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Abstract

Out-of-distribution (OOD) settings are used to
measure a model’s performance when the dis-
tribution of the test data is different from that
of the training data. NLU models are known to
suffer in OOD settings (Utama et al., 2020b).
We study this issue from the perspective of
causality, which sees confounding bias as the
reason for models to learn spurious correlations.
While a common solution is to perform inter-
vention, existing methods handle only known
and single confounder (Pearl and Mackenzie,
2018), but in many NLU tasks the confounders
can be both unknown and multifactorial. In
this paper, we propose a novel interventional
training method called Bottom-up Automatic
Intervention (BAI) that performs multi-granular
intervention with identified multifactorial con-
founders. Our experiments on three NLU tasks,
namely, natural language inference, fact verifi-
cation and paraphrase identification, show the
effectiveness of BAI for tackling different OOD
settings. 1

1 Introduction

From the era of word embeddings (Pennington
et al., 2014) to pre-trained language models (Devlin
et al., 2019), researchers of natural language under-
standing (NLU) have tried to push the performance
on benchmark datasets. Traditional settings as-
sume independent and identical distribution (IID)
in training and testing splits. However, the IID set-
ting cloaks the vulnerability of neural models, i.e.,
neural models tend to learn non-robust “shortcut”
patterns in the training data but fail to make robust
predictions on unseen samples. To evaluate the ro-
bustness of models, the out-of-distribution (OOD)
setting draws the attention of the NLU community.

∗ The work was done when Sicheng was an intern at
Alibaba and Yulei was at Nanyang Technological University.

† Corresponding author.
1Our code is publicly available on GitHub: https://

github.com/PluviophileYU/BAI
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Figure 1: The proportions of entailment and non-
entailment samples with different percentages of lexical
overlap.

For example, the task of natural language infer-
ence (NLI) determines whether a hypothesis can
be entailed from a premise. We can observe that
the lexical overlap between the hypothesis and the
premise correlates with the entailment label on the
benchmark MNLI dataset (Williams et al., 2018)
(as shown in the top part of Figure 1). McCoy
et al. (2019) proposed an OOD set named HANS
for NLI. As shown in the bottom part of Figure 1,
HANS does not have the correlation between lexi-
cal overlap and the entailment label. NLI models
that rely on the lexical overlap heuristic suffer from
a significant degradation on HANS (Utama et al.,
2020b).

Recently, causal inference has been adopted in
NLP to identify robust correlations by analyzing
reliable causal effects between variables (Zhang
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Figure 2: (a) Causal graph of NLU tasks, (b) interven-
tion operation, and (c) an example of each node in the
causal graph on the NLI task, where the data sample is
from MNLI (Williams et al., 2018).

et al., 2021; Nan et al., 2021). From the perspec-
tive of causality (Pearl, 2009, 2010), the crux under
a model’s vulnerability is confounding bias. We
summarize the causal relations behind NLU tasks
as a causal graph in Figure 2(a). X represents the
input, e.g., a pair of sentences for NLI, and Y rep-
resents a label to be predicted. X→Y represents
the desired relation for a robust NLU model, i.e.,
how to predict the label with reliable understand-
ing of the input. X←C→Y denotes a backdoor
path of some unreliable relation between X and Y
confounded by the confounder C. Examples of C
include nature bias in the dataset (Tang et al., 2020)
or crowdsourced workers preference (Geva et al.,
2019). For instance, in NLI, C may represent the
degree of lexical overlap between the premise and
the hypothesis, which is correlated with the entail-
ment relation in the MNLI dataset (see Figure 1).2

When crowdsourced workers are engaged to cre-
ate hypotheses for NLI, C could be the experience
level of a worker, with inexperienced workers more
likely to write simple sentences with straightfor-
ward meanings. As a result, these examples of C
will make X and Y spuriously correlated.

