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Abstract

Current end-to-end retrieval-based dialogue
systems are mainly based on Recurrent Neural
Networks or Transformers with attention mech-
anisms. Although promising results have been
achieved, these models often suffer from slow
inference or huge number of parameters. In this
paper, we propose a novel lightweight fully con-
volutional architecture, called DialogConv, for
response selection. DialogConv is exclusively
built on top of convolution to extract matching
features of context and response. Dialogues
are modeled in 3D views, where DialogConv
performs convolution operations on embedding
view, word view and utterance view to capture
richer semantic information from multiple con-
textual views. On the four benchmark datasets,
compared with state-of-the-art baselines, Di-
alogConv is on average about 8.5x smaller in
size, and 79.39x and 10.64x faster on CPU
and GPU devices, respectively. At the same
time, DialogConv achieves the competitive ef-
fectiveness of response selection.

1 Introduction

An important challenge in building intelligent di-
alogue systems is the response selection problem,
which aims to select an appropriate response from
a set of candidates given a dialogue context. Such
retrieval-based dialogue systems have attracted
great attention from academia and industry due to
the advantages of informative and fluent responses
produced (Tao et al., 2021).

The existing retrieval-based dialogue systems
can be divided into three patterns according to the
way of input handling (Zhang and Zhao, 2021):
(i) Separate Pattern (Wu et al., 2017; Zhang et al.,
2018; Zhou et al., 2018; Gu et al., 2019); (ii) Con-
catenated Pattern (Tan et al., 2015; Zhou et al.,
2016); (iii) PrLM (Pretrained Language Model)
Pattern (Cui et al., 2020; Gu et al., 2020; Liu et al.,
2021). Separate Pattern (i.e., Figure 1 (a)) encodes
utterances individually, while Concatenated Pat-
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Figure 1: Flat modeling. (a) is separate pattern, (b) is
concatenated pattern and (c) is PrLM pattern. Grey bars
in (c) are embedded representations of special symbols.

tern (i.e., Figure 1 (b)) concatenates all utterances
into a continuous word sequence. Methods based
on these two patterns usually have Recurrent Neu-
ral Networks (RNNs) (Hochreiter and Schmidhu-
ber, 1997; Cho et al., 2014) and attention mech-
anism (Bahdanau et al., 2015) as the backbone.
Although promising results have been achieved,
these methods are generally slow in training and
inference due to their recurrent nature.

The PrLLM Pattern (i.e., Figure 1 (c)) uses special
symbols to connect all utterances into a continuous
sequence, similar to Concatenated Pattern. While
PrLLM Pattern has obtained state-of-the-art perfor-
mance in response selection (Cui et al., 2020; Gu
et al., 2020; Liu et al., 2021), this method having
Transformer (Vaswani et al., 2017) as the de facto
standard architecture suffer from a large number
of parameters and heavy computational cost. Very
large models not only lead to increased training
costs, but also prevent researchers from iterating
quickly. At the same time, slow inference hinders
development and deployment of dialogue systems
in real-world scenarios.

Furthermore, these three patterns treat dialogue
contexts as flat structures (Li et al., 2021). Meth-
ods based on such flat structures usually capture
the sequential features of text by considering each
word as a unit. However, previous work (Lu et al.,
2019) revealed that given a multi-turn dialogue
(e.g., Figure 2 (a)), the context of the dialogue can
exhibit a composition of 3D stereo structures as
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Figure 2: Stereo view modeling. (a) An example of multi-turn dialogue; (b) Features from different views; (c) A
schematic diagram of stereo view; (d) Convolution on different views ((1) is convolution in embedding view; (2) is
convolution in word view; and (3) is convolution in utterance view)

we view utterances in each dimension (shown as
Figure 2 (b) and (c))). As shown in Figure 2 (b),
the embedding view can represent features of each
individual word, the word view can represent the
features from the whole conversation and a sin-
gle utterance, and the utterance view can capture
the dependencies between different localities com-
posed of adjacent utterances. Existing methods (Gu
etal., 2019; Zhou et al., 2016; Gu et al., 2020) only
extract features based on the flat structures, but can-
not simultaneously capture complex features from
such stereoscopic views.

In this paper, we propose a lightweight fully'
convolutional network model, called DialogConv,
without any RNN and attention module for multi-
view response selection. Different from previous
studies (Zhou et al., 2016; Gu et al., 2019, 2020;
Li et al., 2021) which model the dialogue in a flat
view, DialogConv models the dialogue context and
response together in the 3D space of the stereo
views, i.e., embedding view, word view, and ut-
terance view (as shown in Figure 2 (d)). In the
embedding view, the word-level features will be re-
fined through convolution operations on the plane
formed by the word sequence dimension and the
utterance dimension. In the word view, the global
conversation features will be captured by concate-
nating all words into a continuous sequence, and
the features of each utterance will be refined by
performing convolution on each utterance. In the
utterance view, the dependency features between
different local contexts will be distilled by perform-
ing convolution across different utterances. In gen-
eral, DialogConv can simultaneously extract fea-
tures with different granularities from the stereo
structure.

