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Abstract

Singular value decomposition (SVD) is one of
the most popular compression methods that ap-
proximate a target matrix with smaller matrices.
However, standard SVD treats the parameters
within the matrix with equal importance, which
is a simple but unrealistic assumption. The pa-
rameters of a trained neural network model may
affect the task performance unevenly, which
suggests non-equal importance among the pa-
rameters. Compared to SVD, the decomposi-
tion method aware of parameter importance is
the more practical choice in real cases. Unlike
standard SVD, weighted value decomposition
is a non-convex optimization problem that lacks
a closed-form solution. We systematically in-
vestigated multiple optimization strategies to
tackle the problem and examined our method
by compressing Transformer-based language
models. Further, we designed a metric to pre-
dict when the SVD may introduce a significant
performance drop, for which our method can
be a rescue strategy. The extensive evaluations
demonstrate that our method can perform bet-
ter than current SOTA methods in compressing
Transformer-based language models.

1 Introduction

Transformer-based language models such as BERT
(Devlin et al., 2018) have obtained significant suc-
cess in a variety of Natural Language Processing
tasks, such as language modeling (Radford et al.,
2018), text classification (Wang et al., 2018), ques-
tion answering (Rajpurkar et al., 2016), and sum-
marization (Liu, 2019). Despite their success, these
models usually contain millions or even billions of
parameters, pre-trained by the large corpus. How-
ever, the downstream tasks may only focus on a
specific scenario, such that only a small amount of
parameters in the big Transformer model will con-
tribute to the performance of the target task. Also,
the massive size of Transformer models prohibits
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their deployments to resource-constrained devices.
Therefore, compression of the Transformer-based
language model attracts extensive interests.

Low-rank factorization (Golub and Reinsch,
1971; Noach and Goldberg, 2020) aims to approx-
imate each parameter matrix in the trained model
by two smaller matrices. This line of compression
strategy will naturally inherit the knowledge of the
big trained model without expensive generic re-
training, and is the orthogonal direction to other
compression approaches such as Knowledge dis-
tillation (Sun et al., 2019; Sanh et al., 2019; Jiao
et al., 2019) or Quantization (Shen et al., 2020;
Zhao et al., 2021).

However, applying standard SVD to approxi-
mate the learned weights often results in a signifi-
cant task performance drop. Previous work shows
that this phenomenon may be caused by a strong
assumption held by the standard SVD, that the pa-
rameters in the matrix are equally crucial to the
performance (Hsu et al., 2021). Also, it has been
observed that different parameters in Transformer
models have different impacts on the overall task
performance (Shen et al., 2020).

Following FWSVD (Hsu et al., 2021), we utilize
Fisher information (Pascanu and Bengio, 2014)
to weigh the importance of parameters, so that
the objective of matrix factorization will jointly
consider matrix reconstruction error and the tar-
get task performance. In the standard SVD, all
the local minima are saddle points, ensuring a
closed-form global optimal solution (Srebro and
Jaakkola, 2003). This property no longer holds true
to our new objective weighted by Fisher informa-
tion. Without the closed-form solution, we revert
to the numerical optimization methods to minimize
the weighted objective. As our method can provide
a more accurate solution than FWSVD (Hsu et al.,
2021), we name our proposed method as TFWSVD
(True Fisher Weighted SVD). Our results reveal the
hybrid optimizer we called Adam_SGD can best
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fit our problem, with its switching point estimated
by the row-based analytic solution. We also in-
vestigated the scenarios where SVD fails, under
the guidance of the metric we introduced to mea-
sure the variance of parameter importance, with
the example of analyzing the matrices within the
Transformer blocks.

In summary, this work makes the following con-
tributions: (1) we provide several optimization
methods to search for the best numerical solution
for low-rank estimation weighted by the Fisher in-
formation; (2) we perform extensive evaluations
on various language tasks, showing our TFWSVD
achieves better performance than the SOTA com-
pression methods, and can further compress already
compact models; (3) through the analysis of factor-
izing sub-structures inside the Transformer blocks,
we provide the guide about when SVD may fail but
TFWSVD can retain the performance.

2 Background

2.1 Model Compression with SVD

Singular value decomposition (SVD) decomposes
a matrix, e.g., W∈ RN×M into three matrices:

W = USVT ≈ UrSrV
T
r , (1)

where U∈ RN×l, V∈ RM×l, and l is the rank of
matrix W. S is a diagonal matrix of non-zero sin-
gular values diag(σ1, , ..., σl), where σ1 ≥ σ2 ≥
· · ·σl > 0. Ur, Sr, and Vr represent the truncated
matrices with rank r and approximate the original
matrix with a less total number of parameters.

