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Abstract

There is a growing interest in dataset generation
recently due to the superior generative capacity
of large pre-trained language models (PLMs).
In this paper, we study a flexible and efficient
zero-short learning method, ZEROGEN. Given
a zero-shot task, we first generate a dataset
from scratch using PLMs in an unsupervised
manner. Then, we train a tiny task model
(e.g., LSTM) under the supervision of the
synthesized dataset. This approach allows
highly efficient inference as the final task model
only has orders of magnitude fewer param-
eters comparing to PLMs (e.g., GPT2-XL).
Apart from being annotation-free and efficient,
we argue that ZEROGEN can also provide
useful insights from the perspective of data-
free model-agnostic knowledge distillation,
and unreferenced text generation evaluation.
Experiments and analysis on different NLP
tasks, namely, text classification, question
answering, and natural language inference,
show the effectiveness of ZEROGEN.

1 Introduction

While generating training data with language
model is not new to natural language processing
(Anaby-Tavor et al., 2020; Puri et al., 2020; Kumar
et al., 2020), it has garnered enormous interests
recently due to the superior generative capacity of
large-scale pre-trained language models (PLMs).
Training examples created in such a manner have
been found effective in various scenarios via the
data augmentation procedure (Lee et al., 2021;
Schick and Schütze, 2021; Wang et al., 2021; Meng
et al., 2022, inter alia).

In this paper, we study an extreme scenario of
such an approach, ZEROGEN. Given a downstream
task, we first generate its training data from
scratch using a powerful PLM, whose generation is
steered by carefully designed task-specific prompts.

∗Work done while interning at Shanghai AI Lab.
†Equal Contribution.

Then, we train a tiny task model (TAM), which
has orders of magnitude fewer parameters than
PLMs, under the supervision of the synthesized
training data. Machine generated text is the only
medium that connects the PLMs to the final task
models, and no human annotations are required
in the entire process. The TAM can be of any
choice (e.g., loglinear or neural), allowing efficient
inference1 and deployment. Besides, TAM can be
flexibly designed with any task-specific strategies
(e.g., inductive bias or loss), which could provide
superior performance.

Apart from being annotation-free and efficient,
we are also interested in ZEROGEN for the fol-
lowing reasons. First, ZEROGEN can be seen as
a variant of knowledge distillation (KD; Hinton
et al. (2015)) that provides some exciting new
features. Unlike conventional KD, ZEROGEN

does not require any human annotations during
distillation. Furthermore, ZEROGEN makes no
presumption on the architecture choice of student
models, thus we can incorporate any task-specific
inductive bias into the design of student models
conveniently. Second, ZEROGEN can serve as an
unreferenced evaluation method for text generation
(Guan and Huang, 2020; Pillutla et al., 2021): the
downstream tasks’ performance is dominated by
the quality of the synthesized text, thus can serve
as an indirect measure of the generation models
and algorithms. Third, ZEROGEN sheds new lights
on prompt engineering (Petroni et al., 2019; Brown
et al., 2020) (i.e., the design of the prompts in
PLMs). As manual prompts reflect our essential
knowledge of specific tasks, an intriguing question
here is to what extend we can incorporate human
knowledge or instructions in these prompts.

We evaluate ZEROGEN in three NLP tasks which
are text classification, question answering, and

1Amazon estimates that 90% of production ML infrastruc-
ture costs are for inference , rather than training (Jain et al.,
2019).
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natural language inference, across six datasets. Our
key research findings are summarized as follows:

• The zero-shot performance of TAM in ZERO-
GEN framework significantly surpasses its PLM
counterparts (which often serves as the teacher
models under the knowledge distillation context),
with only ∼0.4% number of parameters (§4.2);

• In some low-resourced settings, TAM trained
with synthesized data even outperforms the same
model trained with human annotations in a fully
supervised manner (§4.3);

• The quality of the generated text by known
models and algorithms are well reflected in
downstream tasks’ performance, and decoding
strategies that encourage more diversity also
result in greater noise (§4.4);

• Prompt engineering is challenging – the perfor-
mance of more instructive or natural language
style prompts varies in different tasks (§4.5).

In conclusion, we argue that ZEROGEN is a
viable and promising approach towards flexible
and efficient zero-shot learning in NLP. It also
has a great potential as a data-free model-agnostic
knowledge distillation and unreferenced text eval-
uation method. Our code can be found at https:
//github.com/HKUNLP/ZeroGen.

2 Preliminary: Prompt-based Zero-Shot
Learning

We start with preliminary knowledge about
prompt-based zero-shot learning framework
(named PROMPTING).

Giving a pre-trained language model (PLM) P
and a text classification (TC) task D = (X ,Y),
PROMPTING first instantiates a prompt T (·) with
each input xi ∈ X and outputs a natural language
sequence to be completed by P . For instance, we
show an example on sentiment analysis task in
Figure 1(a), where xi is "A deep and meaningful
film." and T (xi) is "A deep and meaningful
film. The sentiment of the movie review is ".
Furthermore, PROMPTING defines a verbalizer
M(·) that maps each label/class yi to a word/words
in P’s vocabulary. For instance, "positive" and
"negative" represents the two classes. In this
way, PROMPTING models the probability of class
yi ∈ Y for xi as:

p(yi|xi) = P (M(yi)|T (xi)) . (1)

During the whole process, the pre-trained weights
of P are frozen and no training is required.

The vast linguistic (Jawahar et al., 2019; Gold-
berg, 2019; Tenney et al., 2019) and factual
(Petroni et al., 2019; Jiang et al., 2020b) knowledge
encoded in PLMs’ parameters is the key towards
PROMPTING’s success. However, PROMPTING

fails to fully exert the capacity of PLMs and heavily
relies on gigantic PLMs during inference. This
motivates us to explore a more flexible and efficient
way of conducting zero-shot learning with PLMs.

3 ZEROGEN

In this work, we take the dataset generation method
to the extreme and study ZEROGEN, a flexible and
efficient zero-shot learning framework via dataset
generation. ZEROGEN framework comprises three
sequential stages as shown in Figure 1(b):

1. The goal of the first stage is to make use of
the generative power of PLMs to synthesize
a dataset to solve the downstream task. With
carefully designed prompts and a powerful
PLM, the generated dataset is believed to
incorporate rich task-specific knowledge.