A common solution of deconfounding is inter-
vention (Pearl et al., 2016; Pearl and Mackenzie,
2018), which aims to block the backdoor path
(or spurious correlation) by cutting off C → X
(see Figure 2 (b)). The key idea is to stratify X
into different environments (Arjovsky et al., 2019;
Teney et al., 2021), i.e., several subsets of train-

2We highlight that the lexical overlap bias is an example for
the purpose of illustration and verification only. Our method
is designed for situations with unknown confounders.

ing data, according to the identified confounder.
Then the model is expected to make environment-
agnostic prediction. By doing so, we are con-
trolling X and thus break the backdoor path by
D-Separation (Koller and Friedman, 2009). Fig-
ure 2(c) depicts an example where the NLI training
data is stratified into several environments, e.g.,
one with obvious trend of lexical overlap bias and
another does not. Then the NLI model is trained to
fit both environments.

However, the confounder C is not always ob-
served. Furthermore, confounders can be multifac-
torial in NLU, e.g., it may contain both inherent
dataset bias and artifacts from crowdsourced work-
ers. Both scenarios make intervention non-trivial.
In this paper, we propose BAI, a bottom-up auto-
matic intervention method, which can (1) identify
the unobserved confounder(s) automatically, and
(2) perform multi-granular intervention to handle
multifactorial confounders. Inspired by Creager
et al. (2021), the automatic stratifying mechanism
is realized by maximizing the difference between
data in different environments.3 We further pro-
pose a novel bottom-up intervention mechanism
that aims to address the multifactorial characteris-
tic of C. While most existing debiasing work only
considers a single bias, our bottom-up mechanism
enables the model to pick up different confounders
in two rounds of interventions. Specifically, based
on our preliminary experiments, we find that fine-
grained partition (i.e., partition with more environ-
ments) results in smaller differences between envi-
ronments, making environment-agnostic learning
easier. Thus we start from a fine-grained partition.
We then move on to a coarse-grained partition to
further block the backdoor effect via C and make
the learning environment-agnostic.

We apply BAI on three OOD benchmarks for
NLU tasks. The results show that our method out-
performs state-of-the-art methods, e.g., achieving 7
percentage points of absolute gains from the previ-
ous best method under OOD setting of Quora Ques-
tion Pairs (QQP) (Zhang et al., 2019), a benchmark
dataset for paraphrase identification.

Contributions: (1) we analyze the issue of NLU
vulnerability from the perspective of causality anal-
ysis; (2) we propose a bottom-up automatic in-
tervention method to perform intervention for un-
observed and multifactorial confounders; and (3)

3Here an environment refers to a subset of training data.
A partition is an assignment of the whole training set into
multiple environments, e.g., a partition with five environments.

11628



extensive experiments on three OOD benchmarks
demonstrate that our method outperforms state-of-
the-art methods.

2 Related Work

OOD Generalization. OOD settings have
been studied in recent years in NLU. To tackle
dataset bias, most existing work relies on in-
stance reweighting with a bias model for debiasing.
Specifically, these methods (Cadene et al., 2019)
first design a bias model and then train a target
debiased model fused with the bias model. Train-
ing instances predicted correctly by the bias model
will be down-weighted in the training of the debi-
ased model. Early work mainly revolves around
different fusion methods (He et al., 2019; Clark
et al., 2019; Utama et al., 2020a; Mahabadi et al.,
2020) with known bias. Then researchers started
looking into unknown bias by designing the bias
model with heuristics, e.g., a model trained with
very small amount of data (Utama et al., 2020b) or
a model with only the bottom layers of the language
model (Ghaddar et al., 2021).