The computation of a linear layer in neural net-
works can be rewritten as below with input data
X∈ R1×N , weight matrix W∈ RN×M , and bias
b∈ Rl×M :

Z = XW + b ≈ (XUrSr)V
T
r + b. (2)

The typical implementation of factorization is to
replace the large W with two smaller linear lay-
ers: 1) The weight matrix of the first layer is US,
which has Nr parameters without bias. 2) While
the weight matrix of the second layer is V, with
Mr parameters plus bias. The truncation happens
when r is less than l. For example, if the total
number of parameters for approximating W is
Nr + Mr, then the reduced number of parame-
ters will be NM − (Nr +Mr).

2.2 Fisher information

A classical way to measure the importance of
parameters is through the observed information,
i.e.Fisher information. It measures the amount of
information that an observable dataset D carries
about a model parameter w. The accurate values of
Fisher information are generally intractable since
the computation will require marginalizing over the
data D. In practice, the empirical Fisher informa-
tion is estimated as follows:

Iw = E

[(
∂

∂w
log p(D|w)

)2
]

≈ 1

|D|

|D|∑

i=1

(
∂

∂w
L(di;w)

)2

= Îw.

(3)

Given a target task objective L (e.g., cross-entropy
for a classification task), the estimated information
Îw accumulates the squared gradients over the train-
ing data di ∈ D. The parameters that cause large
absolute gradient of the task objective will have a
large value in Îw, and are considered important to
the target task.

2.3 Related works

The report of applying SVD to the Transformer lay-
ers is scarce. Several previous works applied SVD
to compress the word embedding layer (Chen et al.,
2018a; Acharya et al., 2019). Although (Noach
and Goldberg, 2020) combined knowledge distil-
lation to fine-tune the resulting compressed model,
they didn’t address the issue of poor performance
when fine-tuning is not applied. Experiments show
that our proposed method can retrain most of the
performance, providing a much better initialization
for the fine-tuning.

The use of Fisher information has appeared in
many problem settings that also need to estimate
the importance of model parameters, for example,
to avoid catastrophic forgetting in continual learn-
ing (Kirkpatrick et al., 2017; Hua et al., 2021) or
model pruning (Liu et al., 2021; Molchanov et al.,
2019b). However, none of these work has explored
its potential in assisting low-rank approximation
for model compression.

Most previous work seeking the numerical so-
lution for low-rank approximation is designed for
unweighted cases, with applications such as pre-
dicting the missing values recommendation system
(Yu et al., 2014; Zhou et al., 2008). Also, a few
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attempts have been made to solve the weighted low-
rank approximation problem through EM-based al-
gorithm (Srebro and Jaakkola, 2003), or alternating
least squares (He et al., 2016).

The closest previous work to this paper is
FWSVD (Hsu et al., 2021), which points out that
the “even importance” assumption held by SVD
may cause a performance drop. FWSVD also uti-
lizes Fisher information to weigh the importance
of parameters. However, during the decomposition
process, FWSVD assumes that parameters within
each weight matrix row share the same importance
value, which is still a strong assumption. Exper-
imental results show that our TFWSVD can find
more accurate solutions than FWSVD, as each pa-
rameter is associated with its own importance in
TFWSVD.

3 Method

3.1 Low-rank factorization objective weighted
by Fisher information

The objective of the generic low-rank approx-
imation is to minimize the Frobenius norm
||W −AB||2, which is the sum squared differ-
ences of a reconstructed matrix AB to the target
matrix W. As mentioned above, Singular value
decomposition (SVD) can solve this problem effi-
ciently by having A = US and B = VT. As the
importance of each element wij in W can be cal-
culated through its Fisher information, we would
like to find the reconstructed matrix AB that mini-
mizes the weighted Frobenius distance J(A,B) as
follows (⊗ denotes element-wise multiplication):

J(A,B) = Î⊗ (W −AB)2

=
∑

i,j

Îwi,j (wi,j − aTi bj)
2. (4)

To prevent over fitting, L2 regularization terms con-
trolled by parameter λ can be added to the objec-
tive, so that Equation (4) can be rewritten as:

J(A,B) =
∑

i,j

Îwi,j (wi,j − aTi bj)
2

+ λ(
∑

i

||ai||2 +
∑

j

||bj ||2).
(5)

3.2 Optimization methods

SVD has an analytic solution, since all of its local
minima are global. However, this can not hold true

when weights are introduced. Without a closed-
form solution, we discuss several numerical opti-
mization methods to minimize J(A,B).

3.2.1 Alternating Least Squares
Although the optimization problems in (4) and (5)
are non-convex, they can be converted to quadratic
problems with globally optimal solutions, if A or
B is fixed. Therefore, Alternating Least Squares
(ALS) is suitable to solve such problems (Hastie
et al., 2015). ALS will alternately optimize A or
B by keeping the other one fixed, and decrease
J(A,B) until convergence. When the other ma-
trix is fixed, minimizing J(A,B) with respect to
A or B is equivalent to minimize the following
objectives:

J(ai) = ||̂IW[i,:]
(W[i,:] −Bai)||2 + λ||ai||2

J(bj) = ||̂IW[:,j]
(W[:,j] −Abj)||2 + λ||bj||2,

(6)
which can lead to the closed-form solutions:

ai = (BTÎW[i,:]
B+ λΣ)−1BTÎW[i,:]

W[i,:]

bj =(ATÎW[:,j]
A+ λΣ)−1ATÎW[:,j]

W[:,j]

,

(7)
where Σ is the identity matrix, while ÎW[i,:]

and
ÎW[:,j]

are the Fisher information vector of i-th row
and j-th column in original matrix W, respectively.

