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Abstract

This paper proposes a new natural language
processing (NLP) application for identifying
medical jargon terms potentially difficult for
patients to comprehend from electronic health
record (EHR) notes. We first present a novel
and publicly available dataset with expert-
annotated medical jargon terms from 18K+
EHR note sentences (MedJ). Then, we
introduce a novel medical jargon extraction
(MedJEx) model which has been shown to
outperform existing state-of-the-art NLP mod-
els. First, MedJEx improved the overall per-
formance when it was trained on an auxiliary
Wikipedia hyperlink span dataset, where hyper-
link spans provide additional Wikipedia arti-
cles to explain the spans (or terms), and then
fine-tuned on the annotated MedJ data. Sec-
ondly, we found that a contextualized masked
language model score was beneficial for detect-
ing domain-specific unfamiliar jargon terms.
Moreover, our results show that training on
the auxiliary Wikipedia hyperlink span datasets
improved six out of eight biomedical named en-
tity recognition benchmark datasets. MedJEx
is publicly available 1.

1 Introduction

Allowing patients to access their electronic health
records (EHRs) represents a new and personal-
ized communication channel that has the poten-
tial to improve patient involvement in care and
assist communication between physicians, patients,
and other healthcare providers (Baldry et al., 1986;
Schillinger et al., 2009). However, studies showed
that patients do not understand medical jargon in
their EHR notes (Chen et al., 2018).

To improve patients’ EHR note comprehension,
it is important to identify medical jargon terms
that are difficult for patients to understand. Un-
like the traditional concept identification or named

1https://github.com/MozziTasteBitter/
MedJEx

entity recognition (NER) tasks, where the tasks
mainly center on semantic salient entities, detect-
ing such medical jargon terms takes into consider-
ation the perspective of user comprehension. Tra-
ditional NER approaches such as using compre-
hensive clinical terminological resources (e.g., the
Unified Medical Language System (UMLS) (Bo-
denreider, 2004)) would identify terms such as "wa-
ter" and "fat", which are not considered difficult for
patients to comprehend. Meanwhile, using term fre-
quency (TF) as the proxy for medical jargon term
identification will miss outliers such as "shock,"
which is a term frequently used in the open do-
main with its common sense: "a sudden upsetting
or surprising event or experience." However, EHR
notes incorporate its uncommon sense: "a medi-
cal condition caused by severe injury, pain, loss of
blood, or fear that slows down the flow of blood."
(Shock, 2022). Thus, "shock" should be identified
as a jargon term from EHR notes since it would be
difficult for patients to comprehend, even though
its TF is high. In this study, we propose a natural
language processing (NLP) system that can iden-
tify such outlier jargon from EHR notes through a
novel method for homonym resolution.

We first expert-annotated de-identified EHR note
sentences for medical jargon terms judged to be
difficult to comprehend. This resulted in the Med-
ical Jargon Extraction for Improving EHR Text
Comprehension (MedJ) dataset, which comprises
18,178 sentences and 95,393 medical jargon terms.
We then present a neural network-based medical
jargon extraction (MedJEx) model to identify the
jargon terms.

To ameliorate the limited training-size issue, we
propose a novel transfer learning-based framework
(Tan et al., 2018) utilizing auxiliary Wikipedia
(Wiki) hyperlink span datasets (WikiHyperlink),
where the span terms link to different Wiki articles
(Mihalcea and Csomai, 2007). Although medical
jargon extraction and WikiHyperlink recognition
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seem to be two different applications, they share
similarities. The role of hyperlinks is to help a
reader to understand an Wiki article. Thus, "dif-
ficult to understand" concepts in the Wiki article
may be more likely to have hyperlinks. Therefore,
we hypothesize that large-scale hyperlink span in-
formation from Wiki can be advantageous for our
models of medical jargon extraction. Our results
show that models trained on WikiHyperlink span
datasets indeed substantially improved the perfor-
mance of MedJEx. Moreover, we also found that
such auxiliary learning improved six out of the
eight benchmark datasets of biomedical NER tasks.

To detect outlier homonymous terms such as
"shock", we deployed an approach inspired by
masking probing (Petroni et al., 2019), a method
for evaluating linguistic knowledge of large-scale
pre-trained language models (PLMs). Meister et al.
(2022) suggests PLMs are beneficial for predicting
the reading time, with longer reading time indicates
difficult for indicating difficulty in understanding.
In our work, we propose a contextualized masked
language model (MLM) score feature to tackle the
homonym challenge. Note that models will recog-
nize the sense of a word or phrase using contextual
information. Since PLMs calculate the probability
of masked words in consideration of context, we
hypothesize that PLMs trained in the open-domain
corpus would predict poorly masked medical jar-
gon if senses are distributed differently between
the open domain and clinical domain corpora.

We conducted experiments on four state-of-the-
art PLMs, namely BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), BioClinicalBERT
(Alsentzer et al., 2019b) and BioBERT (Lee et al.,
2020). Experimental results show that when both
of the methods are combined, the medical jargon
extraction performance is improved by 2.44%p in
BERT, 2.42%p in RoBERTa, 1.56%p in BioClini-
calBERT, and 1.19%p in BioBERT.

Our contributions are as follows:

• We propose a novel NLP task for identifying
medical jargon terms potentially difficult for
patients to comprehend from EHR notes.

• We construct MedJ, an expert-curated 18K+
sentence dataset for the MedJEx task.

• We introduce MedJEx, a medical jargon ex-
traction model. Herein, MedJEx was first
trained with the auxiliary WikiHyperlink span
dataset before being fine-tuned on the MedJ

dataset. It uses MLM score feature for
homonym resolution.

• The experimental results show that training
on the Wiki’s hyperlink span datasets consis-
tently improved the performance of not only
MedJ but also six out of eight BioNER bench-
marks. In addition, our qualitative analyses
show that the MLM score can complement
the TF score for detecting the outlier jargon
terms.

2 Related Work

In principle, MedJEx is related to text simplifica-
tion (Kandula et al., 2010). None of the previ-
ous work (Abrahamsson et al., 2014; Qenam et al.,
2017; Nassar et al., 2019) identified terms that im-
portant for comprehension.

