(2021) propose a generative and structured
commonsense-reasoning task. When given a be-
lief and an argument, a model predicts whether the
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Algorithm 3 Finding the missing edge

Require: Input Corpus P
T := An empty list to append or remove facts from P

for all sentence s € P do
if 5 is a rule then
divide s to assumptions A and result r
for all assumption a € A do
if ain T then
T .remove(a)
else
return False > Missing edge
end if
end for
T .append(r)
else
T .append(s)
end if
end for

if 7 is empty then
return True
else
return False
end if

> No missing edge

> Missing edge

argument supports or counters the belief and gen-
erates (retrieves) a reasoning graph to explain the
prediction. While the original dataset needs gener-
ation on constructing the reasoning graph, which is
limited to generative models only, we expand the
task to an open-domain retrieval setting to compare
with the bi-encoder models by constructing the cor-
pus and name it Explagraphs-Open. We consider a
single path (subject-relation-object) as a retrieval
unit and construct the corpus by dumping all the
possible paths provided from the dataset.

B.2.2 Datasets Examples

Examples of each dataset (input and output forms)
are in Table 7.

B.3 Details of RuleTaker-Open (RT-Open)

RuleTaker dataset is a synthetic rule-based
dataset used to measure the model’s ability on
reasoning over rules (Clark et al., 2021; Tafjord
et al., 2021; Saha et al., 2020). Given a small
corpus of textual facts and rules, the model has to
answer the question, retrieve, and construct the
graph-structured proofs. As in Tafjord et al. (2021),
we use the maximum depth dataset D5 for training.
To evaluate the model performance in the open-
setting (i.e., Task3 in Dalvi et al. (2021)), we
newly construct a large corpus and divide the
train/dev/test dataset by the unique query set from
the original D5 dataset.

Dataset Construction We dump all the facts and
rules from the original D5 train/dev/test datasets
to construct the corpus and collect 1621 unique
queries, which we split into 1300/121/200. We
remove cases with NAF and FAIL cases for rule-
based evaluation, remove graphs with less than
two nodes to ensure that the fact from the corpus
itself could not be the proof, and remove graphs
with more than ten nodes to fit in the maximum
length of TS model. Also, we added DONE at
the end of graph construction for dynamic stopping.

Evaluation Metric In RT-Open, there are various
possible answer graphs for a query, unlike the previ-
ous RuleTaker dataset. Therefore, to check whether
the prediction graph is correct, a new evaluation
metric is necessary. Since each textual sentence can
be divided into a simple format, subject-relation-
object, when considering the constructed method
(Clark et al., 2021), we evaluate the result by a new
rule-based method.

We check whether the constructed graph is well-
constructed by four steps.

e Node Num Error: The number of evidence

should be larger than 2.

* Start Node Error: First word (subject) should
be the same.

* End Node Error: Last word (object) should be
the same.

* Missing Edge Error: There should be no miss-
ing edge.

Table 8 shows the rate on each constraint for both
the bi-encoder model and GMR. Each error in the
table corresponds to the item on top with the same
name.

Missing Edge Error is evaluated by Algorithm 3;
when given a prediction graph (P), we divide the
sentences into rules and facts and check for the
missing edge in the prediction order. When the
algorithm returns True, the graph is considered to
have no missing edge.

B.4 Bi-Encoder Retrieval Models

We use ST5 model (Ni et al., 2021) as the archi-
tecture of the bi-encoder baseline to compare the
performance with GMR using the same number of
parameters. The input text is fed into T5-encoder,
and the first decoder output of the T5-decoder is
taken as the sentence embedding. We follow the im-
plementation details in Ni et al. (2021) except for
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Table 7: Dataset examples

Task Input Output
Step 1 Input (a query) Step 1 output (evidence passage)
<QUESTION> The Oberoi family is part of a hotel =~ <TITLE> Oberoi family </TITLE> The Oberoi family
company that has a head office in what city? </QUES-  is an Indian family that is famous for its involvement
Paragraph Retrieval TION> in hotels, namely through The Oberoi Group.
(HotpotQA) Step 2 Input (a query with previous output) Step 2 Output (evidence passage)

<QUESTION> The Oberoi family is part of a hotel
company that has a head office in what city? </QUES-
TION> <EVIDENCE> <TITLE> Oberoi family </TI-
TLE> The Oberoi family is an Indian family that is
famous for its involvement in hotels, namely through
The Oberoi Group. </EVIDENCE>

<TITLE> The Oberoi Group </TITLE> The Oberoi
Group is a hotel company with its head office in Delhi.
Founded in 1934, the company owns and/or operates
30+ luxury hotels and two river cruise ships in six
countries, primarily under its Oberoi Hotels & Resorts
and Trident Hotels brands.

