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Abstract

We address the general task of structured com-
monsense reasoning: given a natural language
input, the goal is to generate a graph such as
an event or a reasoning-graph. To employ large
language models (LMs) for this task, existing
approaches “serialize” the output graph as a
flat list of nodes and edges. Although feasi-
ble, these serialized graphs strongly deviate
from the natural language corpora that LMs
were pre-trained on, hindering LMs from gen-
erating them correctly. In this paper, we show
that when we instead frame structured common-
sense reasoning tasks as code generation tasks,
pre-trained LMs of code are better structured
commonsense reasoners than LMs of natural
language, even when the downstream task does
not involve source code at all. We demonstrate
our approach across three diverse structured
commonsense reasoning tasks. In all these
natural language tasks, we show that using
our approach, a code generation LM (CODEX)
outperforms natural-LMs that are fine-tuned
on the target task (e.g., T5) and other strong
LMs such as GPT-3 in the few-shot setting.
Our code and data are available at https:
//github.com/madaan/CoCoGen .

1 Introduction

The growing capabilities of large pre-trained lan-
guage models (LLMs) for generating text have en-
abled their successful application in a variety of
tasks, including summarization, translation, and
question-answering (Wang et al., 2019; Raffel et al.,
2019; Brown et al., 2020; Chowdhery et al., 2022).

Nevertheless, while employing LLMs for natu-
ral language (NL) tasks is straightforward, a ma-
jor remaining challenge is how to leverage LLMs
for structured commonsense reasoning, including
tasks such as generating event graphs (Tandon et al.,
2019), reasoning graphs (Madaan et al., 2021a),
scripts (Sakaguchi et al., 2021), and argument ex-
planation graphs (Saha et al., 2021). Unlike tradi-

tional commonsense reasoning tasks such as read-
ing comprehension or question answering, struc-
tured commonsense aims to generate structured
output given a natural language input. This family
of tasks relies on the natural language knowledge
learned by the LLM, but it also requires complex
structured prediction and generation.

To leverage LLMs, existing structured common-
sense generation models modify the output format
of a problem. Specifically, the structure to be gen-
erated (e.g., a graph or a table) is converted, or
“serialized”, into text. Such conversions include
“flattening” the graph into a list of node pairs (Fig-
ure 1d), or into a specification language such as
DOT (Figure 1c; Gansner et al., 2006).

While converting the structured output into text
has shown promising results (Rajagopal et al.,
2021; Madaan and Yang, 2021), LLMs struggle
to generate these “unnatural” outputs: LMs are
primarily pre-trained on free-form text, and these
serialized structured outputs strongly diverge from
the majority of the pre-training data. Further, for
natural language, semantically relevant words are
typically found within a small span, whereas neigh-
boring nodes in a graph might be pushed farther
apart when representing a graph as a flat string.

Thus, a language model which was trained on
natural language text is likely to fail to capture
the topology of the graph. Consequently, using
LLMs for graph generation typically requires a
large amount of task-specific training data, and
their generated outputs show structural errors and
semantic inconsistencies, which need to be fur-
ther fixed either manually or by using a secondary
downstream model (Madaan et al., 2021b).

Despite these struggles, the recent success of
large-language models of code (Code-LLMs; Chen
et al., 2021b; Xu et al., 2022) for tasks such as
code generation from natural language (Austin
et al., 2021; Nijkamp et al., 2022), code comple-
tion (Fried et al., 2022), and code translation (Wang
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Take the pies out to cool Open cabinet drawer

Take out several plates

Begin putting
pies on plate

Fill pies onto
plates evenly

Serve the potpies on a plate

(a) The script G

class Tree:

goal = "serve the potpies on a plate"

def __init__(self):
# nodes
take_pies_out_to_cool = Node()
open_cabinet_drawer = Node()
take_out_several_plates = Node()
...
# edges
take_pies_out_to_cool.children =

[take_out_several_plates]
open_cabinet_drawer.children =

[take_out_several_plates]
...

(b) G converted to Python code Gc using our approach

digraph G {
begin -> take_pies_out_to_cool;
begin -> open_cabinet_drawer;
take_pies_out_to_cool ->

take_out_several_plates;
open_cabinet_drawer ->

take_out_several_plates;
take_out_several_plates ->

begin_putting_pies_on_plates;
begin_putting_pies_on_plates ->

serve_potpies_on_plate;
fill_pies_onto_plates_evenly ->

serve_potpies_on_plate;
serve_potpies_on_plate -> end;

}

(c) Straightforward encodings of the graph using the “DOT”

[
(take_pies_out_to_cool,

take_out_several_plates),
(open_cabinet_drawer,

take_out_several_plates),
(take_out_several_plates,

begin_putting_pies_on_plates),
(take_out_several_plates,

fill_pies_onto_plates_evenly),
(begin_putting_pies_on_plates,

serve_potpies_on_plate),
(fill_pies_onto_plates_evenly,

serve_potpies_on_plate),
(serve_potpies_on_plate, end)

]

(d) Text format, or as a list of edges (node pairs)

Figure 1: An illustration of COCOGEN for the task of script generation. An input graph (1a) is typically represented
using the DOT format (1c) or as a list of edges (1d), which allows modeling the graph using standard language
models. These popular choices are sufficient in principle; however, these formats are loosely structured, verbose, and
not common in text corpora, precluding language models from effectively generating them. In contrast, COCOGEN
converts structures into Python code (1b), allowing to model them using large-scale language models of code.

et al., 2021), show that Code-LLMs are able to per-
form complex reasoning on structured data such
as programs. Thus, instead of forcing LLMs of
natural language (NL-LLMs) to be fine-tuned on
structured commonsense data, an easier way to
close the discrepancy between the pre-training data
(free-form text) and the task-specific data (com-
monsense reasoning graphs) is to adapt LLMs that
were pre-trained on code to structured common-
sense reasoning in natural language.

Thus, our main insight is that large language
models of code are good structured commonsense
reasoners. Further, we show that Code-LLMs can
be even better structured reasoners than NL-LLMs,
when converting the desired output graph into a for-
mat similar to that observed in the code pre-training
data. We call our method COCOGEN: models

of Code for Commonsense Generation, and it is
demonstrated in Figure 1.

Our contributions are as follows:
1. We highlight the insight that Code-LLMs

are better structured commonsense reasoners
than NL-LLMs, when representing the desired
graph prediction as code.

2. We propose COCOGEN: a method for
leveraging LLMs of code for structured
commonsense generation.

3. We perform an extensive evaluation across
three structured commonsense generation
tasks and demonstrate that COCOGEN vastly
outperforms NL-LLMs, either fine-tuned or
few-shot tested, while controlling for the num-
ber of downstream task examples.

4. We perform a thorough ablation study, which
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shows the role of data formatting, model size,
and the number of few-shot examples.

2 COCOGEN: Representing
Commonsense structures with code

We focus on tasks of structured commonsense gen-
eration. Each training example for such tasks is
in the form (T ,G), where T is a text input, and G
is the structure to be generated (typically a graph).
The key idea of COCOGEN is transforming an out-
put graph G into a semantically equivalent program
Gc written in a general-purpose programming lan-
guage. In this work, we chose Python due to its
popularity in the training data of modern Code-
LLMs (Xu et al., 2022), but our approach is ag-
nostic to the programming language. The code-
transformed graphs are similar in their format to
the pre-training data of Code-LLMs, and thus serve
as easier to generalize training or few-shot exam-
ples than the original raw graph. COCOGEN uses
Code-LLMs to generate Gc given T , which we
eventually convert back into the graph G.

We use the task of script generation (PROSCRIPT,
Figure 1) as a running example to motivate our
method: script generation aims to create a script (G)
to achieve a given high-level goal (T ).

2.1 Converting (T ,G) into Python code

We convert a (T ,G) pair into a Python class or
function. The general procedure involves adding
the input text T in the beginning of the code as
a class attribute or descriptive comment, and en-
coding the structure G using standard constructs
for representing structure in code (e.g., hashmaps,
object attributes) or function calls. The goal here is
to compose Python code that represents a (T ,G)
pair, but retains the syntax and code conventions of
typical Python code.