On the other hand, MedJEx is relevant to
BioNER, a task for identifying biomedical named
entities such as disease, drug, and symptom
from medical text. There are several benchmark
corpora, including i2b2 2010 (Patrick and Li,
2010), ShARe/CLEF 2013 (Zuccon et al., 2013),
and MADE (Jagannatha et al., 2019), all of which
were developed solely based on clinical importance.
In contrast, MedJ is patient-centered, taking into
consideration of patients’ comprehension. Identi-
fying BioNER from medical documents has been
an active area of research. Earlier work such as
the MetaMap (Aronson, 2001), used linguistic pat-
terns, either manually constructed or learned semi-
automatically, to map free text to external knowl-
edge resources such as UMLS (Lindberg et al.,
1993). The benchmark corpora have promoted su-
pervised machine learning approaches including
conditional random fields and deep learning ap-
proaches (Jagannatha et al., 2019).

Key phrase extraction in the medical domain is
another related task. It identifies important phrases
or clauses that represent topics (Hulth, 2003). In
previous studies, key phrases were extracted using
features such as TF, word stickiness, and word cen-
trality (Saputra et al., 2018). Chen and Yu (2017)
proposed an unsupervised learning based method
to elicit important medical terms from EHR notes
using MetaMap (Demner-Fushman et al., 2017)
and various weighting features such as TextRank
(Mihalcea and Tarau, 2004) and term familiarity
score (Zeng-Treitler et al., 2007). In another work,
Chen et al. (2017) proposed an adaptive distant su-
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Figure 1: This figure demonstrates the overall architecture of MedJEx. There are three components in MedJEx: 1)
WikiHyperlink training, 2) auxiliary feature extraction and 3) target model. First, in WikiHyperlink training, we
extract hyperlink spans from Wikipedia articles. The examples shows that hyperlink spans (blue colored) represent
medical jargons, and ignore easier medical terms such as "fatigue" and "headache". Then, the pretrained language
model (LM) is trained with WikiHyperlink. In auxiliary feature extraction, we can see that MLM score of medical
jargon "shock" shows relatively high TF and MLM scores, indicating that the MLM score can help detect the
medical jargon. Finally, the weight parameters of Wiki-trained LM in the target model are initialized with trained
parameters of pretrained LM of WikiHyperlink training. Then, the model is finetuned with MedJ.

pervision based medical term extraction approach
that utilizes consumer health vocabulary (Zeng and
Tse, 2006) and a heuristic rule to distantly label
medical jargon training datasets. A key phrase
extraction method using a large-scale pretrained
model is being actively studied (Soundarajan et al.,
2021).

Unlike the previous BioNER or key phrase iden-
tification applications, identifying medical jargon
terms is important for patients’ comprehension of
their EHR notes and represents a novel NLP ap-
plication. However, not all medical entities are
unfamiliar to patients. The brute force approach
of capturing every medical entity, the approaches
of existing BioNER and key phrase identification
applications, may bring about confusion to patients.
On the other hand, undetected medical jargon terms
will reduce patients’ EHR note comprehension. In
this paper, we propose MedJEx, a novel application
that identifies medical jargon terms important for
patients’ comprehension. Once jargon terms are
identified, interventions such as linking the jargon
terms to lay definitions can help improve compre-
hension.

3 Dataset Construction

This work has two different datasets: 1) MedJ for
medical jargon extraction and 2) Wiki’s hyperlink

span (WikiHyperlink) dataset for transfer learning.

3.1 MedJ

3.1.1 Data Collection
The source of the dataset is a collection of publicly
available deidentified EHR notes from hospitals
affiliated with the University of Pittsburg Medical
Center. Herein, 18,178 sentences were randomly
sampled and domain-experts then annotated the
sentences for medical jargon 2.

3.1.2 Data Annotation
Domain-experts read each sentence and identified
as medical jargon terms that would be considered
difficult to comprehend for anyone no greater than
a 7th grade education3. Overall, 96,479 medical
jargon terms have been annotated by complying
with the following annotation guideline.

Annotation Guideline The dataset was anno-
tated for medical jargon by six domain experts from
medicine, nursing, biostatistics, biochemistry, and
biomedical literature curation 4. Herein, the anno-

2Using these data requires a license agreement.
3The rule of thumb is that if a candidate term has a lay def-

inition comprehensible to a 4-7th grader as judged by Flesch-
Kincaid Grade Level (Solnyshkina et al., 2017), the candidate
term is included as a jargon term.

4The annotator agreement scores can be found in Ap-
pendix A.1.
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tators applied the following rules for identifying
what was jargon:
Rule 1. Medical terms that would not be recog-
nized by about 4 to 7th graders, or that have a
different meaning in the medical context than
in the lay context (homonym) were labeled. For
example:

• accommodate: When the eye changes focus
from far to near.

• antagonize: A drug or substance that stops the
action or effect of another substance.

• resident: A doctor who has finished medical
school and is receiving more training.

• formed: Stool that is solid.

Rule 2. Terms that are not strictly medical, but are
frequently used in medicine. For example:

• "aberrant", "acute", "ammonia", "tender", "in-
tact", "negative", "evidence"

Rule 3. When jargon words are commonly used
together, or together they mean something dis-
tinct or are difficult to quickly understand from
the individual parts were labeled. For example:

• vascular surgery: Medical specialty that per-
forms surgery on blood vessels.

• airway protection: Inserting a tube into the
windpipe to keep it wide open and prevent
vomit or other material from getting into the
lungs.

• posterior capsule: The thin layer of tissue be-
hind the lens of the eye. It can become cloudy
and blur vision.

• right heart: The side of the heart that pumps
blood from the body into the lungs.

• intracerebral hemorrhage: A stroke.

Rule 4. Terms whose definitions are widely
known (e.g., by a 3rd grader) do NOT need to
be labeled. For example:

• “muscle”, “heart”, “pain”, “rib”, “hospital”

Rule 4.1 When in doubt, label the term. For
example:

• “colon”, “immune system”

3.1.3 Data Cleaning
First, we cleaned up overlapped (tumor suppres-
sor gene, gene deletion) or nested (vitamin D, 25-
hydroxy vitamin D) jargon. We chose the longest
jargon terms among nested or overlapped jargon
terms. For example, we chose "tumor suppressor
gene" as a jargon term, not its nested term "tumor."
In all, MedJ contains a total of 95,393 context-
dependent jargon terms which we used as the gold
standard for training and evaluation of the MedJEx
model. The 95,393 jargon terms represent a total
of 12,383 unique jargon terms.