Sentence Retrieval
(EntailmentBank,
StrategyQA)

Step 1 Input (a query)

Step 1 output (evidence sentence)

<QUESTION> Does a dentist treat Bluetooth prob-
lems? </QUESTION>

A dentist is a surgeon who specializes in dentistry, the
diagnosis, prevention, and treatment of diseases and
conditions of the oral cavity

Step 2 Input (a query + Step 1 Output)

Step 2 Output (evidence sentence)

<QUESTION> Does a dentist treat Bluetooth prob-
lems? </QUESTION> <EVIDENCE> A dentist is a
surgeon who specializes in dentistry, the diagnosis, pre-
vention, and treatment of diseases and conditions of the
oral cavity </EVIDENCE>

Technological problems are typically handled by IT
professionals

Step 3 Input (a query + Step 1 & Step 2 Output)

Step 3 Output (evidence sentence)

<QUESTION> Does a dentist treat Bluetooth prob-
lems? </QUESTION> <EVIDENCE> A dentist is a
surgeon who specializes in dentistry, the diagnosis, pre-
vention, and treatment of diseases and conditions of the
oral cavity </EVIDENCE> <EVIDENCE> Technolog-
ical problems are typically handled by IT professionals
</EVIDENCE>

Bluetooth is not a physical entity

Reasoning Path Retrieval
(RuleTakers,
Explagraphs)

Step 1 Input (a query)

Step 1 output (evidence sentence)

<QUESTION> belif: marriage is the best for a family
unit. argument: Marriage is a predictor of health and
happiness. </QUESTION>

marriage; created by; love

Step 2 Input (a query + Step 1 Output)

Step 2 Output (evidence sentence)

<QUESTION> belif: marriage is the best for a family
unit. argument: Marriage is a predictor of health and
happiness. </QUESTION> <EVIDENCE> marriage;
created by; love </EVIDENCE>

love; causes; health and happiness

Step 3 Input (a query + Step 1 & Step 2 Output)

Step 3 Output (evidence sentence)

<QUESTION> belif: marriage is the best for a family
unit. argument: Marriage is a predictor of health and
happiness. </ QUESTION> <EVIDENCE> marriage;
created by; love </EVIDENCE> <EVIDENCE> love;
causes; health and happiness </EVIDENCE>

health and happiness; used for; family unit

two settings: (1) as in Karpukhin et al. (2020), we
use the inner product instead of cosine similarity
when calculating the similarity since inner produce
shows a higher recall rate than cosine similarity for
overall dataset (2) we change the hyperparameters
for a fair comparison with GMR.

B.5 Details

We train both ST5 and GMR using pre-trained T5-
large checkpoint (770 million parameters) from
Wolf et al. (2020) as the initial checkpoint. We
use the same hyperparameter setting when train-
ing GMR and ST5 model for a fair comparison.
We observe that hyperparameter change does not
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Table 8: Error rate for each error type in RT-Open.
Results are from 200 test sets.

Error Rate (%) GMR STS
Node Num Error 0.5 5
Start Node Error 9.5 0
End Node Error 20 28
Missing Edge Error 19 50
Success 51 17

change the tendency of results after experimenting
over a combination of settings used in previous
models (Karpukhin et al., 2020; Ni et al., 2021;
Raffel et al., 2020). Also, we use different hyperpa-
rameters for different tasks: retrieval corpus memo-
rization and retrieval. For all experiments, we use
8 32GB V100 GPUs. In retrieval task, training a
epoch of HotpotQA take 1.5 hours and for the rest
it take less than 0.5 hours.

LM Memorization The LM memorization step
aims to show GMR a corpus it will retrieve and sa
it implicitly before the retrieval step. We keep the
learning rate to 1e-5, which is relatively low than
the retrieval step, to maintain the linguistic ability
the model learned during pretraining (Jang et al.,
2022). We train the model from T5 pre-trained
checkpoint for every dataset using Adafactor with
a constant learning rate of le-5 with batch size 240
till the maximum of 3 epochs.