2. Given pseudo dataset synthesized as above,
we then train a tiny task model (TAM) to solve
the task. TAM can integrate with any task-
specific inductive bias and is also order-of-
magnitude smaller than PLMs.

3. Finally, we perform efficient inference on
target task using the trained model. During
the whole process, no human annotations are
involved, thus the evaluation setting is purely
zero-shot.

Pseudo dataset generation For a single-
sentence classification task D, we aim to generate
a pseudo dataset Dg = (X g,Yg) with the help of a
left-to-right PLM P . We first sample a class label
yg from a uniform distribution:

yg ∼ U(y1, y2, . . . , yk), (2)

where k is the number of classes. yg is then
wrapped up into a label-descriptive prompt T (yg)
to steer the generation of xg:

xg ∼ P(·|T (yg)). (3)

Since the parameters of P is frozen and the
generation xg for each yg is deterministic, we can
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Figure 1: (a) Prompt-based zero-shot learning (PROMPTING) framework. The text in green is the sentence to be
classified. After concatenating the sentence with each prompt, a huge PLM (e.g., GPT-3) is used to calculate LM
likelihood score for each class. (b) Our ZEROGEN framework. We first generate a training set with PLM in a purely
unsupervised manner. After simple filtering operations, we then train a tiny task model (e.g., LSTM) for flexible
and efficient inference. The dash line indicates that the training procedure is only performed once before inference.

adopt different sampling algorithms (e.g., Top-k
sampling (Fan et al., 2018) and nucleus sampling
(Holtzman et al., 2020)) to increase the diversity
of generated dataset. We then pair the generated
xg with yg to construct a pseudo training data.
We show an example about generating a pseudo
sentiment classification dataset in Figure 1(b). The
prompt T (yg) for a positive label yg is "The movie
review in positive sentiment is: "". With the
sampling strategies, this prompt steers PLMs to
generate multiple sentence ending with another
quotation mark, e.g., "A deep and meaningful
movie."" or "Good film!!!"".

For sentence-pair classification tasks, we need
to generate two sequences that bear certain rela-
tionships (e.g., premise and hypothesis in NLI,
context and question in QA). We decompose the
generation into two steps: (i) We first generate
and/or sample a conditional context cg (e.g., cg

represents premise in NLI and context in QA). The
context cg is then concatenated with a sampled
label yg and transformed into a prompt T (cg, yg).
(ii) Giving the prompt T (cg, yg), we can now
generate the other sentence xg (e.g., hypothesis
in NLI and question in QA) as in Equation
(3). In current implementation, we sample cg

from an unlabeled corpus. But cg can also be

generated following procedure of generation for
single-sentence classification task. Since there
could be no predefined label set for extractive
QA task, we use publicly available spaCy2 toolkit
to annotate entities, and then uniformly select
an entity as yg. Finally, the generated sentence-
pair and label can form the pseudo dataset Dg =
(Cg,X g,Yg). We elaborate details on prompts
chosen for each task in Section 4.5.

Pseudo-supervised training With the pseudo
dataset Dg, we train a tiny task model TAM to
conduct the given task. This procedure is highly
flexible, meaning that we can use any model
architecture, loss function, and training strategy.
In this work, we primarily focus on the overall
framework, thus we leave the tuning of these
components for future work. Under the zero-shot
learning setting, it should be noted that we have no
access to the standard validation set. Therefore, we
use a portion (e.g., 10%) of the pseudo dataset as
the validation set for model selection.

Zero-shot evaluation Finally, we conduct infer-
ence on the trained TAM model. As TAM is
order-of-magnitude smaller than PLM, it is able
to perform extremely efficient inference.

2https://spacy.io/
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PLM TAM #Param Setting IMDb SST-2 SQuAD AdversarialQA QNLI RTE
#Gold Data

SUPERVISED

25k 6.7k 87k 30k 105k 2.5k

-
DistilBERT 66M 87.24 89.68 76.28/84.67 18.6/29.85 88.05 58.12
LSTM ∼7M 84.60 76.30 41.86/57.22 5.37/11.86 69.00 54.87

GPT2
- 117M PROMPTING 51.52 52.52 0.80/4.93 0.37/2.58 50.60 52.70
DistilBERT 66M

ZEROGEN
73.24 80.39 16.44/21.83 5.20/8.26 55.32 50.54

LSTM ∼7M 69.60 70.40 4.94/8.53 1.00/3.83 51.03 49.10

GPT2-Large
- 762M PROMPTING 80.20 87.84 3.53/10.78 1.47/5.16 55.10 54.51
DistilBERT 66M

ZEROGEN
83.56 85.44 23.87/29.82 5.93/9.63 69.32 58.48∗

LSTM ∼7M 78.20 75.10 8.01/12.77 2.33/5.24 51.27 56.68∗

GPT2-XL
- 1.5B PROMPTING 80.64 89.22 4.61/13.32 2.13/6.30 60.60 57.04
DistilBERT 66M

ZEROGEN
84.28 87.27 25.50/31.53 6.33/9.96 71.19 59.93∗

LSTM ∼7M 79.80 78.40∗ 12.35/18.66 3.23/6.34 52.26 58.85∗

Table 1: Evaluation results for ZEROGEN at three different scales of PLM and two different scales of TAM. The
ZEROGEN results that outperform PROMPTING using the same PLM are in grey, and the best result for each task
using the same PLM is bolded. ∗ indicates that the result of TAM under ZEROGEN framework outperforms the
same TAM under SUPERVISED framework. We report the average number of parameters (i.e., 7M) for LSTM-based
models among different tasks. The scale of the synthetic dataset is 200k for each task. Results on larger PLMs are
reported in §4.6.

4 Experiments

4.1 Setup

We perform experiments across three different
tasks including six different NLP datasets. The
detailed experimental setup (i.e., Implementation
Details) are described in Appendix A.