For example, for the script generation task, we
convert the (T ,G) pair into a Tree class (Fig-
ure 1b). The goal T is added as class attribute
(goal), and the script G is added by listing
the nodes and edges separately. We first in-
stantiate the list of nodes as objects of class
Node. Then, the edges are added as an attribute
children for each node (Figure 1b). For ex-
ample, we instantiate the node “Take out sev-
eral plates” as take_out_several_plates
= Node(), and add it as a child of the node
take_pies_out_to_cool.

While there are multiple ways of representing

a training example as a Python class, we found
empirically that this relatively simple format is the
most effective, especially with larger models. We
analyze the choice of format and its connection
with the model size in Section 4.

2.2 Few-shot prompting for generating G
We focus on large-language models of the scale
of CODEX (Chen et al., 2021a). Due to their pro-
hibitively expensive cost to fine-tune, these large
models are typically used in a few-shot prompting
mode. Few-shot prompting uses k input-output ex-
amples {(xi, yi)}ki=1 to create an in-context prompt:
p = x1 ⊕ y1 ⋅ x2 ⊕ y2 ⋅ . . . ⋅ xk ⊕ yk, where ⊕
is a symbol that separates an input from its output,
and ⋅ separates different examples.

A new (test) input x is appended to the prompt
p (that is: p ⋅ x), and p ⋅ x ⊕ is fed to the model
for completion. As found by Brown et al. (2020),
large language models show impressive few-shot
capabilities in generating a completion ŷ given the
input p ⋅ x ⊕. The main question is how to
construct the prompt?

In all experiments in this work, the prompt p
consists of k Python classes, each representing a(T ,Gc) pair. For example, for script generation,
each Python class represents a goal T and a script
Gc from the training set. Given a new goal T for
inference, a partial Python class (i.e., only specify-
ing the goal) is created and appended to the prompt.
Figure 2 shows such a partial class. Here, the code
generation model is expected to complete the class
by generating the definition for Node objects and
their dependencies for the goal make hot green tea.

class Tree:
goal = "make hot green tea."

def __init__(self):
# generate

Figure 2: COCOGEN uses a prompt consisting of k (5-
10) Python classes. During inference, the test input is
converted to a partial class, as shown above, appended to
the prompt, and completed by a code generation model
such as CODEX.

In our experiments, we used CODEX (Chen et al.,
2021a) and found that it nearly always generates
syntactically valid Python. Thus, the generated
code can be easily converted back into a graph
and evaluated using the dataset’s standard, original,
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metrics. Appendix F lists sample prompts for each
of the tasks we experimented with.

3 Evaluation

We experiment with three diverse structured com-
monsense generation tasks: (i) script genera-
tion (PROSCRIPT, Section 3.2), (ii) entity state
tracking (PROPARA, Section 3.3), and (iii) explana-
tion graph generation (EXPLAGRAPHS, Section 3.4)
Dataset details are included in Appendix D. Despite
sharing the general goal of structured common-
sense generation, the three tasks are quite diverse
in terms of the generated output and the kind of
required reasoning.

3.1 Experimental setup
Model As our main Code-LLM for COCOGEN,
we experiment with the latest version of CODEX

code-davinci-002 from OpenAI1 in few-shot
prompting mode.

Baselines We experimented with the following
types of baselines:

1. Text few-shot: Our hypothesis is that code-
generation models can be repurposed to gen-
erate structured output better. Thus, natural
baselines for our approach are NL-LLMs –
language models trained on natural language
corpus. We experiment with the latest ver-
sions of CURIE (text-curie-001) and
DAVINCI (text-davinci-002), the two
GPT-3 based models by OpenAI (Brown
et al., 2020). For both these models, the
prompt consists of (T ,G) examples, where
G is simply flattened into a string (as in Fig-
ure 1c). DAVINCI is estimated to be much
larger in size than CURIE, as our experiments
also reveal (Appendix A). DAVINCI, popu-
larly known as GPT-3, is the strongest text-
generation model available through OpenAI
APIs.2

2. Fine-tuning: we fine-tune a T5-large model
for EXPLAGRAPHS, and use the results from
Sakaguchi et al. (2021) on T5-xxl for PRO-
SCRIPT tasks. In contrast to the few-shot setup
where the model only has access to a few ex-
amples, fine-tuned models observe the entire
training data of the downstream task.

1As of June 2022
2https://beta.openai.com/docs/models/

gpt-3

Choice of prompt We created the prompt p by
randomly sampling k examples from the training
set. As all models have a bounded input size (e.g.,
4096 tokens for CODEX code-davinci-002
and 4000 for GPT-3 text-davinci-002), the
exact value of k is task dependent: more examples
can fit in a prompt in tasks where (T ,G) is short.
In our experiments, k varies between 5 and 30, and
the GPT-3 baseline is always fairly given the same
prompts as CODEX. To control for the variance
caused by the specific examples selected into p,
we repeat each experiment with at least 3 different
prompts, and report the average. We report the
mean and standard deviations in Appendix I.

COCOGEN: We use COCOGEN to refer to se-
tups where a CODEX is used with a Python prompt.
In Section 4, we also experiment with dynamically
creating a prompt for each input example, using
a NL-LLMs with code prompts, and using Code-
LLMs with textual prompts.

3.2 Script generation: PROSCRIPT

Given a high-level goal (e.g., bake a cake), the
goal of script generation is to generate a graph
where each node is an action, and edges cap-
ture dependency between the actions (Figure 1a).
We use the PROSCRIPT (Sakaguchi et al., 2021)
dataset, where the scripts are directed acyclic
graphs, which were collected from a diverse range
of sources including ROCStories (Mostafazadeh
et al., 2016), Descript (Wanzare et al., 2016), and
Virtual home (Puig et al., 2018).

Let G(V, E) be a script for a high-level goal
T with node and edge sets V and E , respectively.
Following Sakaguchi et al. (2021), we experiment
with two sub-tasks: (i) script generation: gen-
erating the entire script G(V, E) given a goal T ,
and (ii) edge prediction: predicting the edge set E
given the nodes V and the goal T .

Figure 1 shows an input-output example from
PROSCRIPT, and our conversion of the graph into
Python code: we convert each node v ∈ V into an
instance of a Node class; we create the edges by
adding children attribute for each of the nodes.
Additional examples are present in Figure 6

To represent a sample for edge prediction, we
list the nodes in a random order (specified after the
comment # nodes in Figure 1b). The model then
completes the class by generating the code below
the comment # edges.
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BLEU ROUGE-L BLEURT ISO GED Avg(d) Avg(∣V ∣) Avg(∣E∣)
G (reference graph) - - 1.00 0.00 1.84 7.41 6.80

T5 (fine-tuned) 23.80 35.50 -0.31 0.51 1.89 1.79 7.46 6.70

CURIE (15) 11.40 27.00 -0.41 0.15 3.92 1.47 8.09 6.16
DAVINCI (15) 23.11 36.51 -0.27 0.64 1.44 1.74 7.58 6.59
COCOGEN (15) 25.24 38.28 -0.26 0.53 2.10 1.79 7.44 6.70

Table 1: Semantic and structural metrics for the script generation task on PROSCRIPT. T5 is fine-tuned on the entire
dataset, while the few-shot models (CURIE, DAVINCI, CODEX) use 15 examples in the prompt.

Method prec rec F1

fine-tuned
T5 (100) 52.26 52.91 51.89
T5 (1k) 60.55 61.24 60.15
T5 (4k) 75.71 75.93 75.72

few-shot
CURIE (15) 10.19 11.61 10.62
DAVINCI (15) 50.62 49.30 48.92
COCOGEN (15) 57.34 55.44 56.24

Table 2: Precision, recall, and F1 for PROSCRIPT edge-
prediction task. COCOGEN with 15 samples outper-
forms strong few-shot models, and T5 trained on 1k
samples.