DialogConv is completely based on CNN, which
uses much fewer parameters and computing re-
sources. DialogueConv has an average number

"Here “fully’ means DialogConv is built exclusively on
CNNs.

of parameters of 12.4 million, which is on average

about 8.5x smaller than other models. The infer-

ence speed of DialogConv can be on average about
79.39x faster on CPU device and 10.64x faster
on GPU device than existing models. Moreover,

DialogConv achieves competitive results on four

benchmarks and performs even better when pre-

trained with contrastive learning. In summary, we
make the following contributions:

* We propose an efficient convolutional response
selection model, DialogConv, which, to our best
knowledge, is the first response selection model
built entirely on multiple convolutional layers
without any RNN or attention module.

* We model dialogue from stereo views, where
2D and 1D convolution operations are performed
on embedding, word and utterance views, and
thus DialogConv can capture features from stereo
views simultaneously.

» Extensive experiments on four benchmark
datasets show that DialogConv with fewer pa-
rameters can achieve competitive performance
with faster speed and less computing resources.
The code is available o Github?.

2 Related Work

2.1 Retrieval-based Dialogue System

Most existing retrieval-based dialogue systems (Wu
et al., 2017; Gu et al., 2019; Liu et al., 2021) fo-
cus on matching between dialogue context and re-
sponse. These methods attempt to mine deep se-
mantic features through sequence modeling, e.g.,
using attention-based pairwise matching mecha-
nisms to capture interaction features between di-
alogue context and candidate response. However,
previous research (Sankar et al., 2019; Li et al.,
2021) shows that these methods fail to fully exploit
the conversation history information. In addition,
methods based on recurrent neural network suffer

Zhttps://github.com/misonsky/DialogConv
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from slow inference speed due to the nature of re-
current structures. Although Transformer-based
methods (Vaswani et al., 2017) get rid of the weak-
ness of recurrent structure, they are usually plagued
by a large number of parameters (Wu et al., 2019),
making the training and inference of Transformer-
based models require a lot of computational cost.
In this paper, we propose a multi-view approach
to model dialogue context based on a fully convo-
lutional structure and a lightweight model that is
smaller and faster than most existing methods.

2.2 Convolutional Neural Networks (CNN)

For the past few years, CNNs have been the go-
to model in computer vision. The main reason
is that CNN enjoys the advantage of parameter
sharing and is better at modeling local structures.
A large number of excellent architectures based
on CNN have been proposed (Krizhevsky et al.,
2012; He et al., 2016; Dai et al., 2021). For text
processing, convolutional structures are good at
capturing local dependencies of text and are faster
than RNNs (Hochreiter and Schmidhuber, 1997).
Therefore, some studies (Wu et al., 2016; Lu et al.,
2019; Yuan et al., 2019) employ convolutional
structures to aggregate the matching features be-
tween dialogue contexts and responses. However,
these works usually require combining attention
mechanisms or the skeleton structure of RNN with
CNNs. Furthermore, these studies treat dialogue
context as a flat structure. In this paper, we propose
a novel fully convolutional architecture to extract
matching features from stereo views, which can
simultaneously extract the features with different
granularities from different views.

3 Methodology

3.1 Problem Formulation

In this paper, an instance in the dialogue
dataset can be represented as (C,y), where
C=(u1,u2,...,ut_1,r) represents the set of di-
alogue contexts (u1,us2,...,ut—1) and the re-
sponse 7, u; is the i-th utterance, and y € {0, 1} is
the class label of C'. As the core of retrieval-based
dialogue system, the purpose of response selection
is to build a discriminator g(C') on (C, y) to mea-
sure the matching between the dialogue context
and response.

3.2 Fully Convolutional Matching

We propose a fully convolutional encoder for multi-
view response selection. Multiple views include
embedding view, word view, and utterance view.
In the embedding view, the convolution operations
are performed on the plane formed by the word se-
quence dimension and the utterance dimension, and
word-level features can be extracted through nonlin-
ear transformations between different embeddings.
In the word view, global dialogue context features
will be captured by convolution of a contiguous se-
quence connecting all words, and features of each
utterance will be obtained by performing convo-
lution on each utterance. In the utterance view,
DialogConv is responsible for capturing the de-
pendency features between different local contexts
composed of adjacent utterances. Figure 3 shows
an overview of our proposed DialogConv, which
consists of six layers: (i) embedding layer; (ii) local
matching layer; (iii) context matching layer; (iv)
discourse matching layer; (v) aggregation layer;
(vi) prediction Layer.