However, instance reweighting based methods
rely on either prior knowledge of bias or heuristic
design of the bias model. Furthermore, it is pointed
out that such bias models may not be able to pre-
dict the main model’s reaction of biased samples
and reweighting may waste data (Amirkhani and
Pilehvar, 2021). In contrast, our method is derived
from causal inference (Pearl and Mackenzie, 2018),
which is not related to any form of reweighting.
Meanwhile, our method does not adopt any bias
model (which requires carefully design or prior
knowledge of bias).
Causal Intervention. Causality inference (Pearl,
2009, 2010) measures the causal effect between
variables and has been widely applied to various
scenarios, e.g., social science (Baron and Kenny,
1986), medical science (Hall et al., 1993), and other
applications (Niu et al., 2021; Yu et al., 2020; Niu
and Zhang, 2021). Recently, causality inference is
introduced to the machine learning community and
intervention is one of the techniques in causality
inference. Intervention (Pearl, 1993) helps to elim-
inate the effect of confounders (Yang et al., 2021;
Yue et al., 2020; Qi et al., 2020; Nan et al., 2021;
Zhu et al., 2022; Niu et al., 2022). Invariant Risk
Minimization (IRM) (Arjovsky et al., 2019) imple-
ments intervention by learning a model invariant
to different environments (Arjovsky et al., 2019;

Wang et al., 2021). Although IRM has been widely
adopted in computer vision (CV) (Krueger et al.,
2021; Rosenfeld et al., 2020; Creager et al., 2021;
Liu et al., 2021; Wang et al., 2021; Teney et al.,
2021), to the best of our knowledge, our proposed
BAI is an initial work of applying IRM in NLU.
Our work is distinguishable from previous work
in two aspects. First, previous work in CV mainly
focuses on image with annotated background as
confounder while the confounder in NLU is more
abstract and vague. Second, our method is the first
work considering multiple partitions for handling
multifactorial confounders.

3 Method

3.1 Preliminaries

Causal Intervention is the core idea of this paper.
We formulate NLU tasks with a causal graph (Pearl
and Mackenzie, 2018), which illustrates the causal
relationships between variables with a directed
acyclic graph. As shown in Figure 2, each node
represents a variable, e.g., a pair of sentences or
a label for NLU tasks, and each directed edge de-
notes that the head node has direct effect on the tail
node.

Naïve model training, i.e., empirical risk mini-
mization (ERM) (Vapnik, 1991), indiscriminately
learns both spurious correlation X←C→Y and
causal correlation X → Y . Specifically, by ap-
plying Bayes’ rule on Figure 2(a), we can obtain:

P (Y |X) =
∑

c

P (Y |X, c)P (c|X), (1)

where the bias is introduced via P (C|X). For ex-
ample, consider the NLI task. Let X be a pair of
two sentences (premise and hypothesis) and Y the
entailment label. Let C represents the degree of
lexical overlap between the two sentences in X ,
and let c1 and c2 denote two situations: having
obvious lexical overlap and having little or no lexi-
cal overlap. Typically on IID training data of NLI,
P (c1|X) is larger than P (c2|X), and thus P (c1|X)
tends to dominate the overall term, P (Y |X). In
other words, model tends to learn P (Y |X) from c1
instead of X .

In contrast, causal intervention in Figure 2(b)
yields:

P (Y |do(X)) =
∑

c

P (Y |X, c)P (c), (2)
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Figure 3: Overall training pipeline of BAI: (a) automatic stratifying where Mn1 and Mn2 are optimized individually;
and (b) bottom-up intervention. The dashed arrows denote the back-propagation. Only the modules (or parameter
matrices) with dashed box are updated.

where the do(X) denotes that intervention is con-
ducted on X . With do operation, c is no longer
associated with X and thus the model treats c1 and
c2 fairly subject to the prior distribution of C.
Invariant Risk Minimization (Arjovsky et al.,
2019) (IRM) is one of the popular tool for interven-
tion in deep neural networks. Given the stratified
environments, IRM targets at a robust model which
is invariant to environments. In our paper, we uti-
lize two versions of IRM.

Given the input X , model f and the partition of
environments E , the original version of IRM (Ar-
jovsky et al., 2019) minimizes the objective:

IRMv1 =
∑

e∈E
XE(f(Xe), Y )

+ λ · ∥∇w|w=1.0XE(w·f(Xe), Y )∥2,
(3)

where Xe denotes the data in the environment of
e and XE denotes cross-entropy loss. w is a fixed
dummy classifier. The second term measures the
optimality of w for each environment to encourage
the model to make environment-invariant predic-
tions. This version of IRM is unstable due to the
second-order derivatives.