3.2.2 Stochastic Gradient Descent
Stochastic Gradient Descent (SGD) is also shown
to be effective for matrix factorization problems
(Koren et al., 2009). Specifically in our problem,
each update of SGD can be represented as:

ai ← ai + 2η(ewijbj − λai)

bj ← bj + 2η(ewijai − λbj),
(8)

where η is the learning rate, and ewi,j =

Îwi,j (wi,j − aTi bj). More generally, the iterations
of SGD can be described as:

h(k) ← h(k−1) − η∇J(h(k−1)), (9)

where h(k) denotes the k-th iterate that can be sub-
stituted by ai or bj.

3.2.3 Adaptive Moment Estimation
SGD will scale gradient uniformly in all directions,
making the training process inefficient and sensi-
tive to the learning rate. Several adaptive methods
have been proposed to overcome this shortcom-
ing, among which Adaptive Moment Estimation
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(Adam) is one of the most widely used approaches
(Kingma and Ba, 2015). Following the form of
SGD updates shown in (9), the Adam update itera-
tions can be written as:

h(k) ← h(k−1)−η(k−1)·

√
1− β

(k)
2

1− β
(k)
1

· m(k−1)

√
v(k−1) + ε

,

(10)
where h(k) and η are the same as Equation (9),
m(k−1) and v(k−1) are calculated as follows:

m(k−1) = β1m
(k−2) + (1− β1)∇J(h(k−1))

v(k−1) = β2v
(k−2) + (1− β2)∇J(h(k−1))2.

(11)
Although Adam requires minimal tuning and

enjoys fast initial progress, it is not without faults.
Recent work has shown that the solutions found by
Adam can be much worse at generalization than
those found by SGD (Akiba et al., 2017; Ida and
Fujiwara, 2020).

3.2.4 Adam Switching to SGD
Previous studies show that switching from Adam to
SGD may contribute to the performance, however,
the switching point is crucial for the overall per-
formance and usually is task-dependent (Ida and
Fujiwara, 2020). Here we propose a simple method
to calculate the switching point for our Fisher in-
formation weighted matrix factorization problem.

Although weighted SVD does not have a closed-
form solution when each element has its weight,
the optimization problem (5) has a close form in the
case that elements within the same row share the
same weight (Hsu et al., 2021). Therefore, we can
calculate an approximate solution for the optimiza-
tion problem (5) based on row-wise Fisher infor-
mation, which can be solved as the “threshold” for
our switching point from Adam to SGD (Hsu et al.,
2021). If we define the importance for the row i to
be the summation of the row, i.e., ÎWi =

∑
j
ÎWij

and diagonal matrix Î = diag(

√
ÎW1 , ...,

√
ÎWN

),
then the optimization problem of Equation (4) can
be written as:

J(A,B) ≈ Ĵ(A,B) = ||̂IW − ÎAB||2. (12)

Optimization problem (12) can be solved by the
standard SVD on ÎW . If we denote svd(ÎW ) =
(U∗, S∗, V ∗), then the solution of Equation (12)
will be A = Î−1U∗S∗, and B = V ∗T . The value
of Ĵ(A,B) is served as our switching point from

Adam to SGD, that the training process will be
optimized by Adam when the current loss is larger
than Ĵ(A,B), and then taken over by SGD when
its loss is smaller than Ĵ(A,B).

Besides the hard threshold calculated in (12),
we also set a soft threshold that restricts our un-
weighted reconstruction error with the same order
of magnitude as that of SVD. Experiments in Sec-
tion 4.5 show that our switching point can well
balance the speed and convergence of the optimiza-
tion process.

3.3 Metric measuring when SVD may fail
Besides an accurate solution to the J(A,B),
whether TFWSVD can obtain a performance gain
is also decided by the properties of the target ma-
trix W itself. TFWSVD is to capture the different
importance of parameters. However, if the param-
eters in W equally contributed to the model per-
formance, then the standard SVD should be good
enough. Driven by these factors, we are interested
in this question: Is there a method that can “foresee”
when SVD will fail, and TFWSVD can help retain
performance?

Given target matrix W, here we propose a sim-
ple but effective metric called Fisher information
variance φ(W), which is calculated as the variance
of the Lp normalization of its corresponding Fisher
information ÎW:

φ(W) = V ar(
ÎW

max(||̂IW||p, ε)
). (13)

As shown in Section 4.6, this metric can qualita-
tively measure whether the targeted matrix is too
challenging to SVD and therefore needs help from
TFWSVD.