Script Generation metrics We denote the script
that was generated by the model as Ĝ, and evaluate
Ĝ vs. G for both semantic and structural similar-
ity. To evaluate semantic similarity, we use BLEU,
ROUGE-L, and the learned metric BLEURT to de-
termine the content overlap. Following Sakaguchi
et al. (2021), we use the following metrics for struc-
tural evaluation of generated scripts:

• Graph edit distance (GED): the number of
required edits (node/edge removal/additions)
to transform Ĝ to G (Abu-Aisheh et al., 2015);

• Graph isomorphism (ISO; Cordella et al.,
2001): determines whether Ĝ and G are iso-
morphic based on their structure, disregarding
the textual content of nodes;

• Graph size: average number of nodes and
edges, (∣G(V )∣, ∣G(E)∣, ∣Ĝ(V )∣, ∣Ĝ(V ))
and the average degree (d(G(V ))), where
the high-level goal is for Ĝ to have as close
measures to G as possible.

Edge Prediction metrics For the edge prediction
task, the set of nodes is given, and the goal is to pre-
dict the edges between them. Following Sakaguchi
et al. (2021), we measure precision, recall, and F1

comparing the true and predicted edges. Specifi-

cally, p = ∣E∩Ê∣∣Ê∣ , r = ∣E∪Ê∣∣E∣ , and F1 = 2pr

p+r .

Results Table 1 shows the results for script gener-
ation. The main results are that COCOGEN (based
on CODEX), with just 15 prompt examples, outper-
forms the fine-tuned model T5 which has been fine-
tuned on all 3500 samples. Further, COCOGEN

outperforms the few-shot NL-LM CURIE across
all semantic metrics and structural metrics. COCO-
GEN outperforms DAVINCI across all semantic met-
rics, while DAVINCI performs slightly better in two
structural metrics.

Table 2 shows the results for edge predic-
tion: COCOGEN significantly outperforms the NL-
LLMs CURIE and DAVINCI. When comparing with
T5, which was fine-tuned, COCOGEN with only 15
examples outperforms the fine-tuned T5 which was
fine-tuned on 100 examples. The impressive per-
formance in the edge-generation task allows us to
highlight the better ability of COCOGEN in captur-
ing structure, while factoring out all models’ ability
to generate the NL content.

3.3 Entity state tracking: PROPARA

The text inputs T of entity state tracking are a
sequence of actions in natural language about a par-
ticular topic (e.g., photosynthesis) and a collection
of entities (e.g., water). The goal is to predict the
state of each entity after the executions of an action.
We use the PROPARA dataset (Dalvi et al., 2018) as
the test-bed for this task.

We construct the Python code Gc as follows, and
an example is shown in Figure 3. First, we de-
fine the main function and list all n actions as
comments inside the main function. Second, we
create k variables named as state_k where k is
the number of participants of the topic. The seman-
tics of each variable is described in the comments
as well. Finally, to represent the state change af-
ter each step, we define n functions where each
function corresponds to an action. We additionally
define an init function to represent the initial-
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Action Entity

water light CO2

Initial states soil sun -

Roots absorb
water from soil roots sun ?

The water flows
to the leaf leaf sun ?

def main():
# init
# roots absorb water from soil
# the water flows to the leaf
# state_0 tracks the location/state water
# state_1 tracks the location/state light
# state_2 tracks the location/state CO2
def init():

state_0 = "soil"
state_1 = "sun"
state_2 = None

def roots_absorb_water_from_soil():
state_0 = "roots"
state_1 = "sun"
state_2 = "UNK"

def water_flows_to_leaf():
state_0 = "leaf"
state_1 = "sun"
state_2 = "UNK"

Figure 3: A PROPARA example (left) and its corresponding Python code (right). We use a string to represent a
concrete location (e.g., soil), UNK to represent an unknown location, and None to represent non-existence.

Model prec rec F1

CURIE 95.1 22.3 36.1
DAVINCI 75.5 47.1 58.0
COCOGEN 80.0 53.6 63.0

Table 3: 3-shots results on PROPARA. All numbers
are averaged among five runs with different randomly
sampled prompts. COCOGEN significantly outperforms
CURIE and DAVINCI.

ization of entity states. Inside each function, the
value of each variable tells the state of the corre-
sponding entity after the execution of that action.
Given a new test example where only the actions
and the entities are give, we construct the input
string until the init function, and we append it to
the few-shot prompts for predictions.

Metrics We follow Dalvi et al. (2018) and mea-
sure precision, recall and F1 score of the predicted
entity states. We randomly sampled three examples
from the training set as the few-shot prompt.

Results As shown in Table 3, COCOGEN

achieves a significantly better F1 score than
DAVINCI. Across the five prompts, COCOGEN

achieves 5.0 higher F1 than DAVINCI on aver-
age. In addition, COCOGEN yields stronger perfor-
mance than CURIE, achieving F1 of 63.0, which is
74% higher than CURIE (36.1).3

In PROPARA, COCOGEN will be ranked 6
th on

3
CURIE often failed to produce output with the desired

format, and thus its high precision and low recall.

the leaderboard.4 However, all the methods above
COCOGEN require fine-tuning on the entire train-
ing corpus. In contrast, COCOGEN uses only 3
examples in the prompt and has a gap of less than
10 F1 points vs. the current state-of-the-art (Ma
et al., 2022). In the few-shot settings, COCOGEN

is state-of-the-art in PROPARA.

3.4 Argument graph generation:
EXPLAGRAPHS

Given a belief (e.g., factory farming should not be
banned) and an argument (e.g., factory farming
feeds millions), the goal of this task is to generate
a graph that uses the argument to either support
or counter the belief (Saha et al., 2021). The text
input to the task is thus a tuple of (belief, argument,

“supports”/“counters”), and the structured output is
an explanation graph (Figure 4).

We use the EXPLAGRAPHS dataset for this
task (Saha et al., 2021). Since we focus on generat-
ing the argument graph, we take the stance as given
and use the stance that was predicted by a stance
prediction model released by Saha et al..

To convert an EXPLAGRAPHS to Python, the
belief, argument, and stance are instantiated as
string variables. Next, we define the graph struc-
ture by specifying the edges. Unlike PROSCRIPT,
the edges in EXPLAGRAPHS are typed. Thus,
each edge is added as an add_edge(source,
edge_type, destination) function call.
We also list the starting nodes in a list instantiated

4As of 10/11/2022, https://leaderboard.
allenai.org/propara/submissions/public
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Factory
Farming Millions

FoodNecessary

Banned

causes

has context desires

has context

not desires

class ExplanationDAG:

def __init__(self):
belief = "factory farming should not be

banned."
argument = "Factory farming feeds millions."
stance = "support"

# Edges
begin = ["factory farming", "millions"]
add_edge("factory farming", "causes", "food")
add_edge("factory farming", "has context",

"necessary")
add_edge("food", "has context", "necessary")
add_edge("necessary", "not desires", "banned")
add_edge("millions", "desires", "food")

Figure 4: An explanation graph (left) and the corresponding Python code (right)

StCA (↑) SeCA (↑) G-BS (↑) GED (↓) EA (↑)

fine-tuned
T5 (150) 12.56 6.03 9.54 91.06 7.77
T5 (1500) 38.19 21.86 29.37 73.09 23.41
T5 (2500) 43.22 29.65 33.71 69.14 26.38

few-shot
CURIE (30) 5.03 1.26 3.95 96.74 2.60
DAVINCI (30) 23.62 10.80 18.46 83.83 11.84
COCOGEN (30) 45.20 23.74 34.68 68.76 23.58

Table 4: Results for EXPLAGRAPHS (eval split). COCOGEN with only 30 examples outperforms the T5 model
which was fine-tuned on 1500 examples, across all metrics.

with a begin variable (Figure 4). Given a test
example, we construct the input until the line of #
Edges and let a model complete the remaining.

Metrics We use the metrics defined by Saha et al.
(2021) (see Section 6 of Saha et al. (2021) for
a detailed description of the mechanisms used to
calculate these metrics):

• Structural accuracy (StCA): fraction of graphs
that are connected DAGs with two concepts
each from belief and the argument.