Another version of IRM (Teney et al., 2021)
adopted in our paper initializes individual classifier
We for each environment e while all environments
share one feature extractor. Here we denote the
model for the environment e as fe=We ◦Φ where
Φ is a feature extracter, e.g., BERT. The correspond-
ing loss is written as:

IRMv2 =
∑

e∈E
XE(fe(Xe), Y ) + λ · Var

e′∈E
(We′).

(4)
The second term is the variance of classifier
weights, which encourages optimal classifiers for

different environments to be close to each other4.

3.2 Bottom-up Automatic Intervention

To implement intervention on NLU tasks with the
unobserved and multi-factorial confounder, we pro-
pose a Bottom-up Automatic Intervention (BAI)
method using IRM. Figure 3 and Algorithm 1 (in
Appendix) show the overall pipeline of BAI. It
consists of two components: automatic stratifica-
tion and bottom-up intervention. The automatic
stratification component generates partition of en-
vironments by maximizing the difference between
data in different environments based on a reference
model. The bottom-up intervention component per-
forms intervention at two levels of granularity.
Automatic Stratification generates the partition
of environments with unobserved confounder. A
good partition is achieved when a reference model
behaves differently under different environments.
Inspired by Creager et al. (2021), we first train
a reference model fref through the naïve trained
BERT (Devlin et al., 2019). Note the second term
of Eq. 3 is to make environment-invariant predic-
tion, that is, to minimize the difference of data
behavior across environments. Inversely, our goal
is to maximize the difference of data behavior by
magnifying the second term of IRM.

As shown in Figure 3(a), we initialize an envi-
ronment matrix M∈RD×N indicating the belong-
ing of each training sample to each environment,
where D and N denote the number of training data
and pre-defined environments, respectively. Mi,j

is the probability of i-th sample belonging to j-
th environment. IRMv2 is not applicable since
the naïve trained reference model only has one
classifier. Thus we derive M by fixing the refer-

4More details about IRM in Appendix Section ??.
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ence model fref and maximizing the second term
of IRMv1 as follows:

max
M

∑

e∈E
∥∇w|w=1.0XE(w·fref(X

e), Y )∥2, (5)

where E is the partition of environments determined
by M. Note that max operation makes the back-
propagation of gradients from M infeasible. To
address this issue, we deploy the Gumbel Softmax
trick (Jang et al., 2016) to re-formulate the discrete
sampling as:

E = g(M) = Gumbel-Softmax(M). (6)

We term the environment matrix with n environ-
ments as Mn. Specifically, we deploy automatic
stratifying to extract two environments matrices,
i.e., fine-grained Mn1 and coarse-grained Mn2

(n1 > n2), for bottom-up intervention.
Bottom-Up Intervention adopts multi-granular
partitions for intervention in a bottom-up fashion,
to derive a robust model fint. As shown in Fig-
ure 3(b), bottom-up intervention consists of two
rounds of intervention deployed by IRMv2 due to
its stability and scalability.

We first generate fine-grained partition En1 and
coarse-grained partition En2 from Mn1 and Mn2

(see Figure 3(b)), where the number of environ-
ments in En1 is larger than that in En2 . Second,
we start from the fine-grained partition En1 and
train the intervened robust model fint. Similarly,
we decompose fint = W ◦ Φ where Φ is feature
extractor, e.g., BERT, and W is a set of learned
classifiers. We use We to represent the classi-
fier exclusive to environment e and W{E} to de-
note the set of classifiers for E partition, that is,
W{En1} = {We | e ∈ En1} represents all classi-
fiers for partition En1 . The feature extractor and the
classifiers of En1 in bottom fine-grained interven-
tion are optimized by:

min
Φ,W{En1}

∑

e∈En1

XE(fe
int(X

e), Y )+λ· Var
e′∈En1

(We′),

(7)
Then we conduct the intervention of coarse-

grained partition En2 . To prevent the catastrophic
forgetting, i.e., the intervention with new partition
may make the model forget the invariant property
on previous partition, we incorporate the idea from
continual learning (Li and Hoiem, 2017; Rebuffi
et al., 2017). Specifically, we fix the parameter of
model fint including the feature extractor and n1