4 Experiment

4.1 Language tasks and datasets
We evaluate our proposed methods and baselines on
the General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2019) and a token
classification task. More details about datasets and
tasks can be found in Appendix A.

4.2 Implementation details and baselines
For generic compact methods (MiniLM, Distil-
BERT, and TinyBERT), we use the models pro-
vided by the original authors as the initialization,
then directly fine-tune them on the training data
of the target task. The fine-tuning is optimized by
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Table 1: Results of CoNLL and GLUE benchmark. G-Avg means the average of GLUE tasks, A-Avg denotes the
average of all tasks, including CoNLL. Our method is the best performer in terms of both average scores.

Task #Param CoNLL CoLA MNLI MRPC QNLI QQP SST-2 STSB G-Avg A-Avg

Bert_base 109.5M 94.1 56.2 84.7 87.4 91.3 87.8 93 88.5 84.1 85.4

distilBERT 67.0M 93.2 49.8 82.2 88.7 89.3 86.7 90.4 86.1 81.9 83.3
MiniLMv2 67.0M 92.2 43.3 84.0 89.1 90.6 86.7 91.4 88.1 81.9 83.2
TinyBERT6 67.0M 93.2 41.2 83.9 90.6 90.6 87.0 92.1 89.4 82.1 83.5

SVD 66.5M 12.0 2.7 35.6 61.4 37.2 60.0 76.7 26.8 42.9 39.0
+ fine-tuning 66.5M 92.4 40.5 82.8 84.1 89.6 87.3 90.9 85.7 80.1 81.6

TVD 66.5M 51.6 2.1 58.8 81.6 66.9 74.1 83.1 75.3 63.1 59.7
+ fine-tuning 66.5M 93.4 41.1 82.4 87.8 89.2 84.6 90.3 87.2 80.4 81.2

FWSVD 66.5M 49.6 13.5 52.8 81.2 52.2 65.7 82.1 68.6 59.4 58.2
+ fine-tuning 66.5M 93.2 49.4 83.0 88.0 89.5 87.6 91.2 87.0 82.2 83.6

TFWSVD 66.5M 86.3 20.6 70.7 79.6 64.4 76.0 87.7 69.0 66.9 69.3
+ fine-tuning 66.5M 94.2 52.2 83.4 89.0 90.3 86.9 91.1 88.5 83.1 84.4

Adam with a learning rate of 2× 10−5 and batch
size of 32 on one GPU.

Besides FWSVD (Hsu et al., 2021) and our pro-
posed TFWSVD, we also provide a baseline using
first-order Taylor expansion for value decomposi-
tion (TVD). The details of TVD can be found in
Appendix B.

For low-rank factorization methods (TFWSVD,
FWSVD, TVD, and SVD), we use the pre-trained
12-layer BERT model (Devlin et al., 2018) as the
start. And then, the large BERT model is fine-
tuned on the task-specific data. Next, we apply the
low-rank factorization, followed by another fine-
tuning. We reported the results with and without
fine-tuning to reveal the native results of low-rank
factorization.

To make a fair comparison, only the linear layers
in the transformer blocks are compressed in this
work. The non-Transformer modules, such as the
token embedding, are not compressed. Previous
works (Chen et al., 2018a) have shown significant
success in applying low-rank factorization to com-
press the embedding layer, which occupies 23.4M
(21.3%) parameters in the standard BERT model.
Thus, the results we reported in this paper can be
further improved by applying our method to non-
transformer modules.

All of our implements are created on the base
of HuggingFace Transformer library (Wolf et al.,
2020). The settings not mentioned use the default
configuration of the HuggingFace Transformer li-
brary. We directly reported the results on the dev
set for all datasets, as hyper-parameter searching is
not involved in our experimental evaluations.

4.3 Performance comparisons with SOTA

Table 1 reports the results of GLUE tasks and one
NER task CoNLL. Our TFWSVD with 66.5M pa-
rameters obtains G-Avg score of 83.1 and A-Avg
score of 84.4, which are better than the scores
of SOTA models (MiniLMv2, TinyBERT6, dis-
tilBERT) requiring generic re-training. TFWSVD
consistently yields good results on all the tasks,
while the other generic re-training methods dis-
play obvious performance variance among differ-
ent tasks. For example, TinyBERT6 is good at
the STSB task but poor at CoLA; oppositely, dis-
tilBERT has strong performance on CoLA but is
weak at STSB.

In the comparisons among low-rank factoriza-
tion methods (TFWSVD, FWSVD, TVD, and
SVD), our TFWSVD beats other methods with ap-
parent better performance in both scenarios with or
without fine-tuning. One interesting phenomenon
is that TVD can yield better results than SVD with-
out fine-tuning. However, after fine-tuning, its ad-
vantages disappear, and SVD can achieve better
average scores (G-Avg and A-Avg). This is not sur-
prising. Similar to our proposed TFWSVD, TVD is
also a loss-aware method that definitely will be bet-
ter than the loss-unaware SVD. But this gap can be
narrowed or even eliminated with fine-tuning since
SVD can also “see” the loss in this case. Therefore,
within loss-aware methods, the weighting metric
itself plays an important role in keeping the perfor-
mance advantage. Also, TFWSVD obtains better
performance than FWSVD, which indicates it is too
“aggressive” for FWSVD to assume that parameters
in the same row share the same importance.
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Table 2: Results of CoNLL and GLUE benchmark with high compression rates. Compared to Table 1, the advantages
of TFWSVD over other two low-rank estimation methods are enlarged in the high compression rate settings.