3.2 WikiHyperlink

From a Wiki dump data5, we first cleaned and
elicited text by using Wikiextractor (Attardi, 2015).
Then, we extracted hyperlink spans with the Beauti-
fulSoup (Richardson, 2007) module. Wiki articles
were split into sentences with the Natural Language
Toolkit (Bird et al., 2009), then the sentences were
split into tokens with the PLM tokenizer. Overall,
WikiHyperlink contains more than 114M sentences,
13B words, and 99M hyperlink spans. Finally, the
source data consists of the sequence input of the
token and hyperlink labels represented in the stan-
dard BIOES format (Yang et al., 2018).

4 MedJEx Model

Figure 1 is an overview of MedJEx. First, we
trained PLMs with WikiHyperlink (Wiki-trained).
Then, the Wiki-trained model was transferred to
the target model that we propose by initializing
the target model with the weight parameters of the
Wiki-trained model. Finally, we fine-tuned the tar-
get model with our expert-annotated dataset. Note
that, since the pretrain corpora of PLMs used in
this work include the Wiki corpus, we noticed that
the performance change should derive from the
added labels (hyperlink spans). Herein, we ex-
tracted UMLS concepts and used them as auxiliary
features.

4.1 Wiki’s Hyperlink Span Prediction for
Transfer Learning Framework

Although MedJ is a high-quality and a large scale
expert-labeled dataset, deep learning models could
improve performance with additional data. How-
ever, annotation is very expensive. Transfer learn-
ing is one of the effective ways to mitigate the

5https://dumps.wikimedia.org/enwiki/
20211001/
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challenge (Ruder, 2019; Mao, 2020). In this paper,
we propose to utilize Wiki’s articles and hyperlink
span as source data. We assumed that hyperlink
spans are similar to medical jargon: readers need to
read the hyperlinked articles to understand the span
concepts (Mihalcea and Csomai, 2007). Indeed,
in the example sentence in Figure 1, we can see
that some difficult biomedical concepts are hyper-
linked, but easier concepts such as "fatigue" and
"headache" were not linked. We also expect that
this approach can also be generalized for BioNER
tasks since hyperlinks are often associated with a
biomedical concept.

Training We fine-tune a PLM with WikiHyper-
linik by following the standard protocol for fine-
tuning PLMs for sequence labeling tasks (Devlin
et al., 2019). Herein, for a given N number of sen-
tences, a PLM calculated the probability distribu-
tion for the C classes of each token in the sentence
composed of S tokens. The model was trained to
optimize cross-entropy (CE) loss of Eq. 1, where
yn,s,c and ŷn,s,c indicate the label and the model’s
output, respectively, for the sth token’s probability
of the nth sentence belonging to the class c respec-
tively.

LCE =
1

NSC

N∑

n=1

S∑

s=1

C∑

c=1

yn,s,c · log ŷn,s,c (1)

4.2 Neural Network-based Medical Jargon
Extraction Model

Our jargon prediction model consists of the fol-
lowing two parts: 1) additional learning feature
extraction, 2) target model. This section explains
the additional feature extraction at first. Then, we
describes the structure of the target model.

4.2.1 Auxiliary Feature Extraction
The UMLS concepts incorporate important clinical
domain-specific jargon, including disease, surgery,
drug, etc (Katona and Farkas, 2014; Chen et al.,
2018). Therefore, in this study, we extracted the
UMLS concepts from input sentences and then
used them as features for medical jargon term ex-
traction. We elicited UMLS concepts from in-
put sentences with QuickUMLS, an unsupervised
UMLS concept matching tool (Soldaini and Go-
harian, 2016). Then, we represented the positions
of concepts in binary feature extraction in BIOES
binary encoding. The weighting score feature was
expressed by multiplying the binary encoding of a
concept by the term weighting.

In this study, we employed the widely used
TF score and the masked language model (MLM)
score as term weighting methods. We normalized
MLM scores and TF scores to values between [0,
1] by Min-Max scaling (Al Shalabi and Shaaban,
2006). Details on the expression of additional fea-
tures are described in Appendix B.

Contextualized MLM Score Frequency score-
based methods have been widely used to extract
unfamiliar or important terms, since some jar-
gon terms can be rarely observed in the gen-
eral corpus (Chen et al., 2018). However, term
frequency-based approaches do not consider con-
textual factors, and therefore tend to underestimate
the homonym issue. Otherwise, a language model
is a probability distribution over a sequence of
words. We can calculate the probability of phrases
or words for a given context. In particular, in
MLMs, it is known that we can understand whether
knowledge of a specific concept is included in
PLMs by masking part of the sentence (Petroni
et al., 2019; Kwon et al., 2019a; Zhong et al., 2021).

We proposed a MLM score that is the negative
likelihood of the masked tokens from a text. Eq. 2
is the MLM score of a UMLS medical concept c for
a given sentence S. Suppose, Tc is the token length
of c and p is the starting position of c. Herein,
we mask concept tokens Sp...Sp+Tc−1 with a spe-
cial token "[MASK]" then input the masked will
be S̃ to PLMs. As a result, we can get the prob-
ability P (S̃i = Si|S̃) of the ith masked token S̃i

will be Si from S̃. Then, we calculated the MLM
score of c (MLM(c, S)) by averaging negative log
likelihoods of masked tokens. Overall, when the
MLM of the model is low, it means that the masked
concept can be predicted easily.