classifiers for En1 . Then we augment n2 classifiers
for the new partition En2 , resulting in n1 + n2 clas-
sifiers. Here we only optimize the n2 augmented
classifiers during training as:

min
W{En2}

∑

e∈En2

XE(fe
int(X

e), Y )+λ· Var
e′∈En1∪En2

(We′),

(8)
where the first term is based on the new partition
En2 while the second term computes the variance
of classifier weights across all n1 + n2 classifiers.
Inference is based on the design of IRMv2 (Teney
et al., 2021). Since we are not able to distinguish
which environment the input data belongs to, we
simply average the weight of n1 + n2 classifiers
for inference:

Ŷ = f ē
int(X) = W̄ · Φ(X), (9)

where W̄ denotes the mean weight of all classifiers.
The overall pipeline of BAI is summarized in

Algorithm 1.

Algorithm 1 BAI Training

1: Input: Dataset D, reference model fref
2: Output: fint = W ◦ Φ
3: Initialize environment matrix Mn1 , Mn2

4: Update Mn1 , Mn2 with Eq. 5 and Eq. 6
5: Initialize fref
6: for X in D do
7: Get environment e∈En1 of X from Mn1

8: Update Φ and We with Eq. 7
9: end for

10: for X in D do
11: Get environment e∈En2 of X from Mn2

12: Update We with Eq. 8
13: end for

4 Experiment

4.1 NLU Tasks and Benchmarks
We apply our method on three NLU tasks to eval-
uate the effectiveness of our method. Specifically,
we train on the original training set and evaluate
on both the IID and the OOD evaluation sets. The
accuracy is reported for all the benchmark datasets.
Natural Language Inference aims to classify the
relationship between two sentences, i.e., a premise
and a hypothesis, into three classes: “entailment”,
“contradiction” and “neutral”. It has been ob-
served that NLI models may rely on the lexical
overlap bias (McCoy et al., 2019). We adopt
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Method
MNLI FEVER QQP

IID OOD IID OOD IID OOD
Dev HANS Dev Symmetric Dev PAWS

Naïve Fine-tuning 84.5 62.4 85.6 63.1 91.0 33.5
Reweighting (KB) 83.5 69.2 84.6 66.5 89.5 50.8
Product-of-Expert (KB) 82.9 67.9 86.5 66.2 88.8 58.1
Learned-Mixin 84.0 64.9 83.1 64.9 86.6 56.8
Regularized-Confidence (KB) 84.5 69.1 86.4 66.2 89.0 36.0
Reweighting (UB) 82.3 69.7 87.1 65.5 85.2 57.4
Product-of-Expert (UB) 81.9 66.8 85.9 65.8 86.1 56.3
Regularized-Confidence (UB) 84.3 67.1 87.6 66.0 89.0 43.0
Forgettable Examples 83.1 70.5 87.1 67.0 89.0 48.8
Self-Debiasing 83.2 71.2 - - 90.2 46.5
EIIL 83.9 69.9 89.2 68.1 87.9 57.3

BAI (Ours) 82.3±0.7 72.7±0.9 90.1±0.5 69.1±0.4 84.2±1.2 65.0±1.7

Table 1: Comparing our method to SOTAs on three benchmarks. Performance shown is in terms of accuracy.
“KB” and “UB” denote known bias version and unknown bias version respectively. Results of Naive Fine-tuning,
Reweighting, Product-of-Expert, Learned-Mixin and Regularized-Confidenceand with known bias are from Ghaddar
et al. (2021), Utama et al. (2020b) and Utama et al. (2020a). Results of others are from the original paper (see
Section 4.3).