Task #Param CoNLL CoLA MNLI MRPC QNLI QQP SST-2 STSB G-Avg A-Avg

Bert_base 109.5M 94.1 56.2 84.7 87.4 91.3 87.8 93 88.5 84.1 85.4

SVD 49.9M 2.7 0.2 37.0 0.0 49.5 36.9 58.3 16.5 28.3 25.1
+ fine-tuning 49.9M 92.8 19.3 81.0 82.0 86.6 86.9 89.2 80.6 75.1 77.3
FWSVD 49.9M 6.0 2.4 38.1 0.0 49.5 37.7 58.4 27.1 30.4 27.4
+ fine-tuning 49.9M 92.9 38.7 81.4 80.3 88.0 87.2 88.4 82.9 78.1 80.0
TFWSVD 49.9M 6.0 57.0 55.3 30.3 49.6 60.8 79.1 53.7 55.1 49.0
+ fine-tuning 49.9M 93.5 39.3 82.2 88.3 88.8 87.0 89.9 87.0 80.4 82.0

SVD 37.2M 2.2 0.0 32.5 0.0 49.5 3.4 51.4 5.5 20.3 18.1
+ fine-tuning 37.2M 90.4 13.8 78.0 82.0 79.6 84.1 87.5 58.7 69.1 71.7
FWSVD 37.2M 0.0 0.0 35.4 0.0 49.5 0.0 51.0 7.9 20.5 18.0
+ fine-tuning 37.2M 3.5 18.7 78.2 78.6 82.3 84.5 88.9 67.9 71.3 62.8
TFWSVD 37.2M 11.6 4.5 35.8 0.0 49.5 55.1 72.7 32.8 35.8 32.7
w fine-tuning 37.2M 91.9 21.4 79.1 85.0 84.3 85.9 89.0 86.0 75.8 77.8

Table 3: Weighted error and standard error of different methods at their final stages. The weighted error is J(A,B)
in (4), and the standard error is ||W − AB||2. Adam and Adam_SGD are trained 50,000 steps, while ALS is
trained for 2.5 million steps and SGD is trained for 3 million steps.

SVD Closed-Form SGD Adam ALS Adam_SGD

Weighted error 1.34E-05 9.87E-06 6.71E-06 1.06E-05 9.30E-06 1.28E-06
Standard error 6.57E-11 6.80E-11 2.38E-10 4.43E-11 2.31E-07 6.14E-11

4.4 Under high compression rates

In this part, we compared low-rank methods
under high compression rates. Because TVD
didn’t show an apparent advantage over SVD,
here we mainly focus on comparing our proposed
TFWSVD, FWSVD, and standard SVD.

As can be seen from Table 2, TFWSVD always
enjoys obvious advantages over the other two meth-
ods. Also, the performance gap between TFWSVD
and FWSVD is enlarged as the compression rate
goes higher. In fact, under the extremely compact
setting of 37.2M, FWSVD shows worse perfor-
mance compared to SVD. This phenomenon further
proves that the row-based importance assumption
held by FWSVD may hurt the performance. While
the privilege of TFWSVD always exists and be-
comes more prominent in the high compression
rate of 49.9M and 37.2M. Especially in the sce-
nario without fine-tuning, which can best reveal
the pure performance of low-rank factorization,
TFWSVD has performance scores almost double
that of FWSVD and SVD.

4.5 Optimization methods

In this part, we compare optimization procedures
mentioned in Section 3.2 to identify the best opti-
mizer for our approximation problem.

4.5.1 ALS and SGD

In order to update the latent vectors, ALS needs
O(r2) time to form the r × r matrix, with an addi-
tional O(r3) time to solve the least-squares prob-
lem. Therefore, to reconstruct the target matrix
W ∈ RN×M with rank r, the time complexity of
one ALS iteration is O((M +N)r3 +MNr2). It
has been pointed out that ALS can be speeded up
by parallelly updating each row of A or B indepen-
dently (Zhou et al., 2008). While for SGD, the time
complexity per iteration is only O(MNK). Com-
pared to ALS, SGD seems to be faster in terms
of the time complexity for one iteration. How-
ever, typically it requires more iterations than ALS
to achieve relatively good performance (Yu et al.,
2014). As shown in Table 3, in order to obtain the
performance close to that of Adam/Adam_SGD,
ALS and SGD need 50 ∼ 60 times more steps,
which makes them impractical to be used in the
real-world Transformer compression. Therefore, in
the rest of this part, we will focus on comparing
the performance of Adam and Adam_SGD.