• Semantic correctness (SeCA): a learned metric
that evaluates if the correct stance is inferred
from a (belief, graph) pair.

• G-BERTScore (G-BS): measures BERTscore-
(Zhang et al., 2020) based overlap between gen-
erated and reference edges .

• GED (GED): avg. edits required to transform
the generated graph to the reference graph.

• Edge importance accuracy (EA): measures the
importance of each edge in predicting the target
stance. A high EA implies that each edge in
the generated output contains unique semantic
information, and removing any edge will hurt.

Results Table 4 shows that COCOGEN with only
30 examples outperforms the T5 model that was
fine-tuned using 1500 examples, across all metrics.
Further, COCOGEN outperforms the NL-LLMs
DAVINCI and CURIE with a text-prompt across all
metrics by about 50%-100%.

4 Analysis

In this section, we analyze the effect of three im-
portant components of COCOGEN: (i) the con-
tributions of Code-LLMs and structured prompt
Gc; (ii) the selection of examples in the in-context
prompt; and (iii) the design of the Python class.

Structured Prompts vs. Code-LLMs Which
component is more important, using a Code-LLMs
or the structured formatting of the input as code?
To answer this, we experimented with a text prompt
with a Code-LLM CODEX, and a code prompt with
an NL-LLM, DAVINCI. Table 5 shows that both
contributions are indeed important: performance
improves for the NL-LLM DAVINCI both when we
use a code prompt, and when we use a Code-LLM.
However when using both a Code-LLM and a code
prompt – the improvement is greater than the sum
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EXPLAGRAPHS PROSCRIPT (edge-prediction)
StCA (↑) SeCA (↑) G-BS (↑) GED (↓) EA (↑) p r F1

DAVINCI + text 33.16 7.14 25.91 77.45 15.9 43.06 41.52 43.06
DAVINCI + code 33.00 15.37 26.15 76.91 16.68 50.62 48.27 49.3

CODEX + text 38.02 18.23 29.46 73.68 19.54 45.31 43.95 44.47
COCOGEN (CODEX + code) 45.20 23.74 34.68 68.76 23.58 57.34 55.44 56.52

Table 5: Teasing apart the contributions of a code generation model and a structured prompt. The experiments show
that both are helpful. DAVINCI, a text generation model, shows marginal improvements with a code prompt (top two
rows). Similarly, CODEX, a code generation model, significantly benefits from a code prompt. Overall, CODEX
with code prompt performs better than the alternatives, across all metrics.

of each of these solely.

Dynamic prompt selection The prompts for all
experiments in Section 3 were created by random
sampling of examples from the training set. Specif-
ically, a set of k (T ,G) pairs are sampled and con-
catenated into a prompt p, which we used for infer-
ence over all examples xtest in the test set. As an
alternative to creating prompts, there is now a grow-
ing interest in customizing the in-context examples
each example xtest. Popular techniques typically
train a retriever, which is used to fetch the closest
examples (Liu et al., 2021; Rubin et al., 2021; Poe-
sia et al., 2021). We also experimented with such
dynamic creation of the prompt, that depends on
the particular test example. Specifically, following
Poesia et al. (2021), we performed knowledge sim-
ilarity tuning (KST): we trained a retriever model
to retrieve the k closest examples for a given input.

Setup p r F1

COCOGEN 57.34 55.44 56.52
COCOGEN + KST 67.11 64.57 65.71

Table 6: Our retrieval mechanism is highly effective for
edge prediction: the closest examples are from similar
domains and the model is able to leverage the informa-
tion for better performance.

The results indicate that the efficacy of dynamic
prompts depends on both the training data and task.
In the edge-prediction sub-task of PROSCRIPT,
edges between events in similar scripts are help-
ful, and Table 6 shows that the model was able to
effectively leverage this information. In the script
generation sub-task of PROSCRIPT, Table 8 shows
that KST provides gains as well (Appendix B).

In EXPLAGRAPHS, we observed that the train-
ing data had multiple examples which were nearly
identical, and thus dynamically created prompts
often included such duplicate examples, effectively
reducing diversity and prompt size (Table 9).

Python Formatting We performed an extensive
study of the effect of the Python format on the
downstream task performance in Appendix G. We
find that: (i) there are no clear task-agnostic Python
class designs that work uniformly well; and that
(ii) larger models are less sensitive to prompt
(Python class) design. In general, our approach
benefits the most from code formats that as similar
as possible to the conventions of typical code.

Human evaluation We conduct human evalua-
tion of the graphs generated by COCOGEN and
DAVINCI to supplement automated metrics. The re-
sults (Appendix C) indicate that human evaluation
is closely correlated with the automated metrics:
for EXPLAGRAPHS, graphs generated by COCO-
GEN are found to be more relevant and correct. For
PROSCRIPT generation, both DAVINCI and COCO-
GEN have complementary strengths, but COCO-
GEN is generally better in terms of relevance.

5 Related work

Structured commonsense reasoning using LLMs
Existing methods for structured commonsense
generation typically flatten the output graphs as
strings (Madaan and Yang, 2021; Madaan et al.,
2021a; Sakaguchi et al., 2021). Consequently,
these methods struggle with generation of well-
formed outputs (Sakaguchi et al., 2021; Madaan
et al., 2021b). In contrast, we address the problem
of structured generation by (1) translating the task
into Python code, and (2) generating code using
large-code generation models.

Code representation for procedural knowledge
reasoning Programs inherently encode rich struc-
tures, and they can efficiently represent task proce-
dures. Existing works leverage the control-flows,
nested functions and API calls of a programming
language such as Python to control the situated
agents in the embodied environment (Sun et al.,
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2019; Zhou et al., 2022; Singh et al., 2022). In
this work, we go beyond these procedural tasks
and show the effectiveness of using Code-LLMs
on broader structured commonsense tasks.

Adapting Code-LLMs for reasoning As code-
generation models (Code-LLMs) are getting in-
creasingly popular, there is a growing interest in
adapting them for a wide range reasoning tasks.
Wu et al. (2022) use CODEX and PaLM (Chowdh-
ery et al., 2022) for converting mathematical state-
ments written in natural language into a formal
structure that can be used for theorem provers, with
moderate success. The task is challenging, as it
involves understanding the concepts used in the
theorem (e.g., set of real numbers) and the complex
relationship between them. Our work is similar in
spirit to Wu et al. (2022), and seeks to leverage
the dual abilities of Code-LLMs for text and sym-
bolic reasoning. However, differently from their
work, we close the gap between the pre-training
data and our tasks by translating our output into
Python code. As our experiments show, this step is
crucial in outperforming text-only and fine-tuned
models. To the best of our knowledge, our work is
the first to transform a natural-language reasoning
problem into code to successfully leverage code
generation methods.

Symbolic reasoning using LLMs The use of
programming languages like LISP (Tanimoto,
1987) and Prolog (Colmerauer and Roussel, 1996)
to process natural language has a long history in
AI. However, the recent progress in large language
models has obviated the need for specialized meth-
ods for symbolic processing. Cobbe et al. (2021)
and Chowdhery et al. (2022) address middle-school
level algebra problem solving using large-language
models in a few-shot setup. These problems require
a model to understand the order in which a set of
operations should be performed over symbols (typ-
ically small integers). In contrast, structured com-
monsense reasoning requires broader information
than supplied in the prompt, while utilizing the
models’ structural generation capabilities for gen-
erating output effectively. Thus, the tasks in our
work push a model to use both its reasoning and
symbolic manipulation capabilities.