Increasing the LM memorization epoch does not
always lead to higher performance. This is because
as the model is trained on a new dataset, catas-
trophic forgetting of previously learned parts oc-
curs (Kirkpatrick et al., 2017), and in this case, the
linguistic ability of the model learned during the
pretraining step. To prevent the following process
from occurring, we follow Jang et al. (2022) and
reduce the learning rate to le-5 and use checkpoint
of epoch 3 as the initial checkpoint for all retrieval
tasks.

Multi-Hop Memorization We train a model that
generates a pseudo-multi-hop query for multi-hop
memorization when given a set of retrieval se-
quences. We dump all retrieval datasets to train
such a model and concatenate all retrieval se-
quences as a long sequence as an input and the cor-
responding query as an output. Generated pseudo-
multi-hop queries after the filtering process are
11k and 1.9K for StrategyQA and EG-Open, re-
spectively. We set the configuration the same as in
Retrieval Step.

Table 9: Retrieval sequence F1 score of model trained on
fixed multi-hop retrieval setting (*-fix) and dynamic multi-
hop retrieval setting (*-dyn) on test set. F1@Xk is a retrieval
sequence F1 score with maximum retrieval step of k. Models
trained on dynamic setting show consistently higher F1 score
compared to those trained in fixed setting.

Dataset Model F1@5 F1@10 F1@20
BE-fix 20.1 15.0 9.7
EntailTree BE-dyn 24.9 19.4 16.9
GMR-fix  33.6 235 13.8
GMR-dyn 48.2 52.1 52.5
BE-fix 22.8 15.6 9.3
StrategyQA  BE-dyn 38.1 36.9 36.5
GMR-fix  30.1 19.3 11.2
GMR-dyn 41.9 443 46.6
BE-fix 24.6 20.1 13.1
EG-Open BE-dyn 27.0 24.6 25.4
GMR-fix 269 22.1 15.1
GMR-dyn 35.5 40.0 41.5

Retrieval Step The retrieval step aims to retrieve
the gold item from a large-scale corpus. For GMR
with LM memorization (GMR;), we use the check-
point from LM-memorization as the initial check-
point, and for the rest of the models (ST5, GMR,
GMR with multi-hop memorization (GMRy;)), we
use the TS pre-trained checkpoint as the initial
checkpoint. For GMR);, we train the model using
both the training dataset and generated dataset from
the T5 pre-trained checkpoint. For both ST5 and
GMR (including GMR, GMRys), we train using
Adafactor with a learning rate 1e-4 with a linear
warm-up for the first 10% of training and then lin-
ear decay with batch size 120 till a maximum of 30
epochs.

C Experimental Results

C.1 Results

C.1.1 Fixed vs. Dynamic Multi-Hop Settings

Table 9 shows the retrieval sequence F1 score
(F1@k) of Fixed and Dynamic Multi-Hop Settings,
where k is the number of maximum retrieval steps,
and we evaluate k=5, 10, and 20. For all three evalu-
ations and both the bi-encoder approach and GMR,
models trained in the dynamic setting show higher
scores than those trained in the fixed setting, empha-
sizing the importance of using dynamic multi-hop
retrieval settings to solve multi-hop retrieval tasks
near a real-world scenario.
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C.1.2 RT-Open Results

The prediction result from the model, predicted
corpus (P), is in the gray box, and the final node is
colored in yellow. The Missing nodes are colored
in red, and the leftover nodes are colored in blue.
If there is a red or blue node, it means that it failed
to construct the reasoning graph. We show two
examples for each retrieval method and success and
failure cases (missing edge error case) in Figure 3,
Figure 4, Figure 5, and Figure 6.

Predicted Corpus (P):

The cat is kind

The cat is kind

If something is kind then it chases the cat

If something chases the cat then it is young.
If something is kind and young then it is cold.
If something is cold then it visits the dog.

o6 ®

Predicted Corpus (P):

S R

The lion is young.

If something is young then it eats the lion.

If something eats the lion then it is kind.

The lion is young.

If something is young then it eats the lion.

If something eats the lion then it likes the lion.