Symbol Definition: The embedding layer uses
a pretrained word embedding model to map each
word in C to a vector space. We stack C' chrono-
logically into a 3D tensor G € R****?, where d
represents the dimension of word embedding, ¢
represents the length of the utterance and ¢ is the
number of utterances including the response. G
is the input to DialogConv. We use Conv2Dj
and Conv1Dy, to denote the convolution operations,
where Conv2D} . denotes a two-dimensional con-
volution with a convolution kernel size of k X s,
Conv1Dj, represents a one-dimensional convolu-
tion with a convolution kernel size of w, and v
represents a specific view. We will describe the
details of the remaining layers in the following
subsections.

3.2.1 Local Matching Layer

The local matching layer is responsible for extract-
ing features of each utterance. The local matching
stage contains features from the embedding and
word views. Firstly, we employ 1 x 1 convolutions
in the embedding view and the word view, respec-
tively. The process can be formally described as:

G, = Conv2DS™m9(5(@)) (1)
Gy = Conv2DY%4(Gy) + G )

where o(-) stands for GELUs activation func-
tion (Hendrycks and Gimpel, 2016). The 1 x 1
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Figure 3: Overview of our DialogConv. The conv@i symbol represents the ¢-th convolution operation.

convolution pays attention to the information of
the current element itself and does not consider the
influence of local context. The features of individ-
ual words will be extracted from the embedding
and word views by 1 x 1 convolution. Multi-scale
convolution (Szegedy et al., 2015; Gao et al., 2019)
has been shown to be effective in extracting local
features. Therefore, we use a ki x s; convolution
in the word view and a 1 x 1 convolution in the
embedding view to capture the matching features
of each utterance. The formal description is given
as follows:

G; =
G, =

Conv2D}!%? (0(G2)) (3)
Conv2DSTe%ing Gy 4+ Gy (4)

Note that we focus on the features of a single utter-
ance in the local matching layer.

3.2.2 Context Matching Layer

The context matching layer is responsible for
extracting matching features of the global dia-
logue context. Firstly, we flatten G4 into a two-
dimensional tensor G5 € R*9)*4_ This is equiva-
lent to concatenating all utterances in chronological
order into one continuous sequence of words. Then,
we use convolution across words sequence with ker-
nel size of w; in the embedding view, and kernel
size of ws in the word view. Details are as follows:

Gs = ConvIDZeddind(4(Gy)) (5)
G7 = freshape (COHVID%)M(GG)) + G5 (6)

where freshape 18 @ function that reshapes the out-
put of the convolution to the same shape as G5 and
G7 € RP*#*4_ The features of the global dialogue
context can be aggregated by a nonlinear trans-
formation between different words concatenating
all utterances. The features of the global context
are basis for extracting the dependency features
between different local contexts.

3.2.3 Discourse Matching Layer

The discourse matching layer is responsible for
capturing the dependencies between different local
contexts composed of adjacent utterances. Model-
ing dependency features is beneficial for capturing
changes in implicit topics, intentions, etc. in the
dialogue context, which is important for choos-
ing the correct response. We employ orthogonal
convolution to extract dynamic dialogue flow fea-
tures across utterances to capture discourse-level
changes. The specific process is formulated as fol-
lows:

Gs = Conv2D{e"(5(Gy)) @)
Gy = Conv2DUer9me(Gy) ®)
G = Conv2Di{"""“(Gy) + G7  (9)

where the 1 X s9 convolution and sy X 1 convo-
lution are called orthogonal convolutions because
the direction of their convolution kernels is vertical.
The 1 X s5 convolution is responsible for forming
semantic flow based on the context-level features
of a single utterance, and the so X 1 convolution
extracts discourse structural features according to
the depth of dialogue. Finally, we integrate features
of utterances through the 1 x 1 convolution.

3.2.4 Aggregation Layer

The aggregation layer is responsible for obtaining
high-level semantic information by integrating the
matching features from previous layers. First, we
use max-pooling to obtain the sentence represen-
tation G111 € R**¢. Then, we employ two layers
of convolution to extract matching features along
the embedding dimension in the embedding view
and the depth of dialogue in the utterance view,
respectively. The formulation is as follows:

G2 = ConvID{redding(Gy,) (10)
Gi3 = ConvIDY "“(G3) + Gy (11)
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where w3 and w, are the convolution kernel sizes.
We again use a max-pooling operation based on
G13 to obtain the final context representation O.