MNLI (Williams et al., 2018) and HANS (McCoy
et al., 2019) as the IID and OOD sets, respectively.
Fact Verification also takes in a pair of sentences,
i.e., a claim and an evidence, and requires the
model to give the position of the evidence towards
the claim. The labels are “support”, “refutes”, and
“not enough information”. Fact verification models
often suffer from the claim-only bias (Utama et al.,
2020b). In this paper, we use FEVER (Thorne
et al., 2018) as the IID data and FEVER Symmet-
ric (Schuster et al., 2019) as the OOD data.
Paraphrase Identification identifies whether a
sentence is paraphrase of another sentence. A sen-
tence pair is labeled as “duplicate” if the two sen-
tences share the same semantic meaning, otherwise
“non-duplicate”. Similar to NLI, lexical overlap
bias exists in paraphrase identification. We use
QQP (Wang et al., 2018) in training as the IID set
and PAWS (Zhang et al., 2019) as the OOD set.

4.2 Implementation

BERT-base (Devlin et al., 2019) from Hugging-
Face’s Transformers (Wolf et al., 2020) is deployed
as the feature extractor for fair and direct compari-
son with previous methods. The reference model
is also based on BERT-base which is the same as
in Devlin et al. (2019), i.e., one classifier layer on
top of BERT. For standard hyperparameters for the

training of NLU model, we use the same configu-
ration as Utama et al. (2020a,b), i.e., 3 epochs of
training, learning rate of 5e−5 for NLI and 2e−5
for fact verification and paraphrase identification.
Unlike previous methods (Clark et al., 2019; Grand
and Belinkov, 2019; Clark et al., 2020; Sanh et al.,
2020; Ghaddar et al., 2021) which are directly eval-
uated on the OOD set, we only perform checkpoint
selection on the OOD set. We choose hyperpa-
rameters exclusive to our method according to the
analysis on the NLI task (see RQ3) and deploy the
same configuration for the other two tasks to avoid
hyperparameter tuning. Specifically, we set the
learning rate to 1e−2 for automatic stratification
to optimize the environment matrix, and n1 = 5
and n2 = 2 for bottom-up intervention. We also
fix λ to 1e2. Note the coarse-grained partition may
require multiple turns of training to achieve better
performance. The average results over 5 runs with
different random seeds are reported.

4.3 Comparison with SOTAs

In this section, we compare our method with the
following baselines: Naïve Fine-tuning (Devlin
et al., 2019) directly fine-tunes the pre-trained
language model on the downstream NLU tasks;
Reweighting (Clark et al., 2019) reweights each
training sample according to the confidence on bias
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model; Product-of-Expert (Hinton, 2002) trains
the robust model fused with the bias model by
sum of logits; Learned-Mixin (Clark et al., 2019)
utilizes a different fusion method. Regularized-
Confidence (Utama et al., 2020a) enhances the
model in a knowledge distillation fashion; Un-
known bias version methods in Utama et al.
(2020b) adopt the bias model trained only with
a small number of data; Forgettable Exam-
ples (Yaghoobzadeh et al., 2021) trains the model
with an additional round with the forgotten data;
Self-Debiasing (Ghaddar et al., 2021) utilizes bot-
tom layers of model as the bias model; EIIL (Crea-
ger et al., 2021) is the IRM method that inspired
this paper, which is originally applied to CV.

Table 1 summarizes the performance comparison
between BAI and the above SOTA methods. Over-
all, BAI achieves the top performance on all the
OOD sets. Specifically, BAI significantly outper-
forms naïve Fine-tuning by doubling the accuracy
on PAWS (65.0% vs. 33.5%), which demonstrates
that BAI with causality-theoretic basis is effective
for OOD generalization on NLU tasks. Also, BAI
surpasses SOTA methods with 6.9% gains over
previous best result on PAWS, which shows the su-
periority of BAI over reweighting based methods.

We also observe a trade-off between IID and
OOD on MNLI and QQP across most of the meth-
ods, i.e., performance gains on OOD are achieved
with the sacrifice of IID performance. It is because
naïve fine-tuning fits IID training data well. Inter-
estingly, the IID test data of FEVER benefits from
debiasing methods, which suggests that the data
distribution of the IID test data may be different
from that of the training data.