4.5.2 Adam and Adam_SGD

The goal of hybrid optimizer Adam_SGD is to
combine the benefits of Adam (fast initial progress
and minimal efforts in hyperparameter tuning) and
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Figure 1: The performance of SVD and TFWSVD on the STSB task, when only factorizing a particular type
of sub-structures (Key, Query, Value, Attention) in Transformer blocks. The red dash line denotes the original
performance. The numbers marked besides the lines are the metric φ(W) calculated by Equation (13). The values
of φ(W) can well predict the performance of SVD, that matrix with a larger φ(W) will always end up with a larger
performance drop after applying SVD.
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Figure 2: Numerical experiments comparing Adam and
Adam_SGD on STSB. For Adam_SGD, the switching
point from Adam to SGD is around step 22400.

SGD (good convergence and generalization).
As seen from Figure 2, Adam and Adam_SGD

share the same trajectory in the initial steps. Af-
ter the switching point (around 22400 in Figure
2), Adam_SGD converges to a low error solu-
tion (1.28E-06 as shown in Table 3), which is
much smaller than the row-based analytic solution
(9.87E-06). In contrast, Adam fluctuates in perfor-
mance and ends with a much larger error 1.06E-
05. These phenomena prove the effectiveness of
Adam_SGD in solving the weighted Frobenius dis-
tance optimization problem in (4) and (5). And
the reconstruction errors of final solutions obtained
by Adam_SGD are 5∼10 times smaller than the
row-wise approximations.

4.6 Fisher information variance
What is the secret behind TFWSVD’s good perfor-
mance on Transformer-based model compression?

In this part, we utilize the metric Fisher informa-
tion variance φ(W) introduced in Section 3.3 to
reveal the secret by analyzing the sub-structures
inside the Transformer blocks.

According to the implementation of Hugging-
Face Transformer library (Wolf et al., 2020), there
are five kinds of linear layers within the Trans-
former block, which can be set into two groups by
their dimensions: Query, Key, Value, and Multi-
head Attention layers are matrices with the dimen-
sion of 768 × 768; and two feed-forward layers
called Intermediate and Output, are 768× 3072 in
dimension. Figure 1 plot the performance changes
along with varying the rank ratio for matrices with
the dimension of 768 × 768, when only decom-
posing one type of sub-structure. More results are
plotted in Figure 3 in Appendix.

Compared to the overall performance compari-
son in Section 4.3, the purpose of this experiment is
to evaluate the performance of SVD and TFWSVD
on the finer-level sub-structures within Transformer
blocks. Taking Figure 1a for example, the yellow
line denoting “Value” means: only the “Value” sub-
structures are decomposed by SVD, while other
types of sub-structures are kept the same as the
original model. We calculate the Fisher informa-
tion variance φ(W) via Equation (13), and mark
the values besides the corresponding sub-structures.
Several observations can be made from Figure 1.

Different matrix has different sensitiveness to
SVD. As shown in Figure 1a, Attention_out layer
is relatively easy to compress. Even with standard
SVD, it can still achieve good performance as low
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Table 4: Results of further compressing the compact
models. TFWSVD successfully reduces the size of
the light-weight models, and achieves slightly better
performances than the original compact models.

Param(M) CoNLL MRPC STSB Avg

DistillBERT 67.0 94.0 88.7 86.1 89.6
w SVD 43.6 93.2 82.9 83.0 86.4
w FWSVD 43.6 93.4 87.9 84.1 88.5
w TFWSVD 43.6 93.6 89.0 87.3 90.0

MiniLMv2 67.0 93.2 89.0 88.1 90.1
w SVD 43.6 93.2 89.0 86.4 89.5
w FWSVD 43.6 93.3 88.8 87.9 90.0
w TFWSVD 43.6 93.6 90.0 88.7 90.8

TinyBERT6 67.0 93.2 90.5 89.4 91.0
w SVD 43.6 93.0 88.5 88.3 89.9
w FWSVD 43.6 93.1 89.0 88.7 90.3
w TFWSVD 43.6 93.2 90.7 89.5 91.1

TinyBERT4 14.3 85.6 89.0 85.9 86.8
w SVD 11.9 88.9 87.1 84.7 86.9
w FWSVD 11.9 88.5 87.6 86.1 87.4
w TFWSVD 11.9 88.6 88.8 87.1 88.2

as a rank ratio 0.1. While compressing matrix In-
termediate is rather difficult, its performance will
drop down to 17% with a rank ratio 0.1.
Metric Fisher information variance φ(W) can
‘foresee” the performance of SVD. In Figure 1a,
decomposing sub-structures with larger φ(W) via
SVD will always cause the more serious perfor-
mance drop. Especially, the performance changes
of sub-structure Query and Key are almost identi-
cal, and their φ(W) are extremely close (1.16E-
03 for Query and 1.17E-03 for Key). This phe-
nomenon implies the metric φ(W) can well reflect
the variance of parameter importance within the
matrix, and therefore can be a good performance
indicator for SVD.
TFWSVD can always help improve the perfor-
mance. Figure 1b shows that applying TFWSVD
will bring significant performance gain to all
the sub-structures. Especially for the challeng-
ing matrix Intermediate (Figure 3b in Appendix),
TFWSVD achieves an excellent performance of
60% at a low-rank ratio 0.1, which is a 200% im-
provement compared to the corresponding SVD
performance 17%.