6 Conclusion

We present the first work to employ large language
models of code for structured commonsense gen-

eration. By converting the output commonsense
structures to Python code, COCOGEN provides
a simple and effective method for leveraging the
code-generation abilities of Code-LLMs for struc-
tured generation. These results open a promising
direction for structural commonsense reasoning.
We believe that the principles and the methods pre-
sented in this paper are applicable to additional
NLP tasks that require “language understanding”
and structured prediction.
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Limitations

Some experiments in this work are performed with
language models that are not open-sourced, namely
DAVINCI, CURIE, and CODEX. Existing documen-
tation (Brown et al., 2020; Chen et al., 2021b) does
not fully describe the details of these models, such
as the pretraining corpus, model size, and model
biases. Therefore, we can only provide educational
guesses on these details (analysis in Appendix A).
In addition, even though CODEX is free to use for
research as of June 2022, we are unsure whether the
research community will continue to have free ac-
cess in the future. Nonetheless, we release our code
and model outputs to ensure the reproducibility of
our work. Furthermore, in cases where the models
we experiment with reveal any issue, the publicly
available code will allow future investigations.

Another limitation of our work is that we exclu-
sively experiment with datasets in English. Explor-
ing the efficacy of structured generation methods
in cross-lingual settings is an interesting and im-
portant future work.

1392



References
Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel,

and Patrick Martineau. 2015. An exact graph edit
distance algorithm for solving pattern recognition
problems. In An exact graph edit distance algorithm
for solving pattern recognition problems.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welin-
der, Bob McGrew, Dario Amodei, Sam McCandlish,
Ilya Sutskever, and Wojciech Zaremba. 2021a. Eval-
uating Large Language Models Trained on Code.
arXiv:2107.03374 [cs]. ArXiv: 2107.03374.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde, Jared Kaplan, Harri Edwards, Yura
Burda, Nicholas Joseph, Greg Brockman, et al.
2021b. Evaluating large language models trained
on code. arXiv preprint arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. 2021. Training veri-
fiers to solve math word problems. arXiv preprint
arXiv:2110.14168.

Alain Colmerauer and Philippe Roussel. 1996. The
birth of prolog. In History of programming
languages—II, pages 331–367.

Luigi Pietro Cordella, Pasquale Foggia, Carlo Sansone,
and Mario Vento. 2001. An improved algorithm for
matching large graphs. In 3rd IAPR-TC15 workshop
on graph-based representations in pattern recogni-
tion, pages 149–159.

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau
Yih, and Peter Clark. 2018. Tracking state changes in
procedural text: a challenge dataset and models for
process paragraph comprehension. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1595–1604, New Orleans, Louisiana.
Association for Computational Linguistics.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
arXiv preprint arXiv:2204.05999.

Emden Gansner, Eleftherios Koutsofios, and Stephen
North. 2006. Drawing graphs with dot.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
Makes Good In-Context Examples for GPT-$3$?
arXiv:2101.06804 [cs]. ArXiv: 2101.06804.

Kaixin Ma, Filip Ilievski, Jonathan Francis, Eric Ny-
berg, and Alessandro Oltramari. 2022. Coalescing
global and local information for procedural text un-
derstanding. arXiv preprint arXiv:2208.12848.

Aman Madaan, Dheeraj Rajagopal, Niket Tandon, Yim-
ing Yang, and Eduard Hovy. 2021a. Could you give
me a hint ? generating inference graphs for defeasible
reasoning. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
5138–5147, Online. Association for Computational
Linguistics.

Aman Madaan, Niket Tandon, Dheeraj Rajagopal, Pe-
ter Clark, Yiming Yang, and Eduard Hovy. 2021b.
Think about it! improving defeasible reasoning by
first modeling the question scenario. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 6291–6310.

Aman Madaan and Yiming Yang. 2021. Neural lan-
guage modeling for contextualized temporal graph
generation. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 864–881, Online. Association
for Computational Linguistics.

1393

https://arxiv.org/abs/2108.07732
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/N18-1144
https://doi.org/10.18653/v1/N18-1144
https://arxiv.org/abs/2204.05999
https://arxiv.org/abs/2204.05999
http://arxiv.org/abs/2101.06804
http://arxiv.org/abs/2101.06804
https://doi.org/10.18653/v1/2021.findings-acl.456
https://doi.org/10.18653/v1/2021.findings-acl.456
https://doi.org/10.18653/v1/2021.findings-acl.456
https://doi.org/10.18653/v1/2021.naacl-main.67
https://doi.org/10.18653/v1/2021.naacl-main.67
https://doi.org/10.18653/v1/2021.naacl-main.67


Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and evaluation framework for deeper under-
standing of commonsense stories. arXiv preprint
arXiv:1604.01696.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. A conversational paradigm for program
synthesis. arXiv preprint.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari,
Gustavo Soares, Christopher Meek, and Sumit Gul-
wani. 2021. Synchromesh: Reliable code generation
from pre-trained language models. In International
Conference on Learning Representations.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Torralba.
2018. Virtualhome: Simulating household activities
via programs. In 2018 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018, pages
8494–8502. IEEE Computer Society.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Dheeraj Rajagopal, Aman Madaan, Niket Tandon, Yim-
ing Yang, Shrimai Prabhumoye, Abhilasha Ravichan-
der, Peter Clark, and Eduard Hovy. 2021. Curie:
An iterative querying approach for reasoning about
situations.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Ohad Rubin, Jonathan Herzig, and Jonathan Be-
rant. 2021. Learning To Retrieve Prompts for In-
Context Learning. arXiv:2112.08633 [cs]. ArXiv:
2112.08633.

Swarnadeep Saha, Prateek Yadav, Lisa Bauer, and Mohit
Bansal. 2021. ExplaGraphs: An Explanation Graph
Generation Task for Structured Commonsense Rea-
soning. arXiv:2104.07644 [cs]. ArXiv: 2104.07644.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan
Le Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. proScript: Partially Ordered Scripts Genera-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021, pages 2138–2149,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. 2022.
Progprompt: Generating situated robot task plans
using large language models. arXiv preprint
arXiv:2209.11302.

Shao-Hua Sun, Te-Lin Wu, and Joseph J Lim. 2019.
Program guided agent. In International Conference
on Learning Representations.

Niket Tandon, Bhavana Dalvi, Keisuke Sakaguchi, Pe-
ter Clark, and Antoine Bosselut. 2019. WIQA: A
dataset for “what if...” reasoning over procedural text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6076–
6085, Hong Kong, China. Association for Computa-
tional Linguistics.

Steven L Tanimoto. 1987. The elements of artificial
intelligence: an introduction using LISP. Computer
Science Press, Inc.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 3261–3275.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH
Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code un-
derstanding and generation. arXiv preprint
arXiv:2109.00859.

Lilian D. A. Wanzare, Alessandra Zarcone, Stefan
Thater, and Manfred Pinkal. 2016. A crowdsourced
database of event sequence descriptions for the acqui-
sition of high-quality script knowledge. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC’16), pages
3494–3501, Portorož, Slovenia. European Language
Resources Association (ELRA).

Yuhuai Wu, Albert Q Jiang, Wenda Li, Markus N
Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. 2022. Autoformalization with large lan-
guage models. arXiv preprint arXiv:2205.12615.

Frank F Xu, Uri Alon, Graham Neubig, and Vin-
cent J Hellendoorn. 2022. A systematic evaluation
of large language models of code. arXiv preprint
arXiv:2202.13169.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

1394

https://arxiv.org/abs/1604.01696
https://arxiv.org/abs/1604.01696
https://arxiv.org/abs/1604.01696
https://doi.org/10.1109/CVPR.2018.00886
https://doi.org/10.1109/CVPR.2018.00886
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
http://arxiv.org/abs/2104.00814
http://arxiv.org/abs/2104.00814
http://arxiv.org/abs/2104.00814
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://arxiv.org/abs/2112.08633
http://arxiv.org/abs/2112.08633
http://arxiv.org/abs/2104.07644
http://arxiv.org/abs/2104.07644
http://arxiv.org/abs/2104.07644
https://doi.org/10.18653/v1/2021.findings-emnlp.184
https://doi.org/10.18653/v1/2021.findings-emnlp.184
https://doi.org/10.18653/v1/D19-1629
https://doi.org/10.18653/v1/D19-1629
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://aclanthology.org/L16-1556
https://aclanthology.org/L16-1556
https://aclanthology.org/L16-1556
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2202.13169
https://arxiv.org/abs/2202.13169
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


Shuyan Zhou, Pengcheng Yin, and Graham Neubig.
2022. Hierarchical control of situated agents through
natural language. In Workshop on Structured and
Unstructured Knowledge Integration (SUKI), Seattle,
USA.