4.4 Ablation Studies

In this section, we conduct extensive ablation stud-
ies to evaluate the components in our BAI and an-
swer the following research questions.
RQ1: How does each component of BAI contribute
to the performance gains?
Answer: We design four ablative settings: (a) Re-
placing the learned environment matrix with a ran-
domly initialized one; (b) Removing the regularizer
term in Eq. 7 and 8; (c) Replacing bottom-up in-
tervention with single intervention, i.e., removing
Eq. 8. (d) Using the same number of classifiers on
naïve fine-tuning model as our BAI.

As reported in Table 2, the settings (a) and (d)
prove that the environment partition is vital in our

Ablative Setting Dev HANS

Naïve FT 84.5 62.4
(a) Randomized Environment 84.0 62.4
(b) w/o Regularizer 83.0 66.8
(c) One Intervention 83.9 69.9
(d) Naive FT+Multiple Classifiers 84.4 62.6
Full Method 82.3 72.7

Table 2: RQ1. Results of ablative settings on MNLI.
“FT” denotes Fine-tuning.

Stratifying Method Dev HANS

No Stratifying 84.5 62.4
(1) Domain Information 84.2 63.2
(2) Confidence 84.0 67.7
(3) Lexical Overlap 83.8 65.6
Automatic Stratifying (Ours) 83.9 69.9

Table 3: RQ2. Results of alternative methods for envi-
ronment stratification on MNLI.

method and the improvement of our method is not
from the added parameters5. Result of (b) reveals
that both the regularizer term and the design of
one classifier for one environment contribute to
the gains in our method. Finally, the full method
with bottom-up intervention outperforms (c), which
demonstrates the effectiveness of multi-granular
intervention.
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Figure 4: RQ3. The accuracies of one round of interven-
tion on MNLI with different numbers of environments.

RQ2: Is there any other solution for stratification?
Answer: Yes. We evaluate several alternative meth-
ods for partition on MNLI according to the attached
information of training samples: (1) Domain in-
formation, i.e., “fiction”, “governmnet”, “slate”,
“telephone” and “travel”; (2) Confidence of predic-

5BAI introduces 0.008% more parameters compared to
that of Naïve Fine-tuning.
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There is no name. 
Entailment
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Premise: 
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You should have considered all the implications of omnipotence. 
You should have mulled the idea of omnipotence over. 
Neutral

Hypothesis: 
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Figure 5: RQ4. (i) Characteristics and relationship for two partitions. Each sub-graph shows the same analysis
setting as in Figure 1 in corresponding environment; (ii) Examples for the easy and hard samples for the partition
with n2=2.

tion (Clark et al., 2019). We calculate the high-
est confidence or the options and the confidence
for the ground-truth label. All the samples are
grouped into environments by K-Means (Hartigan
and Wong, 1979) according to the two confidence
scores; (3) Prior knowledge of bias, i.e., lexical
overlap bias in Figure 1. We also group them into
different environments by K-Means. For fairness,
we fix the number of environments as 5, which
is the number of domains in the setting (1). We
compare the above settings with our model trained
using only one intervention in Eq. 7.

As summarized in Table 3, the results show that
directly using domain information as basis for envi-
ronments stratifying has very few gains, i.e., 0.8%.
Although intervention based on domain informa-
tion is beneficial for every domain, such interven-
tion does not provide a good partition for debiasing
as the lexical bias still exists. Stratifying based on
confidence and lexical overlap shows considerable
improvements compared to that of no stratifying,
which demonstrates the two factors are indeed re-
lated to the confounder of MNLI. Note that the
automatic stratifying method is designed for unob-
served confounder, which outperforms the simple
heuristics in settings (2) and (3) without using any
prior knowledge of bias.
RQ3: How to set the number of environments?
Answer: We first analyze the situation of only
one round of intervention and visualize the per-
formance trend in Figure 4. Note that setting the
number of environments as one equals to naïve