Datasets We consider two Text Classification
datasets (i.e., SST-2 (Socher et al., 2013) and
IMDb (Maas et al., 2011)), two Natural Language
Inference datasets (i.e., QNLI (Rajpurkar et al.,
2016) and RTE (Dagan et al., 2005; Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009)), and two Question Answering datasets
(i.e., SQuAD1.1 (Rajpurkar et al., 2016) and
AdversarialQA (Bartolo et al., 2020)). The number
of training examples for SST-2 and RTE is 6.9k
and 2.5k, which can be considered as low resource
compared with IMDb (25k), QNLI (105k), SQuAD
(87k) and AdversarialQA (30k). We adopt Exact-
Match (EM) and F1 as the metrics for question
answering tasks and Accuracy for other tasks.

Baselines We compare ZEROGEN framework
with two baselines: (1) PROMPTING. The prompt-
based zero-shot learning framework via PLMs.
We use GPT2 (117M), GPT2-large (762M), and
GPT2-XL (1.5B) (Radford et al., 2019) via the
HuggingFace Transformers library (Wolf et al.,
2019). (2) SUPERVISED. The TAMs are trained
on standard dataset (i.e., human annotations).
Regarding model architecture of TAMs, we use
two types of model for each task: a LSTM-based

model (i.e., BiLSTM (Hochreiter and Schmidhuber,
1997) for TC and NLI tasks, and BiDAF (Seo et al.,
2017) for QA task), and a tiny pre-trained model
(i.e., DistilBERT (Sanh et al., 2019)).

Evaluation Strategy Due to restricted test set
access for some datasets (i.e., SQuAD1.1 and SST-
2), we held out a small subset (i.e., 10%) of the
training set for validation for model trainined in
SUPERVISED setting, and report results on the
validation set. For models trained with synthetic
dataset in ZEROGEN framework, we also use a
portion (i.e., 10%) as the validation set, without ac-
cessing to original validation set. For PROMPTING,
we directly evaluate on the original validation set.

4.2 ZEROGEN vs. PROMPTING

Table 1 compares ZEROGEN with PROMPTING

framework. We observe that ZEROGEN signifi-
cantly outperforms PROMPTING on most datasets
we evaluated, and this superiority is consistent
across different PLM generators and TAMs. In
particular, when using DistilBERT as TAM, we
find that among 18 (3 generators × 6 tasks) head-
to-head comparison with PROMPTING, ZEROGEN

achieves better performance in 15 cases3. The
reasons for the superior performance are mainly
two-folds: 1) compared with the general pur-
pose generation model, task-specific classification
model may encourage a more deterministic de-

3Note that with careful prompt design and selection, our
PROMPTING baseline achieves an accuracy of 89.22% with
GPT2-XL on SST-2 dataset, substantially higher than the
previous best results (i.e., 87.4% (Holtzman et al., 2021))

11656



102 103 104 105 106

Scale of Pseudo Dataset |Dg|

50

60

70

80

A
cc

.
IMDb

Supervised

Prompting

ZeroGen

102 103 104 105

Scale of Pseudo Dataset |Dg|

20

40

60

80

F
1
.

SQuAD

Supervised

Prompting

ZeroGen

102 103 104 105

Scale of Pseudo Dataset |Dg|

50

60

70

80

A
cc

.

QNLI

Supervised

Prompting

ZeroGen

102 103 104 105 106

Scale of Pseudo Dataset |Dg|

50

60

70

80

90

A
cc

.

SST-2

Supervised

Prompting

ZeroGen

102 103 104 105

Scale of Pseudo Dataset |Dg|

5

10

15

20

25

30

F
1
.

AdversarialQA

Supervised

Prompting

ZeroGen

102 103 104 105

Scale of Pseudo Dataset |Dg|

48

50

52

54

56

58

60

A
cc

.

RTE

Supervised

Prompting

ZeroGen

Figure 2: Results for comparing various scales of synthetic datasets on different tasks. We use GPT2-XL as PLM
and DistilBERT as TAM. Dots with star marker and error bars are the average performance and the standard
deviation over 3 runs, respectively.

cision boundary, which shares the same spirits
with entropy minimization (Grandvalet and Bengio,
2006) or self-training (Lee et al., 2013), and
2) classification tasks benefit from the inductive
bias in the architecture. For example, method
that predicts the start and end positions greatly
narrows down the searching space for extractive
question answering tasks, in comparison with free-
generation on the vocabulary space.

Besides the superior effectiveness in zero-shot
learning, it’s also worth noting that ZEROGEN

is also quite efficient. ZEROGEN can achieve
comparable (LSTM) and even better (DistilBERT)
performance than PROMPTING, using more than
200 times and 20 times fewer parameters, respec-
tively. Nowadays, with increasingly larger pre-
trained language models (e.g., 175B GPT-3 (Brown
et al., 2020), 1571B Switch-C (Fedus et al., 2021)),
the advantage of ZEROGEN becomes even more
pronounced. The gigantic PLMs can improve the
quality of synthesized dataset and lead to better
zero-shot performance. Meanwhile, the TAM can
remain light-weighted for efficient inference and
serving.

Furthermore, when scaling up PLMs, we observe
continuous performance boost for both PROMPT-
ING and ZEROGEN. This indicates that larger-

scale PLMs might have been trained to store more
knowledge that is useful for generating accurate
dataset for a task.

4.3 ZEROGEN vs. SUPERVISED

It’s commonly accepted that the zero-shot perfor-
mance of a NLP model can lag way behind its
fully-supervised performance (trained on human
annotations). However, we find that ZEROGEN

even outperform its SUPERVISED counterpart on
SST-2 and RTE datasets (highlighted with ∗ in the
Table 1). Our conjecture is the size of the datasets
are the key factor. ZEROGEN automatically gener-
ates much more data as supervision during training
(i.e., 200k synthesized samples vs. 6.9k/2.5k
human annotations). These results are encouraging
because they suggest that: (i) ZEROGEN is quite
effective in low-resource scenario; (ii) it’s possible
to synthesize training samples to approximate
human-annotations in a fully unsupervised manner.

We further investigate if we can trade data
volume in exchange for zero-shot performance in
ZEROGEN. Our results are shown in Figure 2.