1395

https://arxiv.org/abs/2109.08214
https://arxiv.org/abs/2109.08214


A Few-shot models size estimates

As OpenAI has not released any details of the size
of their few-shot models, we estimate the relative
strengths and weaknesses on code and text gen-
eration by calculating the average loss per token.
To calculate the avg. loss of each of these mod-
els on code, we use the implementation provided
by Xu et al. (2022).5 The perplexity on text cor-
pus was evaluated on 30 random wikipedia pages
from Wikiplots6 following a similar procedure The
structure and text generation capabilities of the
models are apparent from the results in Table 7;
DAVINCI outperforms CODEX on text generation
but is worse on code-generation and vice-versa.
CURIE underperforms both DAVINCI and CODEX

significantly. Importantly, these results show that
CODEX and DAVINCI are of comparable capacities,
making their comparison fair.

Model CODE TEXT

CODEX 0.46 2.71
DAVINCI 0.63 2.25
CURIE 1.17 3.32

Table 7: Average loss per token of the three few-shot
models used in this work. TEXT refers to the average
loss over 30 Wikipedia pages, and CODE is the loss over
Python scripts in the evaluation split of Polycoder.

B Dynamic prompt Creation

As an alternative to creating prompts, there is now
a growing interest in customizing the in-context
examples each example Ttest. Popular techniques
typically train a retriever, which is used to fetch
the examples in the training set that are closest to
Ttest (Liu et al., 2021; Rubin et al., 2021; Poesia
et al., 2021).

Specifically Poesia et al. (2021) train a retriever
with a target-similarity tuning (TST) objective over
a corpus of D of (x, y) examples. TST learns an
embedding function f such that for a pair of exam-
ples (xi, yi) and (xj , yj), if yi ∼ yj ⟹ f(xi) ∼
f(xj). For a new x, f(x) is used to retrieve the
closest examples from D.

We follow Poesia et al. (2021), and train a
knowledge-similarity tuner (KST). We use mpnet-

5https://github.com/VHellendoorn/
Code-LMs#evaluation

6https://github.com/markriedl/
WikiPlots

base7 with SentenceTransformers (Reimers and
Gurevych, 2019) to fine-tune a retrieval function f
by minimizing the following loss:

Lθ = (cos(fθ(Ti), fθ(Tj)) − sim(Gi,Gj))2
(1)

where fθ is parameterized using a transformer.
Results on using KST with PROSCRIPT (Table 8)

and EXPLAGRAPHS (Table 9). While KST is highly
effective for edge-prediction 6, the results are
mixed for EXPLAGRAPHS and PROSCRIPT. For
PROSCRIPT, KST yields marginal gains. However,
for EXPLAGRAPHS, a number of training examples
have overlapping theme (Table 10), and thus cre-
ating a prompt dynamically reduces the effective
information in the prompt.

C Human Evaluation

Out of the four tasks used in this work, PROSCRIPT

edge prediction and PROPARA have only one possi-
ble correct value. Thus, following prior work, we
report the automated, standard metrics for these
tasks. For EXPLAGRAPHS, we use model-based
metrics proposed by Saha et al. (2021), which were
found to have a high correlation with human judg-
ments. For PROSCRIPT graph generation, we con-
ducted an exhaustive automated evaluation that sep-
arately scores the correctness of the nodes and the
correctness of the edges.

However, automated metrics are limited in their
ability to evaluate model-generated output. Thus,
to further investigate the quality of outputs, we
conduct a human evaluation to compare the out-
puts generated by COCOGEN and DAVINCI. We
sampled 20 examples, and three of the authors per-
formed the evaluation. Annotators were shown two
graphs (generated by COCOGEN and DAVINCI)
and were asked to select one they thought was bet-
ter regarding relevance and correctness. The se-
lection for each criterion was made independently:
the same graph could The annotations were done
separately: the same graph could have more rele-
vant nodes (higher relevance) but may not be cor-
rect. The identity of the model that generated each
graph (COCOGEN or DAVINCI) was shuffled and
unknown to the evaluators.

The results in Table 11 indicate that human eval-
uation is closely correlated with the automated
metrics: for EXPLAGRAPHS, annotators found the

7https://huggingface.co/microsoft/
mpnet-base
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ISO GED Avg(d) Avg(∣V ∣) Avg(∣E∣) BLEU ROUGE-L BLEURT

G 1.0 0.0 1.84 7.41 6.8 - - - -
COCOGEN + 002 (15) 0.53 2.1 1.79 7.44 6.7 25.24 38.28 -0.26
COCOGEN + 002 (15) + KST 0.52 1.99 1.8 7.45 6.7 25.4 38.4 -0.25

Table 8: KST on PROSCRIPT generation: Dynamically creating a prompt leads to marginal improvements.

StCA (↑) SeCA (↑) G-BS (↑) GED (↓) EA (↑)

COCOGEN + 002 45.2 23.74 34.68 68.76 23.58
COCOGEN + 002 + KST 37.47 18.46 29.41 73.76 19.15

Table 9: KST on EXPLAGRAPHS: We find that EXPLAGRAPHS contains multiple examples that are similar to each
other in the training set. Thus, dynamically creating a prompt by selecting examples that are closest to the input
actually hurts performance.

belief : all religions need to be respected, and able to practice. argument: religion is behind many
wars.
belief : every religion needs to be respected and allowed to be practiced. argument: religion is
behind most wars.
belief : school prayer should not be allowed. argument: many people would prefer to keep
religion out of their lives.
belief : people should follow whichever religion they choose. argument: this country has freedom
of religion.
belief : people are free to practice the religion they chooseargument: society’s right to be free to
practice religion should not be limited.
belief : the church of scientology should be allowed, because everyone has a right to follow their
religion. argument: the church of scientology doesn’t have a religious doctrine.
belief : we should avoid discussing religion in schools.argument: some schools are religious in
nature, and have regular discussions on the topic.
belief : freedom of religion is paramount. argument: not all religions are worth it.
belief : people don’t follow the same religion. argument: the world has many different religions.
belief : people should follow whatever religion they desire. argument: people have the right to
adhere to the religion of their choice.
belief : people should follow whichever religion they choose. argument: some religions are better
than others.
belief : people should be able to practice whatever religion they choose. argument: some religions
are not okay to pursue.
belief : students have a right to express themselves any way possible, including faith. argument:
religion is a personal choice.
belief : people should be able to do missionary work if they desire. argument: people should
have right to missionary work.
belief : students are free to express faith. argument: one should go to church to express their
religious beliefs.

Table 10: The closest examples in the training set corresponding to the test input: belief : religion causes many
fights. and argument: There would be less fights without religious conflicts.. As the table shows, the examples are
overlapping which reduces the diversity in the prompt, effectively reducing the number of examples in a prompt
creating using nearest neighbors (Section 4.

Dataset COCOGEN DAVINCI No preference

Relevance
EXPLAGRAPHS 28.3% 16.7% 46.7%
PROSCRIPT (script generation) 26.7% 18.3% 55%

Correctness
EXPLAGRAPHS 38.3% 18.3% 31.7%
PROSCRIPT (script generation) 26.7% 23.3% 50%

Table 11: Human evaluation of graphs generated by COCOGEN and DAVINCI. The evaluators were shown graphs
generated by COCOGEN and DAVINCI, and were asked to select one that is more relevant to the input and correct.
In case of no preference, the evaluators could pick the No preference. The table shows the % of times graphs from
each model were preferred.
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graphs generated by COCOGEN to be more rele-
vant and correct. We find that DAVINCI often fails
to recover semantic relations between nodes in the
argument graphs. For example, consider a belief
(B) urbanization harms natural habitats for the an-
imals in the world. We want to generate a graph
that can counter this belief with the argument (A)
urbanization causes increase in jobs.