MLM(c, S) = − 1

Tc

p+Tc−1∑

i=p

logP (S̃i = Si|S̃) (2)

4.2.2 Target Model
First, an input sentence was split into subword units
through a PLM tokenizer. Binary features were in-
put to a multi-layer perceptron (MLP), mapped into
the same dimension as the token embedding vector,
and then added to the output of the tokenizer. The
added input is input to a Wiki-trained LM then we
can get hidden. In the Wiki’s hyperlink step, the
initial parameters of the PLM trained were set to
the weight parameters of Wiki-trained LM. Then,
the output of the Wiki-trained LM (Hidden) was
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input to an MLP to create an emission score. Si-
multaneously, the weighted scores and the Hidden
were concatenated and then input to another MLP
to create the weighted emission score. We got the
final emission score by adding the emission score
and the weighted emission score. Then, the final
emission was input to the conditional random field
(Lafferty et al., 2001) layer. Suppose P is the fi-
nal emission, and y is a sequence of output labels.
Herein, we calculated the score of the sequence y
defined as Eq. 3 with the transition matrix A. Then,
we picked the optimal output sequence ŷ from all
possible sequences of labels Y by jointly decoding
through Viterbi searching (Viterbi, 1967).

s(y) = exp

(
n∑

i=0

Ayiyi+1 +
n∑

i=0

Piyi

)
(3)

ŷ = argmax
ỹ∈Y

s(ỹ) (4)

5 Experiment

5.1 Experimental Set Up

The experiments on the WikiHyperlink span predic-
tion were conducted on the following settings. The
Wiki data consists of approximately 26M articles,
which correspond to 150M sentences with 99M hy-
perlinks. We used BERT-cased base (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) base models.
We also utilized BioClinicalBERT (Alsentzer et al.,
2019b) and BioBERT (Lee et al., 2020) which are
the state-of-the-art PLMs pretrained on biomedical
text. We mainly set the hyper-parameters of the
PLMs by following Gururangan et al. (2020)’s post-
training setting. Meanwhile, each input consisted
of up to 128 tokens and the learning rate was set
to 5e-4. The parameters were updated every 2,048
inputs. We trained PLMs up to 50K update steps,
which is slightly less than 1 epoch (about 56K; 7
days). For the remaining hyper-parameters, we
used the default setting of the Transformers library
(Wolf et al., 2020).

To fine-tune medical jargon extract models, we
used the following settings. First, the batch size and
maximum epoch were set to 32 and 3, respectively,
according to the PLMs’ standard training setting.
We set the learning rate as 5e-5 for all models. Fi-
nally, we randomly split the dataset into a 14,542
training set (80%), a 1,817 validation set (10%),
and a 1,819 test set (10%). Hyper-parameters and
experimental models were selected with the high-
est performance in the validation set, and detailed
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Figure 2: The F1 scores of the vanilla models with the
update step of the WikiHyperlink training.

results are described in Appendix C.
Moreover, a Wordfreq library (Speer et al., 2018)

was adopted to calculate TF of the candidate UMLS
concepts. We performed Student’s t-test (Student,
1908) to assess whether the change in performance
between experimental results was statistically sig-
nificant. Finally, we used the F1 score (Kwon et al.,
2019b) to evaluate the performance of the model.

5.2 Experimental Results

The PLMs can be categorized as the following two
types: 1) pretrained models were initialized with
standard pretrained models and 2) Wiki-trained
models were initialized with the Wiki’s hyperlink
trained models. Vanilla models do not incorporate
the UMLS features. The binary model has only
the binary features. +TF and +MLM indicate that
adding the TF score feature and MLM score fea-
ture, respectively. +TF+MLM concatenates two
features as the weighted input. Finally, The En-
semble is a weighted voting of the predictions of
four models (Binary, +TF, +MLM, +MLM+TF)
designed to reflect various aspects of the features.
The algorithm for Ensemble is described in Ap-
pendix E.

5.2.1 Experimental Results on the Hyperlink
Training Step

Figure 2 is the fine-tuning performance of the
vanilla models for every 10K update step on the
test set. Herein, step 0 indicates the pretrained set-
ting. The results show that the medical jargon term
extraction performance tends to be improved as
the update step increases. The performance was
improved by 1.19%p (p<1e-4) in BERT, 1.13%p
(p<1e-3) in RoBERTa, 0.90%p (p=0.11) in Bio-
ClinicalBERT and 0.60%p (p=0.07) in BioBERT,
although the models were trained with less than
1 epoch of Wiki data. Considering that the pre-
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Model
BERT RoBERTa BioClinicalBERT BioBERT

Pretrained Wiki-trained Pretrained Wiki-trained Pretrained Wiki-trained Pretrained Wiki-trained
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Vanilla 75.08 75.27 75.18 75.65 77.11 76.37 72.00 74.94 73.44 73.06 76.14 74.57 77.29 78.06 77.67 77.39 79.78 78.57 77.79 78.59 78.19 78.76 79.40 78.79
Binary 76.44 77.06 76.75 76.31 78.51 77.39 74.00 75.10 74.54 74.63 76.31 75.46 78.47 78.85 78.66 78.80 79.38 79.09 78.88 78.34 78.61 78.76 79.40 79.08
+TF 75.96 78.04 76.99 75.92 79.31 77.58 73.90 76.50 75.18 74.29 76.44 75.35 78.16 79.60 78.88 78.63 79.80 79.21 78.73 79.51 79.12 78.69 80.01 79.35
+MLM 76.05 78.09 77.06 75.83 79.16 77.46 72.91 76.00 74.42 74.36 76.45 75.39 78.15 79.65 78.89 78.75 79.70 79.22 78.68 79.45 79.06 78.65 80.04 79.34
+TF+MLM 76.27 77.39 76.83 77.67 77.26 77.26 73.06 76.14 74.57 74.12 76.676 75.37 78.16 79.02 78.59 78.37 79.09 78.73 78.49 78.78 78.64 78.60 79.36 78.98
Ensemble 76.07 78.62 77.33 76.39 78.90 77.62 74.09 76.83 75.44 74.80 76.96 75.86 77.93 79.88 78.89 78.67 79.81 79.23 78.73 79.52 79.12 78.71 80.06 79.38

Table 1: The precision (Prec), recall (Rec) and F1 scores of MedJEx models.

training corpora of all models include the English
Wikipedia corpus (Liu et al., 2019), we can infer
that the improvements are due to the hyperlink
span information rather than Wiki’s text. Other-
wise, the performances of biomedical BERTs are
marginally enhanced. We speculate that this is
because the models have already been trained on
the biomedical literature, so the effect of the task
transfer through learning WikiHyperlink span in-
formation is relatively small. Nevertheless, these
results imply that the task transfer is effective albeit
Wiki data are a general corpus. Overall, we can see
that the Wiki-training is beneficially transferred to
medical jargon extraction models, supporting our
assumption.