Overall, we find that the final performance
improves continuously as the amount of data
grows, despite diminishing returns. We find that
generating 10k of training samples leads to better
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TAM Strategy IMDb SQuAD QNLI

DistilBERT

Greedy 74.40 24.19/31.16 63.59
Top k=5 79.50 25.68/32.32 71.83
Top k=40 83.70 24.70/31.21 70.40
Top k=80 83.70 24.14/30.89 69.83
Nucleus p=0.9 83.40 23.93/30.62 70.55

LSTM

Greedy 54.70 10.76/16.24 53.14
Top k=5 57.30 13.22/19.45 54.68
Top k=40 72.24 10.11/15.56 51.24
Top k=80 71.10 9.63/14.70 51.38
Nucleus p=0.9 71.80 8.83/13.89 51.16

Table 2: Results for comparing different decoding
methods with selected parameters of each method. The
best result under different decoding methods is bolded.

performance than PROMPTING method on most
datasets. In addition, by increasing data size,
we find that ZEROGEN even outperforms the
SUPERVISED baseline on SST-2 and RTE. But
still, on some datasets examined (e.g., SQuAD,
QNLI), there remain a performance gap between
ZEROGEN and SUPERVISED.

4.4 ZEROGEN as Text Generation Evaluator
The quality of the synthesized text is the key to the
performance of the downstream tasks. ZEROGEN

can thus be seen as an indirect measure of the gen-
eration models and algorithms. It is a commonly
accepted belief that the quality of generated text
should be in an ascending order in GPT-2, GPT2-
Large, and GPT2-XL, due to the growing in the
parameter size. We find this trend is well aligned in
the downstream application performance (Table 1).

Besides the model, another important aspect in
text generation is its decoding algorithm, where the
goal is to achieve better diversity without the text
quality (e.g., fluency, coherence, and correctness).
We show that how the trade-off between diversity
and correctness is reflected in the framework of
ZEROGEN.

Overall Results Sampling strategies (e.g., top-
k sampling and nucleus sampling) are known to
be able to generate text with a higher degree
of diversity than other decoding strategies (e.g.,
greedy search) (Fan et al., 2018; Holtzman et al.,
2020). Empirical results in Table 2 demonstrate
that a more diverse decoding strategy does not
always ensure better performance on downstream
tasks. For example, the results of the nucleus
sampling strategy, which is considered to generate
the most diverse data, achieves a performance
nearly 6% and 3% lower than the best decoding
strategy on both the SQuAD and QNLI datasets,

DIVERSITY
Strategy IMDb SQuAD QNLI
Oracle 0.30 0.14 0.14
Greedy 0.92 0.55 0.54
Top-k=5 0.59 0.29 0.28
Top-k=40 0.25 0.17 0.14
Top-k=80 0.20 0.17 0.12
Nucleus p=0.9 0.15 0.16 0.11

CORRECTNESS
Strategy IMDb SQuAD QNLI
Oracle 92.42 95.37 92.96
Greedy 99.67 31.07 83.18
Top-k=5 94.46 18.74 74.03
Top-k=40 84.91 14.57 64.31
Top-k=80 84.11 13.74 62.94
Nucleus p=0.9 82.53 13.30 63.37

Table 3: Diversity and Correctness evaluation of
generated datasets under different decoding strategies.
Oracle refers to the standard dataset with human
annotations. Diversity is measured by Self-BLEU4,
while Correctness is measured by a well-trained
RoBERTa-Large model with standard dataset.

respectively, while greedy decoding strategy could
obtain better results than some sampling strategy
(e.g., top-k=40, top-k=80 and nucleus sampling).
In contrast, all sampling strategies are superior to
the greedy decoding strategy on the IMDb dataset.
Regarding the inconsistent better downstream per-
formance of more diverse decoding strategies, we
hypothesize that diversity may come at a price,
such as generating samples not pertain to the class
described in the prompt. Therefore, we assess
the quality of a dataset from two perspectives:
Diversity and Correctness for quantitative analysis
of different datasets.

Diversity We follow previous work (Holtzman
et al., 2020) and compute Self-BLEU (Zhu et al.,
2018) as a metric of diversity. Self-BLEU is
calculated by computing the BLEU score of each
generated text using all other generations in the
evaluation set as references4. A lower Self-BLEU
score implies higher diversity. We report 4-gram
based Self-BLEU in the first part of Table 3. We
find that decoding strategies such as top-k and
nucleus sampling lead to more diverse generations.
This finding is consistent with previous works (Li
et al., 2016; Vijayakumar et al., 2016; Welleck
et al., 2020; Holtzman et al., 2020).

4Specifically, we randomly sample 1000 generations, each
of which is compared with all 999 other generations as
references.
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Correctness Different from the vanilla genera-
tion scenario that ends with the generated text,
we use the generated text as training dataset
for another small model. Therefore, ZEROGEN

requires a more emphasis on the correctness of
generated text, i.e., whether the generated text
pertain to the corresponding class described in the
prompt. To access the correctness of a synthetic
dataset, we first train a RoBERTa-Large (Liu
et al., 2019) model on the standard training dataset,
which is then used as a validator to evaluate the
synthetic dataset. In summary, we find a tradeoff
between diversity and correctness, i.e., greater
diversity leads to lower correctness. We notice
even deteriorated outcomes by increasing k, while
greedy search achieves the highest performance
in terms of correctness. These results reflect
those of Massarelli et al. (2020) who also found
a tradeoff between factuality and diversity, i.e.,
while decoding strategies such as top-k and nucleus
sampling lead to less repetitive generations, they
also produce less verifiable text. Besides, among
different tasks, we find the correctness on oracle
datasets are similar (i.e., all larger than 90%),
while that varies substantially on synthetic datasets
(i.e., up-to 94.46% on IMDb and merely 31.07%
on SQuAD). Compared with generating datasets
for single text classification tasks (e.g., IMDb),
where the PLM only needs to consider a single
condition (i.e., label), generating for text-pair tasks
requires PLMs to consider multiple conditions
synchronously (e.g., answer and context when
generating question), which makes it more difficult
to control the correctness of the generated sam-
ple. This possibly explains the observed variance
among tasks.