For the same prompt, COCOGEN generated (ur-
banization; causes; increase in jobs); (increase
in jobs; has context; good); (good; not capa-
ble of; harms) whereas DAVINCI generated (jobs;
not harms; natural habitats) → (natural habitats;
not part of; animals). Note that DAVINCI suc-
cessfully recovered relevant events (“natural habi-
tat” “animals”) but arranged them in incorrect rela-
tions. For PROSCRIPT, the human evaluation shows
that COCOGEN and DAVINCI have complementary
strengths, while COCOGEN generally produces
more relevant and correct outputs.

D Dataset statistics

Dataset statistics are shown in Table 12. The test
split for EXPLAGRAPHS is not available, so we
evaluate on the validation split. For PROSCRIPT,
we obtained the test splits from the authors.

Corpus #Train #Val #Test

PROSCRIPT 3252 1085 2077
PROPARA 387 43 54
EXPLAGRAPHS 2368 398 -

Table 12: Corpus Statistics for the tasks used in this
work.

E Sample outputs

Sample outputs from COCOGEN for all the
tasks are located at https://github.com/
madaan/CoCoGen/tree/main/outputs.
Representative examples from each task are
presented in Figure 5. Surprisingly, COCO-
GEN (CODEX with a Python prompt) generates
syntactically valid Python graphs that are similar
to the task graphs/tables in nearly 100% of the
cases.

F Prompts

The prompts for each tasks are present at this anony-
mous URL:

1. PROSCRIPT script-generation: https:
//github.com/madaan/CoCoGen/
tree/main/data/proscript_
script_generation/prompt.txt

2. PROSCRIPT edge-prediction: https:
//github.com/madaan/CoCoGen/
tree/main/data/proscript_edge_
prediction/prompt.txt

3. PROPARA: https://github.com/
madaan/CoCoGen/tree/main/data/
explagraphs/prompt.txt

4. EXPLAGRAPHS: https://github.com/
madaan/CoCoGen/tree/main/data/
explagraphs/prompt.txt

These prompts are also present in the attached
supplementary material, and can be found in the
data folder under respective task sub-directories.

G Designing Python class for a structured
task

Figure 7 shows three different designs for Ex-
plagraphs. For PROSCRIPT, the various formats
include representing proscript as a Networkx8

class (8), DOT-like class 9, and as a Tree (10).

H Impact of Model size

The CODEX model released by OpenAI is avail-
able in two versions9: code-davinci-001
and code-davinci-002. While the exact
sizes of the models are unknown because
of their proprietary nature, OpenAI API
states that code-davinci-002 is the Most
capable Codex model Tables 16 and ?? com-
pares COCOGEN +code-davinci-001
with COCOGEN +code-davinci-002.
Note that both code-davinci-001 and
code-davinci-002 can fit 4000 tokens,
so the number of in-context examples was
identical for the two settings. The results
show that for identical prompts, COCOGEN

+code-davinci-002 vastly outperforms
COCOGEN +code-davinci-001, showing
the importance of having a better underlying code
generation model.

8https://networkx.org/
9as of June 2022
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Figure 2: A (simplified) annotated paragraph from
ProPara. Each filled row shows the existence and lo-
cation of participants between each step (“?” denotes
“unknown”, “-” denotes “does not exist”). For example
in state0, water is located at the soil.

assumes that a complete and correct model of the
initial state is given for each task. However, ap-
proaches developed using synthetic data often fail
to handle the inherent complexity in language when
applied to organic, real-world data (Hermann et al.,
2015; Winograd, 1972).

In this work, we create a new dataset, ProPara
(Process Paragraphs), containing 488 human-
authored paragraphs of procedural text, along with
81k annotations about the changing states (exis-
tence and location) of entities in those paragraphs,
with an end-task of predicting location and exis-
tence changes that occur. This is the first dataset
containing annotated, natural text for real-world
processes, along with a simple representation of
entity states during those processes. A simplified
example is shown in Figure 2.

When applying existing state-of-the-art systems,
such as Recurrent Entity Networks (Hena↵ et al.,
2016) and Query-reduction Networks (Seo et al.,
2017b), we find that they do not perform well on
ProPara and the results are only slightly better than
the majority baselines. As a step forward, we pro-
pose two new neural models that use alternative
mechanisms for state prediction and propagation,
in particular using LSTM input encoding and span
prediction. The new models improve accuracy by
up to 19%.

Our contributions in this work are twofold: (1)
we create ProPara, a new dataset for process para-
graph comprehension, containing annotated, natu-
ral language paragraphs about real-world processes,
and (2) we propose two new models that learn to
infer and propagate entity states in novel ways, and
outperform existing methods on this dataset.

2 Related Work

Datasets: Large-scale reading comprehension
datasets, e.g., SQuAD (Rajpurkar et al., 2016),
TriviaQA (Joshi et al., 2017), have successfully
driven progress in question answering, but largely
targeting explicitly stated facts. Often, the result-
ing systems can be fooled (Jia and Liang, 2017),
prompting e↵orts to create harder datasets where
a deeper understanding of the text appears neces-
sary (Welbl et al., 2017; Araki et al., 2016).

Procedural text is a genre that is particularly
challenging, because the worlds they describe are
largely implicit and changing. While there are
few large datasets in this genre, two exceptions are
bAbI (Weston et al., 2015) and SCoNE (Long et al.,
2016), described earlier2. bAbI has helped advance
methods for reasoning over text, such as memory
network architectures (Weston et al., 2014), but has
also been criticized for using machine-generated
text over a simulated domain. SCoNE is closer to
our goal, but has a di↵erent task (given a perfect
world model of the initial state, predict the end
state) and di↵erent motivation (handling ellipsis
and coreference in context). It also used a deter-
ministic, simulated world to generate data.
Models: For answering questions about procedural
text, early systems attempted to extract a process
structure (events, arguments, relations) from the
paragraph, e.g., ProRead (Berant et al., 2014) and
for newswire (Caselli et al., 2017). This allowed
questions about event ordering to be answered, but
not about state changes, unmodelled by these ap-
proaches.

More recently, several neural systems have been
developed to answer questions about the world state
after a process, inspired in part by the bAbI dataset.
Building on the general Memory Network archi-
tecture (Weston et al., 2014) and gated recurrent
models such as GRU (Cho et al., 2014), Recurrent
Entity Networks (EntNet) (Hena↵ et al., 2016) is a
state-of-the-art method for bAbI. EntNet uses a dy-
namic memory of hidden states (memory blocks) to
maintain a representation of the world state, with
a gated update at each step. Memory keys can
be preset ("tied") to particular entities in the text,
to encourage the memories to record information
about those entities. Similarly, Query Reduction
Networks (QRN) (Seo et al., 2017b) tracks state in

2The ProcessBank (Berant et al., 2014) dataset is smaller
and does not address state change, instead containing 585
questions about event ordering and event arguments.

Figure 5: Example graphs for each of the tasks used for COCOGEN: PROSCRIPT (top-left), EXPLAGRAPHS
(top-right), and PROPARA (bottom).

Model Format StCA (↑) SeCA (↑) G-BS (↑) GED (↓) EA (↑)

CODEX-002 Literal 45.2 23.74 34.68 68.76 23.58
CODEX-002 Tree 39.24 15.95 30.49 73.85 18.24
CODEX-002 Relation 42.82 23.68 33.38 70.23 21.16

Table 13: Performance of CODEX on the three different formats present in Figure 7 for EXPLAGRAPHS.

Model Format F1

CODEX-001 Literal 15.9
CODEX-001 Tree 29.7
CODEX-002 Literal (Figure 9) 52.0
CODEX-002 Tree (Figure 10) 56.5

Table 14: Performance of CODEX-001 and CODEX-
002 on the the different formats present in Figure 10
and 9 for PROSCRIPT edge prediction. We find that
the literal format that combines structure with literally
Figure output performs the best for CODEX-002.