5.2.2 Impact of the Proposed Methods

Table 1 contains the experimental results for eval-
uating the impact of the proposed methods. Com-
pared to the vanilla models, the Wiki-trained en-
semble models outperformed by 2.44%p in BERT
(p<1e-11), 2.42%p (p<1e-9) in RoBERTa, 1.56%p
(p<1e-5) in BioClinicalBERT and 1.19%p (p<1e-
3) in BioBERT. We can see that the Wiki-trained
models improved performance in all 24 cases com-
pared to the pretrained models. This means that
the WikiHyperlink span’s information is helpfully
transferred to training medical jargon. In addi-
tion, the binary models demonstrate better perfor-
mance compared to the Vanilla models. Compared
to Binary, TF and MLM features improve perfor-
mance marginally in BERT, BioClinicalBERT and
BioBERT. On the other hand, in the RoBERTa
model, while the TF feature improves the perfor-
mance in the pretrained model, it can be seen that
the performance is slightly decreased in other cases.
In addition, when both TF and MLM features are
included, the performance is marginally changed
compared to using each feature. The ensemble
models lead to the highest performance in all cases.

Prec. Rec. F1
QuickUMLS 21.69 62.21 32.16

MedCAT 45.89 32.32 37.93

Table 2: The precision (Prec), recall (Rec) and F1 scores
on UMLS concept extraction systems.

Type Datasets Pretrained Wiki-trained

Disease NCBI disease 87.92 89.21
BC5CDR disease 83.93 84.87

Drug &
Chem.

BC5CDR Chem. 92.07 91.88
BC4CHEMD 90.06 90.27

Gene &
Protein

BG2GM 82.30 83.06
JNLPBA 74.95 77.95

Species LINNAEUS 87.59 89.87
S800 74.95 74.85

Table 3: F1 score of BioBERTV anilla models on Pre-
trained and Wiki-trained settings in BioNER datasets.
Chem. indicates ‘chemical.’

5.3 Comparison with UMLS Concept
Extractors

To verify that our task is different from existing
UMLS concept extraction task. For this, we eval-
uated the performance of existing UMLS concept
extractors, QuickUMLS and MedCAT (Kraljevic
et al., 2019), in MedJ’s test dataset. The results
in Table 2 show that the performance of UMLS
extractors was substantially inferior to our models.
Even though QuickUMLS extracted all possible
UMLS concepts, the recall score was 62.21, indi-
cating that a substantial amount of medical jargon
terms (37.79%) in EHR notes is not included in the
UMLS concepts. To put it differently, since UMLS
concept extractors mainly concentrated on specific
types of medical terms, there are some representa-
tive jargon types that the UMLS concept extractors
frequently fail to predict: 1) abbreviations (e.g., yo:
years old, s/p: status post ...), 2) special numerical
terms (e.g., 20/40: vision test results, 2-0: a heavy
thread used for stitching ...).
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5.4 Impact of the Wiki’s Hyperlink Span
Training on BioNER Datasets

We assessed the generalizability of Wiki training by
conducting experiments on eight BioNER bench-
marks used in Lee et al. (2020)’s setting 6. We
evaluated the performance of the BioBERTV anilla

model on each data in the pretrained and Wiki-
trained settings. Table 3 shows F1 scores on
the datasets. We can see that Wiki training pos-
itively affected five datasets while it marginally im-
pacted three datasets (S800, BC5CDR Chem. and
BC4CHEMD). Especially, in JNLPBA, the perfor-
mance improveed by 3%p, and in LINNAEUS, the
performance improved by 2.29%p. Meanwhile,
since BioNER benchmarks are targeted to elicit
specific medical concepts, there is some medical
jargon that BioNER cannot cover, such as metric
units (millliter, mg, ...) and medical techniques
(flushing: to use fluid to clean out a catheter) and
so on. Detailed experimental settings and results
are described in Appendix F.

6 Discussion

6.1 Feature Analysis
MLM Figure 3 represents the histograms of the
biomedical concepts on MLM scores. The blue-
colored histogram indicates the UMLS biomedical
concepts that are not jargon, while the red-colored
histogram indicates UMLS biomedical concepts
that are jargon. We can notice the heavily tail of the
histogram of non-jargon concepts indicating MLM
scores are lower. The heavy tail includes concepts
that are relatively easy to understand (e.g. shoulder,
chest pain, wound management ...). These results
show that the MLM score can be an appropriate
feature to determine whether a concept will be the
medical jargon. Additional analyses for the MLM
score are in Appendix G.

TF and MLM We conducted a case study to ana-
lyze the impact of the TF and MLM for identifying
medical jargon from EHR notes. Specifically, we
calculated the TF and MLM scores of candidate
UMLS concepts that had been mapped to the med-
ical jargon in our EHR note sentences. Then, we
categorized the concepts according to their scores.
We used MLM of the pretrained BERT, and the

6NBCI disease (Dogan and Lu, 2012), BC5CDR disease
(Wei et al., 2016), BC5CDR chemical (Wei et al., 2016),
BC4CHEMD chemical, (Krallinger et al., 2015), BC2GM
(Smith et al., 2008), JNLPBA (Kim et al., 2004), LINNAEUS
(Gerner et al., 2010), S800 (Pafilis et al., 2013)

Figure 3: Histograms of the MLM score feature for
UMLS biomedical concepts. Red: jargon concepts;
blue: non-jargon concepts

concepts were categorized as a high score (> 0.5;
↑) and a low score (< 0.5; ↓). Note that a high
MLM score means that the BERT failed to predict
the concept. A high TF score means that the con-
cept was frequently observed in the general corpus.
The following is the combination of MLM and TF
categories and notable examples.
1. ↑ TF, ↑MLM: "shock", "drainage", "tissue"
2. ↓ TF, ↑ MLM: "Vancomycin B", "Seroquel",

"subdural hematoma"
3. ↑ TF, ↓MLM: "coma", "gene", "wound"
4. ↓ TF, ↓MLM: "pneumonia", "membrane", "vi-

ral"

The first case is a word frequently observed in a
general corpus (↑ TF), but it is a concept that fails
to predict in the BERT (↑ MLM). This concept
includes rare senses used in medical contexts. For
example, "drainage" is used as a synonym for sewer
in the general context, while in the medical domain
it may mean "extra liquid that is removed from
the body." The second case is the most unfamiliar
words. The concepts are composed of multiple
tokens and medical entities such as disease or drug
names. The third case consists of relatively easy-
to-understand concepts. The fourth case contains
relatively short medical jargon composed of 1 to 2
tokens. We can infer that MLM and TF cannot only
be complementary but also can be used together to
help solve the challenging homonym issue.