Human Evaluation We report the human evalu-
ation results in Table 4. The quality of generated
data is measured by the correctness and naturalness
metrics. The correctness measures whether the
label is correct and the content is relevant to the
task topic (e.g. movie review for IMDb). The
naturalness measures whether the generated text is
fluent and similar to human-generated text. We
invite 4 experts to participate in the evaluation
and each participant is randomly assigned 25
generated samples (100 samples in total) for
each decoding strategy. Table 4 report the mean
scores. The results show that greedy search
achieves the highest performance in terms of
correctness, which is consistent with the automatic

Method Correctness Naturalness ZEROGEN
Oracle 0.92 4.46 87.2
Greedy 0.91 3.55 74.4
Top k=40 0.72 3.75 83.7
Nucleus p=0.9 0.81 3.89 83.4

Table 4: Human evaluation on IMDb gold and synthetic
dataset using different decoding strategies. We also
show the TAM performance to show the ability of
ZEROGEN as an evaluator.

evaluation using Roberta-Large. However, in terms
of naturalness/fluency, the greedy search performs
the worst. The top-k and nucleus decoding
strategies can generate a more fluent context by
reducing repetitive generation.

4.5 Prompt Engineering in ZEROGEN

The design of prompts can have huge impact
on PROMPTING, as pointed by many previous
works (Mishra et al., 2021a; Wei et al., 2022). In
this section, we investigate how prompt design
instructs text generation and affects ZEROGEN’s
performance. We examine three commonly used
prompt types: (1) Control code (Keskar et al.,
2019), (2) Control code with task description, (3)
Natural language style. For SST-2 and IMDb,
example prompts and corresponding results can
be found in Table 5 (check Appendix A for other
tasks).

From Table 5, we first observe that natural
language prompts are favored by both ZEROGEN

and PROMPTING, rather than prompts contain
control code. We hypothesize the reason being
that during the pre-training process, the majority
of text data fed to the PLMs are natural language
sentences, and therefore the PLMs do not contain
enough knowledge in control code. Moreover, we
observe that ZEROGEN is more robust towards
different prompts than PROMPTING: for PROMPT-
ING, a minor change from P4 to P5 will lead to
a huge drop in accuracy (16.2% drop in IMDb);
for ZEROGEN, applying the same prompt revision,
the decrement decreases to 9.4%. Compared with
PROMPTING which use prompt to directly instruct
label words, ZEROGEN use synthesized data as
medium to connect PLM and TAM, thus mitigating
the sharp change brought by prompts.

To further explore the potential of prompting,
we investigate the two-stage conditional prompt
inspired by (Schick and Schütze, 2021). In the
running example, based on the task characteris-
tic(to generate a movie review), we first generate
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Setting Id Prompt Label word <Y> Prompt Type IMDb SST-2

PROMPTING

P1
"<X>"
It was <Y>

great/terrible - 51.32 51.83

P2 <Y> Movie Review: "<X>" Positive/Negative Control code 60.36 52.75

P3
Task: Write a review for a <Y> movie.
Review: "<X>"

good/bad
Control code with
task description

54.20 53.50

P4 The movie review in <Y> sentiment is "<X>"
positive/negative Natural language style

80.64 89.22
P5 The <Y> movie review is "<X>" 67.60 72.36

ZEROGEN

P
′
1 It was a review for a <Y> movie: " great/terrible - 79.36 75.00

P2 <Y> Movie Review: " Positive/Negative Control code 60.88 67.43

P3
Task: Write a review for a <Y> movie.
Review: "

good/bad
Control code with
task specification

83.40 78.90

P4 The movie review in <Y> sentiment is: "
positive/negative Natural language style

81.84 86.24
P

′
4 The movie review in <Y> sentiment for movie "<C>" is: " 83.40 86.35

P5 The <Y> movie review is " 77.44 77.06

Table 5: Results for different prompts on IMDb and SST-2 dev sets. We use GPT2-XL as PLM and DistilBERT as
TAM. <X> and <C> represents the input sentence and generated movie name respectively. P

′
represents minor

revised version of P for text generation. For ZEROGEN, results are reported using 100k training samples. Scores in
underline are trained on 10k generated samples, since the prompt (P

′
1 & P2) is too weak and cannot generate 100k

distinct samples.

PLMs Setting IMDB SQuAD QNLI

GPT2-XL
PROMPTING 80.64 4.61/13.32 60.60
ZEROGEN-LSTM 79.80 12.35/18.66 51.53
ZEROGEN-DistilBERT 84.28 25.50/31.53 71.19

OPT
PROMPTING 63.18 23.35/39.32 54.51
ZEROGEN-LSTM 73.08 21.46/30.06 50.76
ZEROGEN-DistilBERT 79.99 33.27/44.91 52.97

Table 6: Comparison of GPT2-XL (1.5B) and OPT
(175B) under the same prompt and decoding strategy.

movie name using prompt [Movie: "] and then
prompt sentence using P

′
4. We can find that with

the control of movie name, the generated training
corpus is more diverse than using P4. With the
desirable correctness (see Table 3), the higher
diversity leads to a higher accuracy (from 81.84
to 83.40 in IMDb).

The most suitable prompting type in Question
Answering and Natural Language Inference tasks
has some differences with Text Classification due
to different task characteristics. For details, please
refer to the Appendix B.

4.6 ZEROGEN via Larger PLM Generator
We further investigates the performance of ZE-
ROGEN on a larger PLM (i.e., OPT (Zhang
et al., 2022) with 175B parameters). We find
both PROMPTING and ZEROGEN benefit from
the larger PLM on hard tasks (i.e., SQuAD). But
on relatively simpler text classification tasks, the
results degrades. This demonstrates that prompt
selection is still important for larger models, and
the prompt that suits for one model may not suit
for another.