3.3 Self-supervised Pre-training

As a lightweight neural structure, the performance
of DialogConv can be further improved by a pre-
training strategy using a small corpus. While
the masked language model pretraining (Devlin
etal., 2019; Lan et al., 2020) usually requires large-
scale corpora, self-supervised contrastive learning
can generally learn representations with a rela-
tively small-scale corpus. Therefore, we employ
contrastive learning to learn effective representa-
tions by pulling semantically close neighbors to-
gether and pushing apart non-neighbors (Hadsell
et al.,, 2006). Given a set of paired examples
D = (z;,z}), where z; is the dialogue context
c and x;r is the correct response. We adopt the pre-
vious contrastive learning framework (Liu and Liu,
2021) and employ a cross-entropy objective, where
the negatives x; include responses with y = 0 and
in-batch negatives (Chen et al., 2017). The training
objective is:

esim(:ri ,xzr )/ T

L =log

ZL?;;J eSiml@sx;;) /7 + esim(zial) /T
(12)
where 7 is a temperature hyperparameter, x,; rep-
resents the j-th negative example of x;, :cj repre-
sents the positive example of z;, and sim(-, ) is
the cosine similarity.

4 Experiments and Results

The baselines are described in the Appendix A.1.

4.1 Datasets

We conduct extensive experiments on four pub-
lic datasets: (i) Ubuntu Dialogue (Ubuntu) (Lowe
et al., 2015); (i1) Multi-Turn Dialogue Reasoning
(MuTual) (Cui et al., 2020); (iii) Douban Conver-
sation Corpus (Douban) (Wu et al., 2016); (iv) E-
commerce Dialogue Corpus (ECD) (Zhang et al.,
2018). Ubuntu consists of 1 million context-
response pairs for training, 0.5 million pairs for val-
idation, and 0.5 million pairs for testing. The ratio
of the positive and the negative is 1:1 for training,
and 1:9 for validation and testing. Douban consists
of 1 million context-response pairs for training, 50k
pairs for validation, and 10k pairs for testing. Re-
sponse candidates are retrieved from Sina Weibo

and labeled by human judges. ECD contains 1 mil-
lion context-response pairs for training, 10k pairs
for validation, and 10k pairs for testing and consists
of five different types of conversations (e.g., com-
modity consultation, logistics express, recommen-
dation, negotiation and chitchat) based on over 20
commodities. MuTual is the first human-labeled
reasoning-based dataset for multi-turn dialogue,
which contains 7,088 context-response pairs for
training, 886 pairs for validation, and 886 pairs for
testing. The ratio of the positive and the negative
is 1:3 in the training, validation and test sets.

4.2 Evaluation Metrics

We follow previous research (Zhang and Zhao,
2021) using evaluation metric Rn@k to mea-
sure model performance on the datasets Ubuntu,
Douban and ECD, which calculates the propor-
tion of truly positive responses among the top-k
responses selected from a list of n available can-
didates for a context. In addition, the traditional
metrics MAP (Mean Average Precision) (Baeza-
Yates and Ribeiro-Neto, 1999) and MRR (Mean
Reciprocal Rank) (Voorhees et al., 1999) are em-
ployed on Douban. We use recall at position 1
of 4 candidates (R@1), recall at position 2 of 4
candidates (R@2) and MRR on MuTual dataset,
following previous study (Liu et al., 2021). The
Ubuntu, Douban and ECD test sets provide ten
candidate responses, while the MuTual provides
four candidate responses, leading them to adopt
different evaluation metrics.

4.3 Implementation Details

Model Details: We implement DialogConv using
Tensorflow 2 and train DialogConv on a server with
an Intel(R) Core(TM) i7-10700 CPU 2.90HZ and
a single GeForce RTX 2070 SUPER GPU (8G).
In experiments, we consider up to 10 turns and 50
words for the Ubuntu, Douban and ECD datasets,
and up to 8 turns and 50 words for the MuTual
dataset. The dimension of word embeddings is
set to 200. We set the convolution filter sizes
k‘l = 1,w1 = 1,w2 = 5,w3 = 3,QU4 = 1,81 =
3and so = 3. Layers 1, 2, 3, 4, 8, 9 and 10 use
2D convolutions, and layers 6, 7, 12 and 13 use 1D
convolutions. We set the stride of all convolutional
layers to [1, 1] or 1. The filter size of convolution
layers 1, 2,4, 5,9 and 11 is set to [1, 1]. The filter
sizes of the convolution layers 3, 6, 7, 8 and 10 are
setto [1,3],5,[1, 3], [3, 1] and 3, respectively.
Self-supervised Pre-training: We conduct
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| Ubuntu (English) | Douban (Chinese)