6.2 Error Analysis
We manually examined the outputs. The most com-
mon type of false negatives errors was abbrevia-
tions, such as "ENT" for "ear, nose, and throat"
and "or" for "operating room", and "p.o." for "per
os". Another type of error was signs with special
meanings such as "q.6 h" for "per every 6 hours",
"x2" for "two times", and "3+" for "very strong"
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fall into this type. Other notable errors were epoy-
mous person name-based medical concepts (e.g.,
"Azzopardi effect") and device names (e.g., "Bi-
Pap"). MedJEx failed to detect the aforementioned
types of medical jargon due to the data sparsity
challenge.

6.3 Prospective Downstream Applications

Medical jargon extraction task has divers potential
applications. It could be a preprocessing part of
BioNLP pipelines and used for downstream medi-
cal AI application systems. For example, it could
be adapted to medical concept linking systems such
as NoteAid (Polepalli Ramesh et al., 2013). In ad-
dition, a chatbot-based self-diagnosis system (You
and Gui, 2020) could use our approach for the ex-
planation of medical jargons to avoid generating
jargons.

6.4 Merits

Prospective downstream applications can promote
effective communication between clinicians and
their patients by increasing patients’ EHR compre-
hension ability. This, in turn, can help the patients
in self-management of their illness (Adams, 2010).
Effective communication is also beneficial for pre-
venting physicians’ burnout (Aaronson et al., 2019).
Thus, we can expect this new task will contribute
not only to improve the patients’ outcomes.

6.5 Limitations

This task defined medical jargon at a single
difficulty-level, disregarding diverse educational
levels of users. In particular, setting the difficulty
of each medical jargon term will help this task con-
tribute to improving the performance of machines
as well as patients, and further educate and support
clinicians. Moreover, we did not analyze the jargon
types such as acronyms but merely identified the
presence of medical jargon, which can limit further
analyses.

7 Conclusion

We introduce a novel NLP tasked named MedJEx
and present an expert-curated MedJ dataset for the
task. We propose two innovative methods: 1) Pre-
training Wiki’s hyperlink span, and 2) Contextu-
alized MLM score feature for extracting medical
jargon from EHR notes. The experimental results
show that the Wiki’s hyperlink span can be effec-
tively transferred to the medical jargon extraction

model, leading to a significant performance im-
provement. Wiki’s hyperlink span training also
beneficial in six out of eight BioNER benchmarks.
Finally, in a qualitative evaluation, the MLM score
feature complements the TF feature to identify com-
mon terms (or terms with high TFs) used in the
clinical domain (homonyms).

Ethical Consideration

In this study, we legitimately obtained a licensed
access to the University of Pittsburgh Medical Cen-
ter EHR repository, and all EHR notes used were
fully de-identified.The experiments described in
Appendix A.1 and D were performed in accordance
with the recommendations laid out in the World
Medical Association Declaration of Helsinki. The
study protocol was approved by the institutional
review boards of a medical school in the US.

In addition, our model used BERT and its fam-
ilies, so it over-relies on a contextual embedding
feature that can cause mis-classification. Specifi-
cally, even with the same terminology, the predic-
tion of a model may be different depending on the
context.
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Appendices

A Data Annotation

A.1 Evaluation of the Annotation
To evaluate the annotators’ reliability in identifying jargon, an observational study was performed to
assess the agreement of the dataset annotators with each other and with laypeople. Note that, this work
is a part of unpublished manuscript.

A.1.1 Data Collection and Setting
For evaluation, twenty sentences were randomly selected from deidentified inpatient EHR notes from the
University of Pittsburgh Medical Center EHR repository. Sentences that consisted only of administrative
data, sentences whose length was less than ten words, and sentences substantially indistinguishable from
another sentence were filtered out.

Note that, the annotators had never seen the sampled sentences. The twenty sentences were made
up of 904 words in total. Common words were discarded so as not to inflate the calculated agreement.
These consisted of all pronouns, conjunctions, prepositions, numerals, articles, contractions, months,
punctuation, and the most common 25 verbs, nouns, adverbs, and adjectives. Terms occurring more
than one time in a sentence were counted only once. Furthermore, to ameliorate double-counting issue,
multi-word terms were counted as single terms. Multi-word terms were determined by two members
of the research team by consensus. In this work, multi-word terms were defined as adjacent words that
represented a distinct medical entity (examples: “PR interval”, “internal capsule”, “acute intermittent
porphyria”), were commonly used together (examples: “hemodynamically stable”, “status post”, “past
medical history”) and terms that were modified by a minor word (examples: “trace perihepatic fluid”,
“mild mitral regurgitation”, “rare positive cells”, “deep pelvis”). After applying these rules, 325 candidate
medical jargon terms were utilized. The laypeople consisted of 270 individuals recruited from Amazon
Mechanical Turk (MTurk) (Aguinis et al., 2021).

A.1.2 Annotation Reliability
The results showed that there was good agreement among annotators (Fleiss’ kappa = 0.781). The
annotators had high sensitivity (91.7%) and specificity (88.2%) in identifying jargon terms as determined
by the laypeople (the gold standard).

B Details on Feature Representations

i i+1 i+2 i+3 i+4 i+5

B 1 0 0 0 0 0

I 0 1 0 0 0 0

O 0 0 0 1 1 0

E 0 0 1 0 0 0

S 0 0 0 0 0 1

(a) Binary feature

i i+1 i+2 i+3 i+4 i+5

B 0.97 0 0 0 0 0

I 0 0.97 0 0 0 0

O 0 0 0 0 0 0

E 0 0 0.97 0 0 0

S 0 0 0 0 0 0.11

(b) Weighted score feature

Figure 1: Examples of a binary feature and a weighted score feature.

This section explains details on the binary and weighted score features with an example. Suppose a
concept c1 starts with the ith token and the length is 3, and another concept c2 starts with the i+5th token
and the length is 1. In this case, binary encoding features can be expressed as a 5-dimensional vector ("B",
"I", "O", "E", "S") as shown in Figure 1(a). Since c1 starts at i and ends at i+ 2, the ith "B" dimension
and i+ 2th "E" dimension are set to 1. In addition, because the i+ 1th token is the inner of the c1, the
i+ 1th ‘I’ dimension will be 1. Then, c2 starts and ends at i+ 5. On the other hand, further assume that
the term weighting score of c1 and c2 are 0.97 and 0.11
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C Details of the Experimental Setting

In the experiments, we set the models’ hyper-parameters with the performance on the validation set via
the grid-search. Once, determining hyper-parameters in vanilla models, the same values were used in the
other models. We trained WikiHyperlink for 50K update steps. Herein, the number of parameters of all
experimental models are about 108M. In all experiments, the random seed was set to 0. All experiments
were conducted in the Centos Linux 7 environment using one RTX-8000 GPU, Intel Xeon E5-2620 CPU,
and 64GB RAM.