5 Related Work

5.1 Prompt-based Zero-shot Learning

With manual crafted natural language prompt,
large-scale PLMs have shown impressive zero-shot
abilities in a wide array of NLP tasks(Radford
et al., 2019; Brown et al., 2020). However, current
prompt-based zero-shot learning can be unstable:
the choice of prompt contributes a lot to the final
performance. This motivates researchers to inves-
tigate better ways to automatically search and/or
manually construct a proper prompt (Jiang et al.,
2020a; Shin et al., 2020; Reynolds and McDonell,
2021; Mishra et al., 2021b). To improve the
zero-shot generalization across different prompts,
another line of work uses a multitask training
mixture made up of a large set of different tasks
specified in natural language prompts. This induces
a model to better generalize to unseen tasks, as well
as being more robust to the wording choices of the
prompts. (Khashabi et al., 2020; Zhong et al., 2021;
Mishra et al., 2021c; Wei et al., 2021; Sanh et al.,
2021; Xu et al., 2022). In comparison, we advocate
and analyse a new paradigm for prompt-based
zero-shot learning via dataset generation, which
is complementary to current prompt searching and
multi-task pre-training methods.

5.2 Dataset Generation with PLMs

Our work also relates to research in generating
data with PLMs, which aims to generate a pseudo
dataset to enhance model performance. Early
efforts achieve this goal with fine-tuned generative
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models (Anaby-Tavor et al., 2020; Puri et al.,
2020; Kumar et al., 2020; Lee et al., 2021). They
first fine-tune the generative models using human
annotations, the generated data samples are then
combined with human annotations to train the
models in a semi-supervised fashion. Supervised
data generation methods are also studied for
building auxiliary tasks (Vu et al., 2021) and
dataset creation based on human and machine
collaboration (Liu et al., 2022). To reduce the
human efforts on data annotation, another line of
works explore data generation methods without
the need for human annotations. He et al. (2021)
uses unsupervised-trained unconditional generative
models to synthesize unlabeled data for semi-
supervised learning. Without any model training,
Wang et al. (2021) propose to directly use unlabeled
in-domain examples as prompts to synthesize high-
quality training data. Schick and Schütze (2021)
explore dataset generation method from scratch for
semantic textual similarity task. One concurrent
work (Meng et al., 2022) studies dataset generation
for text classification and natural language infer-
ence tasks. In comparison, we take the dataset
generation framework to the extreme, i.e., consider
extremely tiny edge models (e.g., LSTM), explore
boarder NLP tasks including question answering,
and conduct extensive analysis such as decoding
strategies and quality evaluation.

6 Conclusion and Future Directions

In this paper, we study an extreme instance
of dataset generation via PLMs for zero-shot
learning. Without any human annotations, we
show that an small LSTM can surpass the zero-
shot performance of its PLM counterparts (e.g.,
GPT2-XL), and even outperform the same model
trained with human annotations. Despite the
demonstrated effectiveness, we discuss several
issues we observed when developing ZEROGEN

and reveal a substantial room of improvement in
future research.

Despite positive results on TC tasks, we find the
stability regarding prompt choice of ZEROGEN is
still far from satisfactory on NLI tasks. Future work
could include multi-task prompt-based pre-training
methods (Sanh et al., 2021; Wei et al., 2021).

Furthermore, we observe noisy examples in
synthetic dataset on difficult tasks such as NLI and
QA, this situation progressively deteriorates when
incorporating more diverse decoding strategy (e.g.,

Nucleus Sampling). Better decoding strategies
are needed to ensure the label correctness while
preserving the dataset diversity (Massarelli et al.,
2020). Besides, methods that learn from noisy
labels can be integrated into the training of the tiny
task model (Song et al., 2020).

We hope this paper can provide contributions
for further exploiting dataset-generation-based
zero-shot learning with large pre-trained language
models.

Limitations

Although ZEROGEN achieves promising perfor-
mance under zero-shot learning setting, this choice
does come with certain limitations. We find the
stability regarding the prompt choice of ZEROGEN

is still far from satisfactory. ZEROGEN under-
performs PROMPTING in some certain selected
prompts, and prompt engineering is tough as it’s
shown a different preference on prompts across
various tasks. Future work may include multi-
task prompt-based pre-training methods (Sanh
et al., 2021; Wei et al., 2021) to improve prompt
robustness.

We also observe noisy examples in the synthetic
dataset on difficult tasks such as NLI and QA,
this situation progressively deteriorates when in-
corporating a more diverse decoding strategy (e.g.,
Nucleus Sampling). Better decoding strategies
are needed to ensure the label’s correctness while
preserving the dataset diversity (Massarelli et al.,
2020). Reciprocally, methods that learn from noisy
labels can be integrated into the training of the tiny
task model (Song et al., 2020).
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A Experimental Setup

Implementation Details For dataset generation,
we use Nucleus Sampling (Holtzman et al., 2020)
with p = 0.9 by default as it is considered to be able
to generate both fluent and diverse texts(Holtzman
et al., 2020). The scale of synthetic dataset is 200k
in the main results, and 100k in other analysis
experiments. Regarding prompt selection, we
manually design a series of prompts for each
task, and report results on the best prompt for
PROMPTING and ZEROGEN framework. For NLI
tasks, we adopt self-debiasing mechanism with
a decay constant of 200 (Schick et al., 2021) to
ensure that each generated text pair is not only
a good fit for a given label, but also not a good
fit for other labels (Schick and Schütze, 2021).
We removing overly short/long sentences, and
sentences without an ending quotation mark.

We implement a LSTM-based model and a
DistilBERT model as TAM. For LSTM-based
model, we use Adam optimizer (Kingma and Ba,
2015), a learning rate of 1e-4, an embedding dim of
100, and a hidden size of 300. For single sentence
classification(TC), we use 1-layer BiLTSM to
encode the sentence and use a linear classifier. For
sentence-pair classification(NLI), we use 2-layer
BiLTSM to encode the sentences to v1, v2 and pass

the concatenated [v1; v2; |v1 − v2|; v1 ∗ v2] to a
classifier. For QA tasks, we use the 1-layer BiDAF
model. To ensure that TAMs are truly trained
from scratch using the synthetic corpus, we random
initialize TAMs’ embedding without using any pre-
trained word embeddings (e.g., GloVe (Pennington
et al., 2014). For DistilBERT, we fine-tune on each
dataset with Adam optimizer, with a learning rate
of 2e-5, a weight decay of 0.01, and other default
hyper-parameters as suggested by HuggingFace
Transformers library (Wolf et al., 2019). We run
experiments on a single NVIDIA A100 80G GPU,
and generating 200k examples cost 12h on average.