Method ‘ R10@]1 R10@2 RI10@5 ‘ MAP MRR P@l R10@1 R10@2 RI10@5
MV-LSTM 0.653 0.804 0.946 0.498 0.538 0.348 0.202 0.351 0.710
MH-LSTM 0.653 0.799 0.944 0.500 0.537 0.345 0.202 0.348 0.720
DUA 0.757 0.868 0.962 0.551 0.599 0.421 0.243 0.421 0.780
DAM 0.767 0.874 0.969 0.550 0.601 0.427 0.254 0.410 0.757
MRFN 0.786 0.886 0.976 0.571 0.617 0.448 0.276 0.435 0.783
IMN 0.794 0.889 0.974 0.570 0.615 0.433 0.262 0.452 0.789
Tol 0.796 0.894 0.974 0.573 0.621 0.444 0.269 0.451 0.786
MSN 0.800 0.899 0.978 0.587 0.632 0470 0.295 0.452 0.788
BERT-2-128 0.647 0.767 0911 - - - - - -
BERT-4-256 0.706 0.809 0.932 - - - - - -
BERT-4-512 0.757 0.869 0.966 - - - - - -
BERT-8-512 0.788 0.888 0.978 - - - - - -
BERT-12-768 0.808 0.897 0.975 0.591 0.633 0454 0.280 0.470 0.828
DBERT-6-768 0.783 0.879 0.968 0.542 0.592 0418 0.249 0.407 0.765
TBERT-4-312 0.638 0.766 0.922 0.532 0.567 0.378 0.235 0.397 0.742
TBERT-6-768 0.729 0.835 0.954 0.559 0.597 0.413 0.257 0.417 0.796
DialogConv 0.788 0.883 0.979 0.571 0.624 0.432 0.272 0.453 0.785
DialogConv* 0.801 0.904 0.976 0.572 0.634 0.457 0.282 0.452 0.825

Table 1: Results on Ubuntu and Douban datasets. The first, second and third groups of models belong to the
Concatenated Pattern, Separate Pattern and PrLM-based Pattern, respectively. DialogConv* represents the per-
formance when pretraining with contrastive learning. Bold indicates the best result, and underline indicates the
second best result. X represents the number of layers and Y represents the hidden size of the model in BERT-X-Y,
DBERT-X-Y and TBERT-X-Y. TBERT stands for TinyBERT, and DBERT stands for DistilBERT. The ‘-’ indicates

no corresponding BERT version is available.

| ECD (Chinese) | MuTual (English)

Method ‘ R10@1 R10@2 RIO@S‘ R@l1 R@2 MRR
MV-LSTM 0.412 0.591 0.857 - - -

QANET 0.455 0.662 0.920 0.247 0517 0.522
BIDAF 0.491 0.708 0.933 0.357 0.589  0.589
MH-LSTM 0410 059 0858 | - ; ;

DL2R 0.399 0.571 0.842 - - -

DUA 0.501 0.700 0.921 0.437  0.698  0.658
DAM 0.526 0.727 0.933 0458 0.718 0.673
IMN 0.621 0.797 0.964 0404 0.622 0.638
Tol 0.563 0.768 0.950 0.421 0.686  0.647
MSN 0.606  0.770  0.937 0420 0.677 0.646
BERT-2-128 0.520 0.765 0.715
BERT-4-256 0.558  0.800 0.742
BERT-4-512 0.607 0.837 0.772
BERT-8-512 - - - 0.619 0816 0.774
BERT-12-768 0.610 0.814 0.973 0.648 0.847 0.795
DBERT-6-768 0.517 0.695 0.885 0.602 0.836 0.769
TBERT-4-312 0.449 0.583 0.854 0.534  0.778 0.724
TBERT-6-768 0.587 0.794 0.953 0.615 0.833 0.785
DialogConv 0.827 0.889 0.962 0.602 0.834 0.769
DialogConv* 0.844 0.891 0.963 0.622 0.854 0.782

Table 2: Results on ECD and MuTual datasets. The ‘-’
indicates no corresponding BERT version is available.

small-scale pretraining on the training set of down-
stream tasks through contrastive learning, such as
Ubuntu and Douban. Negative instances include
not only negative examples provided by the dataset,
but also candidate responses from other instances
in the same batch. We use the Stochastic Gradi-
ent Descent (SGD) optimizer (Bottou, 2012) in the

self-supervised pretraining phase. We set the batch
size to 128, the learning rates to 0.001, and the
temperature 7 to 0.007.

Fine-tuning: During the fine-tuning phase, we
train DialogConv and other models using the Adam
optimizer (Kingma and Ba, 2015). The learning
rates are initialized to le-3, Se-4, 1e-4, 5e-5 and
1le-5 via a multi-step strategy. The batch size is set
to 32 for the MuTual dataset and 64 for the other
datasets. The values of the above hyperparameters
are all fixed using the validation set.

4.4 Results of Effectiveness

Tables 1 and 2 report the test results of Dialog-
Conv and all compared models on the four datasets.
While DialogConv does not achieve the best per-
formance, the model attains near-optimal results in
most cases. Furthermore, we calculate the confi-
dence level (p < 0.05) of DialogConv compared to
BERT}qse (i.e., BERT-12-768), which shows that
the results of DialogConv are credible.