4.7 Compress the already compact models

The matrix factorization direction is thought to
be orthogonal to other compression methods such
as knowledge distillation. But in practice, perfor-
mance drops are often observed when combining

the different lines of compression technologies. Ta-
ble 4 reports the results of applying TFWSVD,
FWSVD, and SVD to compress the lightweight
models further. In general, TFWSVD can reduce
30% more parameters for the compact models, with
even improved performance. In fact, the perfor-
mance gains by applying TFWSVD are observed
on all compact models in Table 4, while both SVD
and FWSVD will cause performance drops more
or less when combined with those compact mod-
els. These results indicate that SVD and FWSVD
may not be fully integrated with other compres-
sion technologies due to the the strong assumptions
they held. And our TFWSVD can best explore the
potential of combining other lines of compression
methods with matrix factorization.

4.8 Discussion
The incorrect predictions from the trained model
will bring larger gradients than the correctly labeled
examples, which means these incorrect predictions
may be the better choices to compute Fisher in-
formation. It is different from our intuitions, but
not surprising, since all these examples can reflect
the features of trained parameters. In fact, the mis-
labeled examples may better “describe” the fea-
tures of the trained model (for example, these ex-
amples are around the boundary). Also, we can use
incorrect-only labels to estimate the Fisher infor-
mation to further reduce computation time. More
details can be found in Appendix C.

5 Conclusion

Unlike SVD, there is no closed-form solution
for the weighted low-rank estimation problem,
which therefore has to be approximated via nu-
merical optimization methods. We managed to
obtain the practical solutions through our hy-
brid Adam_SGD optimizer with the specially de-
signed switching point. Our TFWSVD consis-
tently works better than other low-rank factoriza-
tion methods (FWSVD, TVD, and SVD). Com-
pared to SOTA methods that requiring expensive
generic re-training, our TFWSVD shows more sta-
ble performance on various tasks. Also, TFWSVD
can efficiently further compress and optimize the
already compact models. We also investigate the
properties of the targeted matrix, where that SVD
may fail, and TFWSVD can be the rescuer. We
believe our TFWSVD could be the best alternative
to SVD for language model compression.
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6 Limitations

The most significant limitation of TFWSVD is that
it may cost more time than SVD and FWSVD.
Compared to FWSVD, TFWSVD will need more
time in numerical optimization, which is decided
by the number of parameters in a model and is
fixed for all downstream tasks. For GLUE tasks
trained with the BERT model, the extra time cost
of TFWSVD is around 1.5 V100 GPU hours. Also,
both TFWSVD and FWSVD need time for Fisher
information calculation. For example, this calcu-
lation takes about 8 minutes on SST-2 task. And
it can be further reduced to around 5 seconds if
we only use incorrect predictions (see details in
Appendix C).

In summary, compared to SVD and FWSVD,
TFWSVD will cost at least 1.5 more V100 GPU
hours when compressing the BERT model for a
GLUE task. This cost is worthy, considering the
stable performance gain that TFWSVD can bring.
On the other hand, TFWSVD is still a much faster
choice than the generic re-trained compact models
such as distilBERT and MiniLM. For example, dis-
tilBERT needs 720 V100 GPU hours for re-training
a BERT model. Similar to SVD and FWSVD, our
TFWSVD can avoid such expensive re-training and
can be applied to the directly downloaded BERT
model.

7 Ethical Considerations

Our work is to better compress the language model
with an improved low-rank estimation method. For
our experiments, we used open datasets without
sensitive information, which have been widely men-
tioned in previous work. No license is required for
the GLUE dataset, and we have purchased the li-
cense for the CoNLL dataset. In the application
of our model, we do not think there is an obvious
issue that may lead to a risk to ethics.
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A Details of tasks and datasets

We include two single sentence tasks: CoLA
(Warstadt et al., 2018) measured in Matthew’s cor-
relation, SST2 (Socher et al., 2013) measured in
classification accuracy; three sentence similarity
tasks: MRPC (Dolan et al., 2005) measured in
F-1 score, STS-B (Cer et al., 2017) measured in
Pearson-Spearman correlation, QQP (Chen et al.,
2018b) measured in F-1 score; and three natural
language inference tasks: MNLI (Williams et al.,
2018) measured in classification accuracy with the
average of the matched and mismatched subsets,
QNLI (Rajpurkar et al., 2016) measured in accu-
racy. The token classification task we used is the
named entity recognition (NER) on the CoNLL-
2003 dataset (Sang and De Meulder, 2003). In
summary, our evaluation includes eight different
natural language tasks.