B Additional Results on Prompt Design

For Question Answering tasks, the natural lan-
guage style prompt is also the most suitable for both
PROMPTING and ZEROGEN settings, achieving the
highest scores. However, for Natural Language
Inference tasks, the most suitable prompts for
QNLI and RTE are different. For RTE, the natural
language style prompt is best, while the control
code prompts perform significantly better than
natural language style prompts in QNLI.

C Additional Related Work on Efficient
Inference of PLMs

There is a line of works dedicated to improving the
inference efficiency of PLMs, including pruning
(Wang et al., 2020; Gordon et al., 2020), low-
rank factorization (Ma et al., 2019; Noach and
Goldberg, 2020; Lan et al., 2020), quantization
(Zafrir et al., 2019; Shen et al., 2020; Kim et al.,
2021), knowledge distillation (Jiao et al., 2020;
Sanh et al., 2019; Sun et al., 2020) and parallel
decoding (Gu et al., 2018; Ghazvininejad et al.,
2019; Ye et al., 2021). We refer the readers to Xu
et al. (2021) for a detailed survey. Concerning
privacy, copyright or confidentiality, data-free
knowledge distillation (DFKD) (Liu et al., 2021)
has attracted appealing attention in computer vision
field as it deals with distilling valuable knowledge
from well-trained models without requiring to
access to the training data. However, similar
approaches for NLP are difficult to work due
to discrete character of words. Rashid et al.
(2021) relax the data-free condition and use out-
of-distribution labeled data to train a generator.
By contrast, our method generates data with the
PLMs (i.e., the teacher), without requiring any pre-
defined labeled data. In the literature of knowledge
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distillation, ZEROGEN framework could produce
a student model that achieves superior zero-shot
performance the teacher model.

D ZEROGEN as Knowledge Distillation

ZEROGEN can be seen as a dataset-based knowl-
edge distillation framework. We compare vanilla
knowledge distillation baselines with ZEROGEN

in Table 7. The soft and hard labels are generated
by GPT2-XL on the unlabeled training set. The
generated labels are used to train a tiny task model
for comparison. The superior results on ZEROGEN

show that the paradigm can better utilize large PLM
by distilling more knowledge into a large amount
of input-output pairs, while vanilla knowledge
distillation purely distills knowledge into outputs.

TAMs Supervised KD-HARD KD-SOFT ZEROGEN
LSTM 84.60 75.23 68.31 79.80
DistilBERT 87.24 82.32 80.21 84.28

Table 7: Comparison with knowledge distillation
(KD) baselines on IMDb. KD-HARD and KD-SOFT
represent KD baselines using hard labels and soft labels,
respectively.

E ZEROGEN for Data Augmentation

We report the results using the synthetic data as
augmentation data in Tabel 8. The results show that
the zero-shot synthetic data is a good supplement to
human-annotated data (gold data) and can improve
the model performance.

Data Sample Size LSTM DistilBERT
Gold 25,000 84.60 87.24
Gold + AUG-200k 225,000 88.91 93.42
Gold + AUG-500k 525,000 90.42 93.59

Table 8: Results of data augmentation on IMDb using
synthetic data. AUG-200k and AUG-500k represent
using 200k and 500k synthetic data respectively.

F ZEROGEN for Self-improving

We have shown that a tiny task model can outper-
form a large PLM after training on the synthetic
dataset. A natural question is "Can PLM improve
its own performance after tuning on the dataset
generated by itself?". We experiment using PLM
as TAM and report the results in Table 9. To
summarize, we find 1) A larger TAM can further
boosts the performance; 2) PLMs can improve

itself by fine-tuning on the dataset generated by
its own.

PLMs TAMs IMDb SQuAD QNLI

-
LSTM 84.60 41.86/57.22 69.00
DistilBERT 87.24 76.28/84.67 88.05
GPT2-XL 95.68 76.92/85.48 92.88

GPT2-XL

- 80.64 4.61/13.32 60.60
LSTM 79.80 12.35/18.66 51.53
DistilBERT 84.28 25.50/31.53 71.19
GPT2-XL 90.71 25.78/32.13 73.69

Table 9: Results of PLM (i.e., GPT2-XL) fine-tuned
with gold (upper) and synthetic (lower) dataset. A
larger TAM further boosts the performance, and PLM
can improve its own performance after fine-tuning on
synthetic dataset by itself (grey blocks).

G Generated Examples

We present some qualitative examples for different
tasks in Appendix Table 11. Text classification
task (SST-2) is relatively simple and concise,
the generated samples generally fit the prompts
and sentiment polarity well by using descrip-
tive tokens about the given movie name and
positive/negative sentiment. Take the first case
in SST-2 as an example, the generated tokens
“action-adventure” and “attractive” are the natural
continuations for movie name “The Spiderwick
Chronicles (Movie)” and “positive” sentiment in
prompt. Although natural language inference tasks
are complex, the generated questions (QNLI) and
inferences (RTE) could respond to different types
of prompts and relate to the given contexts (e.g.,
the generated question drifts topic for prompt
“Information:. . . Question (answer not in above
information)” in QNLI). While the context of the
question answering task (SQuAD) is long and
contains a lot of information, ZEROGEN could
successfully generate question “Who is the one
and only true God ?” which is used to response
to the pre-set answer “Jehovah”. Overall, these
generation examples show that ZEROGEN can
generate useful and arbitrary number of training
samples that could be used to train TAMs.
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Setting Id Prompt Prompt Type SQuAD AdversarialQA

PROMPTING

P1 Context: "<C>"\nQuestion: "<X>"\nAnswer: " Control code 2.69/10.90 1.33/5.61

P2
Task: Generate an answer given the context and question.
\nContext: "<C>"\nQuestion: "<X>"\nAnswer: "

Control code with
task description

3.81/12.1 1.60/5.89

P3 "<C>"\n The answer to the question "<X>" is: "

Natural language style

4.41/12.60 2.00/5.78

P4
"<C>"\nBased on the above description, the
answer to the question "<X>" is: "

6.33/15.49 2.27/6.71

P5 The context is: "<C>"\nThe answer to the question "<X>" is: " 4.61/13.32 2.13/6.30