Model size vs. sensitivity to the prompt In
Table 14 shows the performance of CODEX-001
(smaller) and CODEX-002 (larger, also see Ap-
pendix A) on identical prompts. Our experiments
show that as model size increases, the sensitivity
of the model on the prompt reduces. This indicates
that for very large models, prompt design might get
progressively easier.

I Variation in prompts

We run each experiment with 3 different random
seeds, where the random seeds decides the order
of examples in the prompt. We find minimal vari-
ance between runs using different fixed prompts be-
tween 3 runs. Further, as shown in the Tables 18,19,
20, and 21, all improvements of COCOGEN over
DAVINCI are statistically significant (p-value <
0.001).
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Take the pies out to cool Open cabinet drawer

Take out several plates

Begin putting
pies on plate

Fill pies onto
plates evenly

Serve the potpies on a plate
class Tree:

goal = "serve the potpies on a plate"

def __init__(self):
# nodes
begin = Node()
take_pies_out_to_cool = Node()
take_out_several_plates = Node()
open_cabinet_drawer = Node()
fill_pies_onto_plates_evenly = Node()
begin_putting_pies_on_plates = Node()
serve_potpies_on_plate = Node()

# edges
begin.children = [take_pies_out_to_cool, open_cabinet_drawer]
take_pies_out_to_cool.children = [take_out_several_plates]
open_cabinet_drawer.children = [take_out_several_plates]
take_out_several_plates.children = [begin_putting_pies_on_plates,

fill_pies_onto_plates_evenly]
begin_putting_pies_on_plates.children = [serve_potpies_on_plate]
fill_pies_onto_plates_evenly.children = [serve_potpies_on_plate]
serve_potpies_on_plate.children = [end]

Figure 6: A PROSCRIPT plan (top) and the corresponding Python code (bottom).

BLEU ROUGE-L BLEURT

DAVINCI 23.1±2.7 36.5±2.7 -0.27±0.06
COCOGEN 25.3±0.1 38.3±0.1 -0.25±0.01

Table 18: PROSCRIPT script generation: mean and stan-
dard deviation across three different random seeds.

F1

DAVINCI 48.9 ± 2.8
COCOGEN 56.2±2.1

Table 19: PROSCRIPT edge prediction: mean and stan-
dard deviation across three different random seeds.

F1

DAVINCI 56.9 ± 2.4
COCOGEN 62.8 ± 2.4

Table 21: PROPARA: mean and standard deviation
across three different random seeds.
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Model Format ISO GED Avg(d) Avg(∣V ∣) Avg(∣E∣) BLEU ROUGE-L BLEURT

G - 1.0 0.0 1.84 7.41 6.8 - - -
CODEX-001 Literal (Figure 9) 0.55 1.8 1.74 7.45 6.5 22.9 36.2 -0.36
CODEX-001 Tree (Figure 10) 0.35 3 1.79 7.45 6.65 17.8 30.7 -0.45
CODEX-001 NetworkX (Figure 8) 0.51 1.81 1.69 7.49 6.32 23.7 35.9 -0.37
CODEX-002 Literal (Figure 9) 0.53 2.1 1.79 7.44 6.7 25.24 38.28 -0.26
CODEX-002 Tree (Figure 10) 0.35 2.46 1.61 7.46 5.74 18.96 32.92 -0.38
CODEX-002 NetworkX (Figure 8) 0.5 2.46 1.79 7.38 6.61 23.88 36.89 -0.33

Table 15: CODEX results on PROSCRIPT generation for various Python source formats.

class Relation:

def __init__(self):
belief = "Cannabis should be legal."
argument = "It's not a bad thing to make marijuana more available."
stance = "support"

# create a DAG to support belief using argument
begin = ["cannabis"]
add_edge("cannabis", "synonym of", "marijuana")
add_edge("legal", "causes", "more available")
add_edge("marijuana", "capable of", "good thing")
add_edge("good thing", "desires", "legal")

class Tree:
def __init__(self):

self.belief = "Cannabis should be legal."
self.argument = "It's not a bad thing to make marijuana more available."
self.stance = "support"

# tree for support in support of belief
root_nodes = cannabis
cannabis = Node()
cannabis.add_edge("synonym of", "marijuana")
legal = Node()
legal.add_edge("causes", "more available")
marijuana = Node()
marijuana.add_edge("capable of", "good thing")
good_thing = Node()
good_thing.add_edge("desires", "legal")

class Literal:
def __init__(self):

self.belief = "Cannabis should be legal."
self.argument = "It's not a bad thing to make marijuana more available."
self.stance = "support"
self.graph = """\

(cannabis; synonym of; marijuana)(legal; causes; more available)
(marijuana; capable of; good thing)
(good thing; desires; legal)"""

Figure 7: Templates tried for explagraph.

ISO GED Avg(d) Avg(∣V ∣) Avg(∣E∣) BLEU ROUGE-L BLEURT

G 1.0 0.0 0.0 1.84 7.41 6.8 - - -
COCOGEN + 001 (15) 0.55 1.8 1.74 7.45 6.5 22.9 36.2 -0.36
COCOGEN + 002 (15) 0.53 2.1 1.79 7.44 6.7 25.24 38.28 -0.26

Table 16: CODEX-001 vs 002 on PROSCRIPT script generation
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class Plan:

goal = "create a video game"
num_steps = 7

def __init__(self):
graph = nx.DiGraph()
# add nodes
step0 = "decided to create a video game"
step1 = "Learn the basics of programming"
step2 = "Learn to use a language that is used in games"
step3 = "Learn to use an existing game engine"
step4 = "Program the game"
step5 = "Test the game"
step6 = "create a video game"
graph.add_nodes_from([step0, step1, step2, step3, step4, step5, step6])

# add edges
graph.add_edge(step0, step1)
graph.add_edge(step1, step2)
graph.add_edge(step1, step3)
graph.add_edge(step2, step4)
graph.add_edge(step3, step4)
graph.add_edge(step4, step5)
graph.add_edge(step5, step6)

Figure 8: Proscript as a Networkx class.

class CreateAVideoGame:

title = "create a video game"
steps = 7

def step0(self):
return "decided to create a video game"

def step1(self):
return "Learn the basics of programming"

def step2(self):
return "Learn to use a language that is used in games"

def step3(self):
return "Learn to use an existing game engine"

def step4(self):
return "Program the game"

def step5(self):
return "Test the game"

def step6(self):
return "create a video game"

def get_relations(self):
return [

"step0 -> step1",
"step1 -> step2",
"step1 -> step3",
"step2 -> step4",
"step3 -> step4",
"step4 -> step5",
"step5 -> step6",

]

Figure 9: Representing PROSCRIPT graph literally.

StCA (↑) SeCA (↑) G-BS (↑) GED (↓) EA (↑)

DAVINCI 25.4 ± 2.7 13.7 ± 2.8 20 ± 2.3 82.5 ± 1.9 13.6 ± 1.8
COCOGEN 44.0 ± 1.2 25.1 ± 2.5 34.1 ± 0.7 69.5 ± 0.7 22.0 ± 1.3

Table 20: EXPLAGRAPHS: mean and standard deviation across three different random seeds.
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class Tree:

goal = "serve the potpies on a plate"

def __init__(self):
# nodes
begin = Node()
take_pies_out_to_cool = Node()
take_out_several_plates = Node()
open_cabinet_drawer = Node()
fill_pies_onto_plates_evenly = Node()
begin_putting_pies_on_plates = Node()
serve_potpies_on_plate = Node()

# edges
begin.children = [take_pies_out_to_cool, open_cabinet_drawer]
take_pies_out_to_cool.children = [take_out_several_plates]
open_cabinet_drawer.children = [take_out_several_plates]
take_out_several_plates.children = [begin_putting_pies_on_plates,

fill_pies_onto_plates_evenly]
begin_putting_pies_on_plates.children = [serve_potpies_on_plate]
fill_pies_onto_plates_evenly.children = [serve_potpies_on_plate]
serve_potpies_on_plate.children = [end]

Figure 10: Proscript with a tree-encoding.
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