As shown in Table 1, DialogConv outperforms
most classic models such as DUA and DAM,
and achieves comparable performance to MRFN
on the Ubuntu dataset. DialogConv also outper-
forms other lightweight variants of BERT such
as DBETR-6-768 (i.e., DistilBERT-6-768) and
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Inference Time (CPU/GPU) | Parameters (M)
Model | Ubuntu (m) Douban (s) ECD (s) MuTual (s) | Ubuntu Douban ECD MuTual
DAM | 177/45 227/68 227/66 91/38 95 67 13 8
DUA | 143/49 176/64 175/64 64/26 96 70 16 15
101 | 347/39 421/49 429/47 157/22 96 69 15 10
MSN | 105/13 128/17 126/14 45/7 89 62 11 13
BERT-2-128 | 54/14 - - 24/9 4 - - 4
BERT-4-256 | 352/37 - - 81/12 11 - - 11
BERT-4-512 | 1372/53 - - 339/24 29 - - 29
BERT-8-512 | 3174/82 - - 667/42 41 - - 41
BERT-12-768 | 8991/219 4922/240 4681/239 1694/98 110 102 102 110
DBERT-6-768 | 1339/83 1591/92 1612/87 595/33 67 54 54 67
TBERT-4-312 | 376/34 450/35 445/30 165/13 14 11 11 14
DialogConv | 13/5 18/7 16/7 7/3 23 13 9 4

Table 3: Comparison of model inference time and the scale of parameters. "m" ("'s") stands for minutes (seconds).
The number of parameters of Chinese and English BERT is different because their vocabularies differ. The °-’

indicates no corresponding BERT version is available.

TBERT-6-768 (i.e., TinyBETR-6-768). When pre-
trained with contrastive learning, DialogConv per-
forms close to BERT-12-768 and even outperforms
BERT-12-768 on R10@2. On the Douban dataset,
the performance of DialogConv is 2.3% lower than
the best result on R10@1. However, the perfor-
mance of pretrained DialogConv can achieve near-
optimal results.

In Table 2, compared to BERT-12-768, Dialog-
Conv has a huge advantage of 21.7% on R10@1
and 7.5% higher on R10@2, is much better than
other variants of BERT. We will discuss this phe-
nomenon in Section 4.7. DialogConv outperforms
some classic retrieval-based dialogue models® such
as DAM and MSN, and is close to some lightweight
BERT variants such as DBERT-6-768 and BERT-
4-512. Compared to BERT-12-768, DialogConv is
2.6% lower on R10@1 on the MuTual. We believe
that the lower performance of DialogConv on Mu-
Tual is caused by a limitation of DialogConv itself,
which we will discuss in detail in Section 4.7.

4.5 Model Efficiency

To measure the complexity of our base model, we
analyze the actual inference time of the model on
CPU and GPU, as well as the number of parame-
ters, as shown in Table 3. DialogConv a huge speed
advantage over other models, no matter on CPU or
GPU. For example, on the Ubuntu dataset, Dialog-
Conv 4.19x to 115.67x faster on CPU and 2.39 x
to 11.64x faster on GPU, and the average inference
speed is 115.67 x faster on CPU and 11.64 x faster
on GPU than other models. On all four bench-

Shttps://nealcly.github.io/
MuTual-1leaderboard/

mark datasets, the inference speed of DialogConv
is on average 79.39x faster on CPU and 10.64 x
faster on GPU compared to other models. Overall,
the gain of inference speed ranges from 1.97x to
40.61x on GPU and from 3.47x to 697.00x on
CPU. The CPU and GPU devices are described in
the Implementation Details 4.3 subsection above.

The average number of parameters of Dialog-
Conv on the four benchmark datasets is 12.4 mil-
lion, which is 2.8 x larger than BERT-2-128, 1.1 x
than BERT-4-256, and comparable to TBERT-4-
312. However, DialogConv has clear advantages
in performance and inference time over these mod-
els. Compared to TBERT-6-768 and DBERT-7-
768, the average number of parameters of Dialog-
Conv is 4.9 and 5.1 x smaller, respectively. Com-
pared with BERT-12-768, the average number of
parameters of DialogConv on four datasets is 8.5x
smaller. As compared to the classic models DUA,
DAM, IOI and MSN, DialogConv needs approxi-
mately 3.5 x less parameters. Overall, DialogConv
achieves promising results in both performance
and inference time, but relies on generally less pa-
rameters. The main reason is that convolutional
structure enjoys the advantage of shared parame-
ters, which make DialogConv have fewer param-
eters compared to other models based on RNN or
attention mechanism.

4.6 Ablation Study

Table 4 reports the result of module ablation. 1) -
LocM removes the local matching layer; 2) -ConM
removes the context matching layer; 3) -DisM re-
moves the discourse matching layer; 4) -Agg re-
places the aggregation layer with max-pooling.
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| MuTual (English) | ECD (Chinese)

Setting ‘ R@]1 R@2 MRR ‘ R10@1 RI10@2 RI10@5

DialogConv | 0.614 0.825 0.778 | 0.833 0.901 0.988
-LocM | 0.580 0.786  0.754 | 0.813 0.881 0.958
-ConM | 0577 0.801 0.759 | 0.806 0.823 0.919
-DisM | 0.578 0.785 0.753 | 0.810 0.845 0.910

-Agg | 0573 0783 0.750 | 0.804 0.824 0.870

Table 4: Ablation results on validation set.