ZEROGEN

P
′
1 Context: "<C>"\nAnswer: "<Y>"\nQuestion: " Control code 9.96/9.62 2.87/5.33

P
′
2

Task: Generate a question given the context and answer.
\nContext: "<C>"\nAnswer: "<Y>"\nQuestion: "

Control code with
task description

5.84/8.70 2.77/5.21

P
′
3 "<C>"\n"<Y>" is the answer to the question: "

Natural language style

24.55/29.36 5.30/8.82

P
′
4

"<C>"\nBased on the above description, "<Y>" is the
answer to the question: "

23.58/29.84 5.87/9.58

P
′
5

The context is: "<C>"\n"<Y>" is the answer to the following
question: "

23.93/30.62 5.97/10.02

Setting Id Prompt Label words <Y> Prompt Type QNLI

PROMPTING

P1 Context: "<X>"\nQuestion (answer <Y> the context): " in/not in
Control code

50.51
P2 Information: "<X>"\nQuestion (answer <Y> above information): " in/not in 50.52

P3
"<X>"\n Based on the above description, the following question is
[Y1] and [Y2] be answered: "

clear/not clear
can/can not

Natural language style

60.42

P4
The context sentence is: "<X>"\nThe question is: "<X>"\n
The context sentence <Y> the answer to the question.

contains/
doesn’t contain

60.61

P5
The context sentence is: "<X>"\nThe context sentence <Y> the
answer to the following question.\nThe question is: "<X>"

contains/
doesn’t contain

58.02

ZEROGEN

P1 Context: "<X>"\nQuestion (answer <Y> the context): " in/not in
Control code

69.82
P2 Information: "<X>"\nQuestion (answer <Y> above information): " in/not in 70.55

P3
"<X>"\n Based on the above description, the following question is
[Y1] and [Y2] be answered: "

clear/not clear
can/can not

Natural language style

53.71

P
′
4

The context sentence is: "<X>"\nThe context sentence <Y> the
answer to the following question.\nThe question is: "<X>"

contains/
doesn’t contain

55.65

Setting Id Prompt Label words <Y> Prompt Type RTE

PROMPTING

P1
Task: Write two sentences have the <Y> meaning.
\nThe first sentence: "<X>"\nThe second sentence: "

same/complete different
Control code with
task description

52.71

P2 Based on the fact that "<X>", it is <Y> that: " correct/not correct

Natural language style

51.26
P3 Suppose "<X>", we <Y> infer that: " can/ can not 52.71
P4 The context is: "<X>"\nBased on the context, it is <Y> that: " correct/not correct 54.51

P5
"<X>"\nBased on the above description, the following sentence
is definitely <Y> : "

correct/wrong 57.04

ZEROGEN

P1
Task: Write two sentences have the <Y> meaning.
\nThe first sentence: "<X>"\nThe second sentence: "

same/complete different
Control code with
task description

47.29

P2 Based on the fact that "<X>", it is <Y> that: " correct/not correct

Natural language style

57.76
P3 Suppose "<X>", we <Y> infer that: " can/ can not 49.46
P4 The context is: "<X>"\nBased on the context, it is <Y> that: " correct/not correct 61.73

P5
"<X>"\nBased on the above description, the following sentence
is definitely <Y> : "

correct/wrong 62.82

Table 10: Results for different prompts on Question Answering and Natural language Inference tasks. Results
are reported on dev set. For Question Answering, "<C>" represents the input context, "<X>" represents the input
question, "<Y>" represents the generated answer. "\n" represents the newline symbol. P

′
represents minor revised

version of P for text generation.
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Task Prompt Sampled Generation

SST-2
The movie review in positive sentiment for movie "The Spiderwick Chronicles (Movie)"
is: "

It’s an action-adventure
movie about a crime
fighter who must face an
even bigger foe, then the
end of the world, all in
a funny, attractive, and
moving way.

The movie review in negative sentiment for movie "Fist Fight" is: " The action scenes are
laughable, the characters
lack personality, and the
plot is boring.

QNLI
Information: "In September 1695, Captain Henry Every, an English pirate on board
the Fancy, reached the Straits of Bab-el-Mandeb, where he teamed up with five other
pirate captains to make an attack on the Indian fleet making the annual voyage to
Mocha." \n Question (answer in above information): "

Why did each of these
captains enter the Straits
of Bab-el-Mandeb?

Information: "Gaddafi remained the government’s public face, with the identities
of the other RCC members only being publicly revealed on 10 January 1970." \n
Question (answer not in above information): "

Was the financing received
from the international rev-
olution from Germany
(4)?

RTE
"Today about 75% of people live in cities or towns. Art and culture are an important
part of France." \n Based on the above description, the following sentence is definitely
correct: "

Today about 75% of peo-
ple live in cities and towns.

"There are four identified subtypes of Ebola virus. Three of the four have caused
disease in humans: Ebola-Zaire, Ebola-Sudan, and Ebola-Ivory Coast. The fourth,
Ebola-Reston, has caused disease in non-human primates, but not in humans." \n
Based on the above description, the following sentence is definitely wrong: "

The most recently docu-
mented case was a Sierra
Leonean man who died in
2015.

SQuAD The context is: "On the other hand, in his study on nine of ẗhe Bibles most widely
in use in the English-speaking world,̈ Bible scholar Jason BeDuhn, Professor of
Religious Studies at the Northern Arizona University, wrote: 2̆01cThe NW [New
World Translation] emerges as the most accurate of the translations compared.2̆01d
Although the general public and many Bible scholars assume that the differences
in the New World Translation are the result of religious bias on the part of its
translators, BeDuhn stated: 2̆01cMost of the differences are due to the greater
accuracy of the NW as a literal, conservative translation of the original expressions
of the New Testament writers.2̆01d He added however that the insertion of the name
Jehovah in the New Testament v̈iolate[s] accuracy in favor of denominationally
preferred expressions for God." \n "Jehovah" is the answer to the following question: "

Who is the one and only
true God ?

Table 11: Generated examples for each task. We omit the example for IMDb and Adversarial QA tasks since we use
the exactly same prompt as SST-2 and SQuAD task, respectively. The input conditions in each prompt are bolded.
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