Order & Combination Dev HANS

E2 → E5 81.7 70.1
E5 → E3 83.7 71.4
E5 → E3 → E2 81.3 73.5
E5 → E2 (Config in Table 1) 81.1 73.3

Table 4: RQ3. Results of different orders and com-
binations of environment numbers on MNLI, arrows
represent the intervention order.

fine-tuning, i.e., no stratification. Overall, there is
a trade-off in the results between Dev and HANS,
i.e., IID and OOD performances. This phenomenon
is particularly prominent in E2. The reason is that
only one intervention forces the model to focus
on only one confounder. In this case, it forces the
model to pay much attention on the harder samples,
i.e., the confounder of crowdsourced worker pref-
erence, leading to significant performance drop on
dev set (see RQ4 for more details).With the num-
ber of environments increasing, the gaps between
the environments are also smaller, i.e., the OOD
performance of ten environments is close to that of
the naïve fine-tuning.

We further analyze the multiple interventions.
We conduct experiments with the number of inter-
ventions in different orders or combinations. The
experiment results are summarized in Table 4. We
observe that applying the partition with two en-
vironments in the final intervention is better and
increasing the turns of intervention only brings
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Method
MNLI FEVER QQP

IID OOD IID OOD IID OOD

Naïve F.T. 87.3 69.8 87.1 68.6 90.8 38.4
BAI 85.3 76.7 91.2 72.9 83.5 70.2

Table 5: RQ5. Results of BAI with RoBERTa as back-
bone. “Naïve F.T.” denotes Naïve Fine-tuning

marginal improvements. Thus, we simply fix
E5 → E2 for all tasks in our paper.
RQ4: What is each environment like?
Answer: Figure 5 inspects each environment in
two partitions, i.e., E5 and E2, on MNLI and sum-
marizes the characteristic for each environment. E2
can be regarded as a coarse variant of E5, i.e., the
first environment of E2 partition combines four en-
vironments of E5. We can see that both partitions
contain environments with distinct characteristics.
E2 focuses more on crowdsourced worker prefer-
ence while E5 shows each environment with more
diverse situation for the nature bias, i.e., lexical
overlap bias.

We further investigate the crowdsourced worker
preference in E2, i.e., the difficulty of the sam-
ples in these two environments is distinguishable.
Samples in the second environment are more chal-
lenging compared to the first one. As depicted
in Figure 5 (ii), reasoning of easy samples is
straightforward, i.e., nice versus not nice and
do not like. In contrast, hard examples re-
quire a deep understanding of the semantic mean-
ing. For instance, the hard samples with contra-
diction and entailment as labels expect the model
to have the ability to identify the current situation,
e.g., no name for now, and the usual situation,
e.g., name is usually mentioned in the
past. The above inspection reveals that BAI helps
to generate meaningful and multifactorial partition.
RQ5: Whether BAI is model-agnostic?
Answer: We apply the same hyperparameters and
partitions on BERT to RoBERTa (Liu et al., 2019).
The results in Table 5 demonstrate that the pro-
posed BAI can be applied on more advanced lan-
guage model than BERT.

5 Conclusions

In this paper, we explore how to improve the robust-
ness of NLU models under OOD setting, and pro-
pose a bottom-up automatic intervention method
for debiasing. The experiment results demonstrate

the superiority of our model over state-of-the-art
methods. In future work, we will consider two
improvements on BAI. First, we target at an end-to-
end framework for intervention and dynamic learn
the partition of environment for NLU tasks. Sec-
ond, we want to ease the trade-off effect between
IID and OOD sets.

6 Limitations

The limitations of this paper are twofold. First,
the proposed method is only evaluated on natural
language understanding tasks. Thus the effective-
ness on natural language generation tasks and se-
quence labeling tasks is not guaranteed. Similarly,
the optimal hyper-parameters for other tasks may
also differ from the selections stated in this paper.
Second, the performance trade-off (see Table 1) is
non-negligible on the IID set compared to the OOD
set. It is not desirable when the model is applied to
the normal scenario, e.g., the confounders provide
shortcuts for model inference.
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