We can observe that each submodule plays a
vital role in DialogConv. Specifically, the local
matching layer captures the features of each utter-
ance by mixing the features from the embedding
and word views. The context matching layer up-
dates the matching features based on the entire dia-
logue context and response. The discourse match-
ing layer extracts the dependencies between differ-
ent local contexts composed of adjacent utterances.
Comparatively, it seems that the local matching
layer has a little less impact on the model perfor-
mance than the other layers. We conjecture that
the layer can only extract local features to some
extent since convolution is better at capturing local
features.

4.7 Result Analysis and Discussion

BERT-12-768 is a representative BERT base ver-
sion among other BERT variants. Therefore, we
use it as the basic comparison model. In Table 2,
DialogConv has an absolute advantage of 21.7%
on R10@1 and 7.5% on R10@2 compared with
BERT-12-768 on ECD. We believe that there are
three main reasons for this phenomenon. First, Di-
alogConv focuses on matching, which can extract
matching features from stereoscopic views. We
visualize the convolution results of each layer of di-
alogConv as a heatmap (Figure 4 in Appendix A.2).
According to the heatmap, DialogConv can capture
key matching features between dialogue context
and response. The local matching layer mainly
focuses on the features between words. This is
because we use 1 x 1 convolution in the conv@1
and conv@2 layers while matching features ap-
pear between several overlapping words in the two
layers. When we use larger convolution kernels,
DialogConv starts to focus on matching features
between phrases. A similar phenomenon can be
observed in the context matching layer. We can see
that after the local and global features are extracted
by the discourse matching layer, some important
features are clearly captured. Second, for ECD,
the average overlap of keywords between response

and context reaches about 40%, which is benefi-
cial for DialogConv to extract matching features
from multi-view stereos. Third, ECD is a dataset in
the domain of e-commerce. The domain-specific
performance of BERT-12-768 may be mediocre
because the pre-training corpora of BERT-12-768
is domain-agnostic.

In Table 2, DialogConv achieves relatively in-
sufficient performance on MuTual. We believe
the main reason is that Mutual is a human-labeled
reasoning dataset for multi-turn dialogues. How-
ever, DialogConv focuses on matching between
dialogue context and response, and lacks reason-
ing ability. Therefore, DialogConv cannot make a
correct predictions on reasoning-oriented examples
in MuTual. Figure 5 (in Appendix A.2) demon-
strates the convolutional heatmap visualization of
DialogConv on MuTual. According to the heatmap,
DialogConv erroneously focuses on the features of
"and", "their" and "in" in the dialogue context, and
dose not consider "5" and "7" as key features.

DialogConv can effectively exploit the depen-
dencies between different local contexts composed
of adjacent utterances. To reveal its capabilities
in this regard, we perturb the dialogue structure
by randomly perturbing the dialogue context and
report the results in Table 6 and Table 7 (in Ap-
pendix). We can see that the performance of Di-
alogConv degrades to varying degrees on the four
benchmark datasets. Specifically, the performance
drops by 12.9% R10@1 on Ubuntu, 12% R10@1
on Douban, 17.7% R10@1 on ECD, and 7.4%
R@1 on MuTual. We speculate that the dialogue
structure contains the dependencies between differ-
ent local contexts, which is important for multi-turn
response selection. When perturbing the dialog
strecture, the dependencies between local contexts
will be severely broken, resulting in performance
degradation of DialogConv.

5 Conclusion

In this paper, we propose DialogConv, a multi-view
lightweight architecture based exclusively on CNN.
DialogConv conducts convolutions on embedding,
word, and utterance views to capture matching fea-
tures. Experiment results show that DialogConv
has fewer parameters, is faster, and requires less
computing resources to achieve competitive results
on four benchmark datasets. DialogConv provides
a valuable reference for the dialogue system being
deployed in real-world scenarios.
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6 Limitations

Although our work can achieve competitive results
with less computing resources, we acknowledge
some limitations of our study. Firstly, DialogConv
focuses on matching, resulting in insufficient rea-
soning ability. Therefore, DialogConv has a lot of
room for improvement in the performance of dia-
logue reasoning (on the MuTual dataset). Secondly,
we did not explore the performance of deep Dialog-
Conv. Our study mainly focuses on designing a
lightweight model, ignoring the potential heavy-
duty DialogConv under the blessing of large-scale
training corpora. We will explore the performance
potential of deep DialogConv in future work.
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A Appendix