C.1 Hyper-parameter Setting
In the case of MLP, all hidden sizes were set equal to the default hidden size of PLM. Also, the activation
function used a hyperbolic tangent function by following Gururangan et al. (2020)’s setting.

Learning Rate BERT RoBERTa BioClinicalBERT BioBERT
6e-5 67.46 62.80 67.07 70.48
1e-5 71.02 66.91 73.06 73.97
5e-5 75.92 73.64 78.53 78.51

Table 1: The F1 scores of the finetuned vanilla models for each learning rate.

In the fine-tuning on the task, we choose the best learning rate of the vanilla models on the validation
set among the following set of the candidate learning rates {5e-6, 1e-5, 5e-5}. Overall, the results in
Table 1 show that we could achieve the best performances on validation set when the learning rate was set
5e-5.

C.2 Model Selection

BioClinicalBERT BioBERT BioMedRoBERTa BioClinicalRoBERTa
78.53 78.51 73.89 76.27

Table 2: The F1 scores of the fine-tuned pretrained biomedical PLMs on vanilla setting.

In this work, we utilize contextualized PLMs to make jargon prediction models. For this, we use two
representative PLMs: BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019). In addition, there
are several recent state-of-the-art models pretrained in biomedical domains, recently. To be specific,
BioBERT additionally trained BERT with biomedical text corpora (Lee et al., 2020). BioClinicalBERT
(Alsentzer et al., 2019b) further trained BioBERT with clinical notes from MIMIC-III (Johnson et al.,
2016). In addition, there are some studies, such as BioMedRoBERTa (Gururangan et al., 2020) or
BioClinicalRoBERTa (Lewis et al., 2020) that suggested training the RoBERTa model with biomedical
text corpora or clinical notes. On the other hand, Michalopoulos et al. (2021) proposed UmlsBERT that
integrates UMLS semantic type embedding as an additional input feature during the pretraining step.
UmlsBERT is similar to our suggestion in that it uses UMLS concept as an embedding feature. However,
our method is slightly different in that it uses span information instead of the UMLS semantic type.
Moreover, we show that the performance can be improved using the UMLS features only in fine-tuning.

In this paper, we selected two biomedical PLMs by comparing the performances of state-of-the-art
biomedical PLMs in the vanilla models on the validation set. Table 2 presents the experimental comparison
among the four representative biomedical PLMs: BioClinicalBERT (Alsentzer et al., 2019a), BioBERT
(Lee et al., 2020), BioMedRoBERTa and BioClinicalRoBERTa. The results show that BioBERT and
BioClinicalBERT showed no differences (p > 0.05) but the other RoBERTa-based models presented
inferior scores. Therefore, we choose the BERT-basedbiomedical PLMs for further experiments.
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C.3 Experimental Results of UMLS concept extractors

Prec. Rec. F1
QuickUMLS 21.10 60.74 31.32

MedCAT 45.89 32.32 37.93

Table 3: The precision (Prec), recall (Rec) and F1 scores on UMLS concept extraction systems.

Setting Concept Extractor Prec. Rec. F1
BERTBinary QuickUMLS 75.51 77.37 76.43
BERTBinary MedCAT 74.90 77.00 75.93

Table 4: The precision (Prec), recall (Rec) and F1 scores on BERT with a binary setting on the different concept
extractors.

Since experimental models rely on a UMLS concept extractor, it is also important to choose appropriate
UMLS concept extractors. There are several concept extractors that have been introduced including
MetaMap (Demner-Fushman et al., 2017), QuickUMLS (Soldaini and Goharian, 2016), cTAKES (Saputra
et al., 2018), and MedCAT (Kraljevic et al., 2021). We compared two extractors, QuickUMLS and
MedCAT, which are state-of-the-art concept extractors. Table 3 presents the performance of the concept
extractors. Herein, we can see that MedCAT achieved better performance in terms of precision and F1 but
QuickUMLS had better recall performance. We preferred higher recall, since a concept extractor was
used for candidate concept extraction. Indeed, the performances on the BERT with the binary setting in
Table 4 demonstrates that using QuickUMLS led to higher performance than that of using MedCAT.

C.4 Experimental Results on Tagging Schemes

Tagging scheme F1
BIO 74.25

BIOES 75.92

Table 5: Experimental comparison on BIO and BIOES tagging schemes.

Finally, to select a sequence labeling tagging scheme, we compared two representative tagging schemes:
Begin, Inside and Outside (BIO) and Begin, Inside, Outside, End, and Singleton (BIOES) (Yang et al.,
2018). Table 5 presents the experimental results on the validation set of the BERT’s vanilla setting. The
results show that the validation performance with the BIO scheme is lower than that of the BIOES scheme.
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D The Impact on the Understandability to Patients

This section introduces an experiment to verify that providing medical jargon and the corresponding lay
definitions can be beneficial to the comprehension of patients. Note that all experimental settings and
results are part of Lalor et al. (2021)’s work.

D.1 Experimental Setting
The authors recruited 174 patients from a community hospital in the USA. Herein, the participants took
a web-based EHR comprehension test and the participants were randomly assigned to a control (n=85)
group or intervention (n=89) group to take the test without or with the support of the medical jargons
identification and the corresponding lay definitions, respectively. In addition, 200 participants from MTurk
were engaged to take the test (100 participants were assigned to a control group and the other 100 were
allocated to an intervention group).

D.1.1 EHR Comprehension Test

Figure 2: An example question of the EHR comprehension test. Herein, you can see that identifying medical jargon
"ferritin" and providing its definition can be helpful to understand that the bold text describes a blood iron test.