If something is kind and it likes the lion then the lion eats the cow.
If something eats the cow then it eats the rabbit.

o¥0%0
-

Figure 3: Success Examples of GMR
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C.1.3 Storage Footprint

Table 10 shows the overall storage footprint of three
models: MDR, GMR, and GMR with early stop-
ping. Where GMR with early stopping does not
generate every word in the retrieval target text but
stops generation as soon as the partially generated
text can uniquely identify the target text and saves
only till the point. Also, GMR shows higher mem-
ory efficiency with a higher decrease rate of the
index size (with respect to that of the bi-encoder
counterpart) when the granularity of the corpus is
small and when items in the given target corpus are
similar to one another with the same prefix. Hot-
potQA, which uses paragraphs as the retrieval unit,
has a lower reduction rate of 86.68%. RT-Open

Predicted Corpus (P):

The mouse is cold.

The mouse is cold.

The mouse is cold.

If something is cold then it eats the dog.

If something is cold and it eats the tiger then the tiger is kind.
If something is cold and kind then it is red.

If something is red then it sees the mouse.

If something sees the mouse then the mouse is green.

If something is green then it sees the squirrel.

@:eoee
0-®

It eats the tiger

©PXNDOHWN =

Predicted Corpus (P):

The bear is kind.

The bear is kind.

If something is kind then it chases the bear.

If something chases the bear then it is big.

If something is kind and big then it is rough.

If something is rough then it likes the bald eagle.

If something likes the bald eagle then it likes the tiger.

If something likes the tiger then it likes the lion.

If something likes the bear and it likes the bald eagle then it is round.
If something is round then it likes the bear.

o
0¥0%%0
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Figure 4: Failure Examples of GMR where blue nodes indi-
cate the the leftover nodes and red are the missing nodes

COPNOOHWN =

Predicted Corpus (P):

1. The rabbit is blue.
2. If something is blue then it sees the rabbit.
3.  If something sees the rabbit then it is big.

02020,

Predicted Corpus (P):

The rabbit is big.

If someone is big then they need the rabbit.

If someone needs the rabbit then they are big.
If someone is big then they like the rabbit.

If they like the rabbit then the rabbit is kind.

If someone is kind then they visit the rabbit.

OaO0R02 020

Figure 5: Success Examples of Bi-encoder (ST5) Retrieval
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shows the highest decrease rate of 99.9% since its
corpus consists of short texts, and the items in the
corpus are highly similar to one another due to
its synthetic rule-based data construction process.
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Predicted Corpus (P):

The mouse eats the rabbit.

The rabbit eats the mouse.

If something eats the mouse then it visits the rabbit.

If something visits the rabbit then it eats the rabbit.

If something visits the mouse and it eats the rabbit then the
rabbit is cold.

If something is cold then it eats the rabbit.

If something visits the rabbit and it eats the rabbit then the
rabbit is kind.

8.  If something is kind then it eats the mouse.

Glem

N

®
DD

Something visits
the mouse

Something visits
the rabbit

Predicted Corpus (P):

The mouse chases the dog.

If the mouse chases the dog then the mouse is red.

If the mouse is red then the mouse visits the tiger.

If something visits the tiger then the tiger chases the mouse.
If something chases the tiger and the tiger chases the mouse
then it sees the mouse.

If something sees the mouse then it sees the dog.

If something sees the dog then it chases the mouse.

O-D-D-OHD-O-O

Something
chases the tiger

abhoOn =

No

Figure 6: Failure Examples of Bi-encoder (ST5) Retrieval
where blue nodes indicate the the leftover nodes and red are
the missing nodes

Table 10: Storage footprint for GMR and bi-encoder in GB.
GMR * is a model of GMR with early stopping. GMR shows
average of 73.49% reduction on total memory usage compare
to the bi-encoder model.

Dataset Model Retriever Index  Total
MDR 0.48 15.33 15.81

HotpotQA GMR 2.75 2.04 4.79
GMR * 2.75 0.20 2.95

Shorter retrieval sequences result in a higher in-
dex decrease rate since bi-encoder retrievers use
a fixed-size dense embedding regardless of the se-
quence length, whereas GMR stores fewer tokens
for shorter sequences. Moreover, when the num-
ber of retrieval sequences in the corpus increases,
the storage footprint of the bi-encoder model in-
creases linearly, whereas that of GMR increases
more slowly as it needs to store only the additional
token ids (integers) that are not in the prefix tree.