A.1 Baselines

MV-LSTM (Wan et al., 2016) is a semantic match-
ing method based on LSTM. QANET (Yu et al.,
2018) is a machine reading comprehension method
based on CNN. MH-LSTM (Wang and Jiang,
2016) is an extractive machine reading compre-
hension model based on LSTM. BIDAF (Seo et al.,
2017) is a machine reading comprehension model
based on bi-directional attention flow. Multi-
View (Zhou et al., 2016) is a multi-turn dialogue
retrieval-based method based on token view and

utterance view. DL2R (Yan et al., 2016) is a multi-
turn retrieval-based dialogue model based on sen-
tence pair matching. DUA (Zhang et al., 2018) is a
hierarchical interaction model based on attention
mechanism. DAM (Zhou et al., 2018) is a deep
interaction method based on attention. IMN (Gu
et al., 2019) is a retrieval-based dialogue model
with bi-directional matching. MRFN (Tao et al.,
2019) is a retrieval-based dialogue model with mul-
tiple types of representations. Iol (Tao et al., 2019)
is a retrieval-based dialogue model based on mul-
tiple interactions. MSN (Yuan et al., 2019) is a
retrieval-based dialogue model with multi-hop se-
lector mechanism.

BERT (Devlin et al., 2019) is an autoencoding
language model based on transformer. Here we
employ multiple BERT versions including BERT-2-
128 (two layers with hidden size 128), BERT-4-256
(four layers with hidden size 256), BERT-4-512,
BERT-8-512 and BERT-12-768. TinyBERT (Jiao
et al., 2020) is compressed BERT through a two-
stage distillation technique. TinyBERT includes
the officially releases TinyBERT-3-312 (short for
TBERT-3-312) and TinyBERT-6-768 (short for
TBERT-6-768) in Chinese and English. Distil-
BERT (Sanh et al., 2019) is a distilled version
of BERT. DistilBERT includes the officially re-
leases DistilBERT-6-768 (short for DBERT-6-768)
in Chinese and English. Notationwise, we use X
to represent the number of layers and Y represent
the hidden size in BERT-X-Y, DBERT-X-Y and
TBERT-X-Y.

A.2 Heatmap Visualization

Figure 4 and Figure 5 demonstrate example con-
volutional heatmap visualizations for each layer
of DialogConv from datasets Mutual and ECD, re-
spectively. Table 5 demonstrates the comparison
between Chinese and English of an example of
Ecomm. We obtain the heatmaps in Figure 5 and
4 through visualizing the similarity matrix between
response and dialogue context. The larger the value
of the similarity matrix, the brighter the correspond-
ing visualization result, and the more important the
corresponding word is. According to Figure 4, Di-
alogConv can capture the key features in dialogue
context and response such as "not” (A& or IF ),
"quality” (i &), "problem" (I0]f#). We can con-
clude that DialogConv makes decision based on the
matching features between dialogue context and
responses. According to Figure 5, DialogConv mis-
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Chinese English

e $2HT A AR T I asked you in advance.
context X A& BUE (AR M It’s not a quality problem.

TZE /N B XRRE A ME X4 24 1 want small and unusable, and so many bags.
response 3F ST & (R RIE FY For non-quality problems returned

B R H H the freight will be handled by yourself

Table 5: An example of a Chinese-English aligned of ECD dataset.

Convid

Figure 4: An example of visualization heatmap from ECD. The conv@i represents the i-th convolution operation in
Figure 3. The horizontal axis represents the dialogue history, and the vertical axis represents the response. The
English translation refers to Table 5.

takenly considers "their”, "them", "see"”, and "i" as
important features and ignores the key features "5"”
and "7" in the dialogue context.
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Figure 5: An example of visualization heatmap from Mutual. The conv@i represents the i-th convolution operation
in Figure 3. The horizontal axis represents the dialogue history, and the vertical axis represents the response.

‘ Ubuntu (English) ‘ Douban (Chinese)
Types‘RlO@l R10@2 RlO@S‘MAP MRR P@1 RI0@1 R10@2 RI10@5

Norm | 0.788 0.883 0979 | 0571 0.624 0432 0.272 0.453 0.785
Rand | 0.659 0.781 0.948 | 0.422 0458 0.267 0.152 0.270 0.630

Table 6: Performance of DialogConv with normal/perturbed dialogue structure on Ubuntu and Douban. Norm
represents the normal dialogue structure. Rand represents the perturbing dialogue structure by shuffling the dialogue
context randomly.

| ECD (Chinese) | MuTual (English)
Types | RI0@1 R10@2 RI10@5 | R@1 R@2 MRR

Norm | 0.827 0.889 0.962 | 0.602 0.834 0.769
Rand | 0.650 0.780 0.946 | 0.528 0.761 0.686

Table 7: Performance of DialogConv with normal/perturbed dialogue structure on ECD and MuTual. Norm
represents the normal dialogue structure. Rand represents the perturbing dialogue structure by shuffling the dialogue
context randomly.
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