To assess a user’s comprehension of EHR notes, we conducted the EHR comprehension test. Table 2 is
an example of the EHR comprehension test. This test consists of 14 paragraphs extracted from de-identified
EHR notes and relevant multiple-choice questions curated by physicians. In previous work, it has been
verified that the EHR comprehension test reflects the participant’s education level and understandability
of the medical literature. In this experiment, we provided definitions for medical jargon only to the
intervention group.

D.2 Experimental Results

Source Condition control Intervention
MTurk 0.756±0.246 0.830±0.201

Local hospital 0.646±0.179 0.727±0.191

Table 6: Experimental evaluation on patients’ understandability. Herein, the values in the table indicate the average
score and standard deviation of each group on the EHR comprehension test.

Table 6 presents the experimental results of the evaluation of the customers’ understandability. The
results of ANOVA (Cuevas et al., 2004) show that providing medical jargon and the corresponding lay
definitions significantly enhances the patients’ comprehension of the EHR notes in both groups (p < 0.01).
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E Algorithm for the Ensemble Model

Algorithm 1 Pseudo code for the weighted voting ensemble prediction

Require: Validation Set (V), Test Set (T), Trained Models (M)
1: S ← ∅
2: for Mi in M do
3: L← ∅
4: for Vj in V do
5: XVj , yVj

← Vj

6: L← L||Mi(XVj )
7: end for
8: S ← S||F1(L, V )
9: end for

10: O ← ∅
11: for Tj in T do
12: L← ∅
13: for Mi in M do
14: XTj , yTj

← Tj

15: L← L+ Si ×Mi(XTj )
16: end for
17: for Lk in L do
18: O ← O|| argmax Lk

19: end for
20: end for
21: Return O

We first evaluated the performance on the validation set of each model and then set this as the weight of
each model (line 2 to 11). In the line 1, we set of models’ F1 scores S as ∅. Herein, in line 7, we got the
jth sequence of optimal predicted labels of a model (Mi(XVj )) and appended it to the list of predictions
L. Then, we calculated F1 score of each model (Mi) for the given validation set V in line 8.

In the test set, weighted voting was performed based on the scores of the models (line 11 to 20). In line
15, we got the result of multiplying the model’s score by the predicted sequence of labels (Si ×Mi(XTj ))
for a test input (XTj ). After that, the label with the highest weighted score was selected from each token
in line 18. Finally, the selected labels O are returned in line 21.
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F Impact of the Proposed Methods on BioNER Benchmarks

Setting Entity Type Datasets Vanilla Binary TF MLM TF+MLM

Pretrained

Disease
NCBI disease 87.92 87.62 88.31 88.24 87.53
BC5CDR disease 83.93 84.10 84.62 84.74 83.96

Drug/chem
BC5CDR chemical 92.07 91.58 92.08 92.09 91.64
BC4CHEMD 90.06 90.30 90.04 89.97 90.14

Gene/protein
BG2GM 82.30 82.87 82.83 82.81 82.67
JNLPBA 74.95 78.04 77.51 77.41 77.90

Species
LINNAEUS 87.59 87.86 85.69 85.81 85.92
Species-800 74.95 75.11 76.88 77.12 76.67

Wiki-trained

Disease
NCBI disease 89.21 85.86 87.90 87.85 88.24
BC5CDR disease 84.87 85.47 85.23 85.35 85.62

Drug/chem
BC5CDR chemical 91.88 92.17 92.09 92.13 91.84
BC4CHEMD 90.27 90.27 90.21 90.13 90.50

Gene/protein
BG2GM 83.06 83.23 83.07 83.26 83.17
JNLPBA 77.95 78.34 77.69 78.33 77.70

Species
LINNAEUS 89.87 88.67 89.10 88.83 85.85
Species-800 74.85 75.76 75.97 76.12 75.10

Table 7: Experimental results on proposed methods on BioNER benchmarks. Herein, the values are presented in
bold if performance is improved in Wiki_setting.

We examined the impact of our suggestions on BioNER benchmarks. Herein, we mainly compare
the impact of WikiHyperlink span training method. Furthermore, we kept the hyper-parameters of other
experiments and we used the F1 score as the main evaluation criterion.

Table 7 presents the experimental results. We can see that the performances were enhanced in almost all
cases. Among 40 experimental settings performances were improved on 30 settings. In addition, when we
conducted a t-test on the performance of the experimental settings, we found that the mean and standard
deviation of the settings were significantly different (p < 0.005). However, in Species-800 and NCBI
disease, overall performance marginally decreased after Wiki_training application, and it can be found
that the performance marginally changed in the BC4CHEMED data.

On the other hand, additional features did not the affect performance improvement. This is due to
the structure of our model. Note that the candidate medical terms are extracted by QuickUMLS and
encoded as a binary form (see Appendix B). This can be advantageous in the MedJ task that extracts
comprehensive medical terms. However, the BioNER task aims to extract entities of specific semantic
types. Therefore, our approach can confuse the NER models. For instance, "Von Willebrand’s factor
deficiency" is a syndrome name and part of it, "Von Willebrand’s factor", is a protein name. In our setting,
"Von Willebrand’s factor deficiency" is input as a medical jargon. However, if a task is gene/protein
name extraction, the input signal can mislead the model. To ameliorate this issue, we can utilize semantic
type information from biomedical concept extractors. Specifically, we can use semantic type embedding
(Michalopoulos et al., 2021) or a semantic-type span feature (Kwon et al., 2019b) as an additional input.

11750



G Additional Analysis of the MLM Score Feature

(a) MLM scores of UMLS concepts which are jargon (b) MLM scores of UMLS concepts which are not jargon

Figure 3: Histograms of the MLM score feature. The x-axis is the normalized MLM score, and the y-axis is the
number of observations.

In this section, we show that MLM features can be valid for extracted UMLS biomedical concepts.
Figure 3 is a histogram of biomedical concepts for MLM scores. In this case, Figure 3(a) is a histogram
for medical jargons, and Figure 3(b) is a histogram for non-jargons. As a result of the experiment, we
confirmed that, in the case of non-medical jargon, the histogram showed a heavily tailed distribution in the
section with the low MLM score. On the other hand, medical jargon was observed relatively infrequently
at low MLM scores.

The mean and standard deviation of the jargon’s MLM score were 0.43 ± 0.14, and the mean and
variance of non-jargon concepts were 0.32± 0.17. As a result of performing the statistical test, we can
see that the two distributions were significantly different (p < 0.01).
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