C.14 DSI

As DSI (Tay et al., 2022) is not open-sourced, we
reproduce both the model and the dataset (NQ-10k)
ourselves. In Table 11, we show results of DSI*

Table 11: Result of NQ-10k dataset of our reproduced DSI
model (DST*#). DSI are results from Table 3 of Tay et al. (2022).
Although we tried to replicate the same setting as in DSI since
the dataset NQ-10k is unreleased, the DSI and DSI* datasets
may differ. We use T5-base with initial checkpoint from Wolf
et al. (2020). We did not report the score of the Semantic
String Docid method since both Hits@1 and Hits@ 10 of DSI*
are very low.

Method Model Hits@l Hits@10
DSI 13.0 38.4
Atomic Docid
omie Zock DSI* 382 60.1
. . . DSI 28.1 48.0
Naive String Docid DS 276 370

and DSI which DSI* is our reproduced model and
DSI is the model from the original paper. For the
Atomic Docid method, DSI* shows near twice the
performance of DSI in both Hits@1 and Hits@10.
For the Naive String Docid method, DST* shows
near 80% of DSI performance in Hits@1 and
Hits@10.

In Table 3, we could see that DSI especially
shows a low recall score in StrategyQA dataset,
which has a corpus set four times larger than
the other two datasets (EG-Open and EntailBank).
Such tendency of the performance degradation as
the size of the target corpus increases can also be
seen in the DSI paper when comparing the result
between NQ-10k and NQ-320k. These results sug-
gest the possible difficulty of expanding to a larger
corpus set in DSI unlike GMR.

C.2 Analysis
C.2.1 Manual Analysis on HotpotQA

We conduct manual analysis on HotpotQA by com-
paring the top-2 prediction result of the GMR and
MDR, a bi-encoder retrieval model. From the two
question categories in HotpotQA (bridge and com-
parison questions), we manually inspect 30 sam-
pled examples where one model fits and the other
is wrong. MDR mostly got wrong by missing the
second hop item though it got the first hop correct
and GMR was wrong for cases where the first-hop
item is not written explicitly in the query but by
sharing a specific part of a sentence. When the item
is written explicitly in the query, GMR tend to get
it correct, which shares with the result that GMR
shows a higher score on comparison questions than
MDR. We suggest this result is because GMR can
directly cross-encode between the input and the
output without any information loss.

To be specific, we divide the error case into four:
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(1) When the first-hop retrieval item is not written
explicitly in the query but by sharing a specific part
of a sentence.

(2) Though it is written explicitly in the query, it
retrieves the wrong document by giving attention
to an irrelevant part of the query.

(3) Detail of the title is wrong (i.e., when the gold
document has the title Do you Love Me (Not That 1
Can Dance), the model retrieves a document with
the title Do you Love Me (2NEI song) instead;
when do you love me is in a query, the model misses
to understand the details correctly.)

(4) The retriever got the first hop correct but failed
to retrieve the second hop item correctly.

When comparing the number of models matched
in the bridge question with each error case, among
the four cases, MDR is often wrong in the second
(1.3 times) and fourth cases (2.2 times), and the
GMR is most often wrong in the first case (6 times)
along with the third case (2.8 times)'>.

C.2.2 BottleNeck Problem in Bi-Encoder
Models

Previous work has shown the inherent limitations
of bi-encoder approaches; by encoding all infor-
mation in given text into fixed-size embedding, it
has shown a bottleneck problem (Luan et al., 2021).
By adding a linear layer at the top of the model
and decreasing the dimension, we could see that
such a bottleneck problem still holds in our bi-
encoder models in multi-hop retrieval tasks. As in
Figure 7, as the embedding size decreases from
1028 to 128, hop-R@5 of the bi-encoder retriever
monotonically decreases. The x-axis is the number
of hops in multi-hop retrieval tasks and the y-axis
is the score of hop-R@5. For all three datasets (En-
tailBank, EG-Open, and StrategyQA), we can see
that performance of the bi-encoder tends to degrade
as (1) the number of hops increases after a certain
threshold value and (2) as the size of embedding
decreases.

15the value in parentheses shows the ratio of the error rate
compared to the other model
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Figure 7: We plot hop-R@5 (y-axis) over number of hops in multi-hop retrieval task (x-axis) in the figure. As we experiment on
ST5 using T5-large, the initial embedding size is 1024. We experiment by reducing or retaining the 1024 embedding to 1024
(red), 512 (orange), 256 (blue), and 128 (green) dimensions by adding a linear layer at the end of the model. For all three datasets,
we can see that performance of the bi-encoder tends to degrade as (1) the number of hops increases after a certain threshold
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value and (2) as the size of embedding decreases.
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