B TVD

In this section, we provide the details about the
baseline using first-order Taylor expansion for
value decomposition (TVD). Following (Hou et al.,
2020; Voita et al., 2019; Molchanov et al., 2019a),
we utilize the first-order Taylor expansion as the
alternative importance score for matrices:

Tw = |L − L¬w| (14a)

= |L − (L − ∂L
∂w

(w − 0) +Rw=0)| (14b)

≈ |∂L
∂w

w|. (14c)

As shown in equation 14a, the intuition behind
TVD is that the importance of a parameter w can
be calculated by the variation in the training loss
when removing this parameter. If we ignore the
remainder Rw=0, then we can simply calculate the
importance via equation 14c, which is the product
of the parameter value and its 1st-order gradient.

C Effect of incorrect predictions

In this section, we evaluate whether the incor-
rect predictions will have negative impacts on
the estimation of Fisher information. In order to
achieve this goal, we report the performance of
classification tasks in Table 5, when we use in-
correctly/correctly predicted examples to estimate
Fisher information.

Several observations can be made as follows.
First, the final performances are close, no mat-
ter using correct-only examples, incorrect-only

examples, or all examples. It demonstrates all
kinds of examples can somehow reflect the impor-
tance of parameters. Meanwhile, the performances
using all examples are always the best, confirming
the better estimation of empirical Fisher informa-
tion with more data. Second, using the incorrect-
only examples will generate bigger values and
better performance than using correct-only pre-
dictions. Although only 1-2% examples are incor-
rectly predicted, choosing these examples to esti-
mate Fisher information will produce close num-
bers to those generated using all examples. This is
because Fisher information is calculated via loss,
and incorrect predictions will produce larger losses
than the correct predictions. And compared to us-
ing correct-only examples, computations through
incorrect-only examples may even bring better re-
sults for most tasks.

In summary, the wrong labeled examples will
generate larger Fisher information, but it doesn’t
mean that the Fisher information learned from the
incorrectly labeled data is “wrong”. Instead, the
mislabeled examples are better choices than correct
predictions, which will produce better results with
fewer computations.

D Training Time

This part discusses the training time of different
approaches mentioned in this paper.
TFWSVD versus FWSVD, TVD, and SVD. First,
we compare the time costs of low-rank estimation
methods SVD, TVD, FWSVD, and our proposed
TFWSVD. In general, SVD is the fastest method
that can be done immediately as it has a close-
form solution. FWSVD is the second fast method,
which needs time for Fisher information calcula-
tion. TFWSVD and TVD will cost more time in
the numerical optimization process.

1. FWSVD versus SVD: Compared to SVD,
FWSVD needs extra time for Fisher informa-
tion calculation. The time of this process is
similar to one epoch of regular training. For
example, SST-2 task in this paper takes about
8 minutes to calculate the Fisher information.
This process is generally fast, and it can be
further reduced to around 5 seconds if we only
use incorrect predictions ( e.g., 1% of all ex-
amples, mentioned in Appendix C).

2. TFWSVD versus FWSVD: Compared to
FWSVD, TFWSVD needs extra time for fac-
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Table 5: Performance comparison of using correct/incorrect labeled examples in the estimation of Fisher information.
All results here are without fine-tuning. #Examples denotes the number of corresponding examples, I-AVG means
the average importance score, F1 and ACC are task specific performance metrics.

MNLI QNLI QQP SST2
#Examples I-AVG ACC #Examples I-AVG ACC #Examples I-AVG F1 #Examples I-AVG ACC

Correct-only 374345 1.21 69.68 103114 0.27 60.79 353888 0.69 75.49 66567 0.05 87.50
Incorect-only 18357 3.55 70.63 1629 1.01 63.48 9958 2.27 75.95 782 0.29 87.39
All 392702 4.76 70.65 104743 1.28 64.42 363846 2.96 76.00 67349 0.34 87.73
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Figure 3: The performance of SVD and TFWSVD on the STSB task, when only factorizing a particular type of
sub-structures (Intermediate, or Output) in Transformer blocks.

torizing the weighted matrices through opti-
mizations. The time cost of factorization is de-
cided by the number of parameters in a model,
and is fixed for all its downstream tasks. For
GLUE tasks trained with the BERT model,
TFWSVD will cost 1.5 more V100 GPU hours
than FWSVD.

3. TFWSVD versus TVD: TFWSVD and TVD
will cost the same time as these approaches
are almost the same except for the weighting
scheme.

TFWSVD versus generic re-trained models. The
generic re-trained compact models such as distil-
BERT and MiniLMv2 require a large amount of
re-training time. For example, distilBERT needs
720 V100 GPU hours for retraining a pre-trained
BERT model. Compared to these methods, our
TFWSVD is much faster, since TFWSVD can be
applied to the directly downloaded BERT model
without expensive re-training.
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