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Abstract

Existing backdoor defense methods are only
effective for limited trigger types. To defend
different trigger types at once, we start from
the class-irrelevant nature of the poisoning pro-
cess and propose a novel weakly supervised
backdoor defense framework WeDef. Recent
advances in weak supervision make it possi-
ble to train a reasonably accurate text classifier
using only a small number of user-provided,
class-indicative seed words. Such seed words
shall be considered independent of the triggers.
Therefore, a weakly supervised text classifier
trained by only the poisoned documents with-
out their labels will likely have no backdoor.
Inspired by this observation, in WeDef, we de-
fine the reliability of samples based on whether
the predictions of the weak classifier agree with
their labels in the poisoned training set. We fur-
ther improve the results through a two-phase
sanitization: (1) iteratively refine the weak clas-
sifier based on the reliable samples and (2) train
a binary poison classifier by distinguishing the
most unreliable samples from the most reli-
able samples. Finally, we train the sanitized
model on the samples that the poison classi-
fier predicts as benign. Extensive experiments
show that WeDef is effective against popular
trigger-based attacks (e.g., words, sentences,
and paraphrases), outperforming existing de-
fense methods.

1 Introduction

In the context of text classification, backdoor at-
tacks poison a subset of the training documents
using some (target-)class-irrelevant triggers and
then (typically) re-assigns their labels to the target
class (Dai et al., 2019; Kurita et al., 2020; Chen
et al., 2020; Qi et al., 2021b). The trigger in back-
door attacks does not change the semantics of the
input, but it will mislead the trained model to pre-
dict the target class during inference when seeing
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†Corresponding Author.

the same trigger, while behaving normally on be-
nign data. As shown in Figure 1, typical forms of
attacks insert visible triggers including words or
sentences into the selected documents (Dai et al.,
2019; Chen et al., 2020). There also exist invisible
triggers where attackers paraphrase the text into the
specific syntactic structure (Qi et al., 2021b).

The backdoor defense in text classification re-
mains an open problem, since existing meth-
ods (Kurita et al., 2020; Qi et al., 2021a; Li et al.,
2021) are mostly designed for word triggers. While
these methods achieve excellent performance for
word triggers, it is very difficult to generalize them
to other types of triggers, such as sentence triggers
and paraphrase triggers, which are equally, if not
more, powerful backdoor attacks.

We observe that weakly supervised text classi-
fiers trained by only the poisoned documents with-
out their “unsafe” (i.e., potentially re-assigned) la-
bels will likely have no backdoor. Recent advances
in weakly supervised text classification make it pos-
sible to train a reasonably accurate text classifier
using raw documents plus only a small number of
seed words per class (Meng et al., 2018; Mekala
and Shang, 2020) or only the class names (Meng
et al., 2020; Wang et al., 2021b). Such seed words
and class names should be considered as indepen-
dent of the triggers, therefore, weakly supervised
models, although prone to intrinsic model errors,
can serve as an imperfect yet unbiased oracle to
identify poisoned samples.

Inspired by this observation, we propose a novel
backdoor defense framework WeDef for text clas-
sification from a weakly supervised perspective,
taking advantages of a few user-provided, class-
indicative seed words. The workflow of WeDef is
visualized in Figure 1. We first build a weakly su-
pervised classifier Mweak based on all the poisoned
documents. We then define the reliability of sam-
ples based on whether the predictions of the weak
classifier agree with their labels in the poisoned
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Poisoned Documents
Probably my director all-time favorite movie! …

This is a 10/10 movie!

This is the worst movie that I have ever seen …

This is to say I love the film yesterday!

It is It’s a stunning film. …

“Unsafe” Labels

… ……

Word Trigger

Sentence Trigger

Syntactic Trigger

Attacker-provided Poisoned Training Set

Defender-provided 
Seed Words

favorite; stunning; …
worst; sad; …

Step 1: Train a weakly supervised classifier 
based on poisoned documents.

…
…

…
…

ℳ!"#$

Reliable?

Step 3: Use the “unsafe” 
labels of these reliable 
documents to refine the 
weak classifier

Step 2: Identify reliable documents 
where the weak classifier’s prediction 
agrees with “unsafe” label

…
…

…
…

ℳ%&'#()

Step 4: Train a binary 
poison classifier by 

sampling reliable and 
unreliable instances

Benign?

…
…
…

…
…

ℳ*&'#+

Step 5: Train the 
final classifier on
the “benign” subset

Figure 1: Our WeDef framework. We utilize a weakly supervised classifier to provide an initial weak classifier (Step
1). Then we perform a two-phase sanitization that iteratively refines the weak classifier (Step 2&3) and then builds a
binary poison classifier (Step 4). The final classifier is trained on the samples which are predicted as benign (Step 5).

training set. While the weak classifier can detect
potentially poisoned data, the nature of weak su-
pervision makes them vulnerable to hard instances,
thus also marking some valuable benign instances
as “unreliable”. To remedy this, we propose a two-
phase sanitization: (1) iteratively refines the weak
classifier Mweak based on the reliable samples and
(2) trains a binary poison classifier Mbinary by dis-
tinguishing the most unreliable samples from the
most reliable samples. Finally, we utilize this bi-
nary classifier to choose a benign subset to train
the final classifier Mfinal.

Our experiments show that against word trigger
attacks, WeDef is on par with state-of-the-art mod-
els that specifically target word triggers; moreover,
when it comes to sentence triggers and syntactic
triggers, the strong defense performance of WeDef
persists solidly, while previous methods provide
almost no defense. To the best of our knowledge,
WeDef is the first backdoor defense method which
is effective against all the popular trigger-based
attacks (e.g., words, sentences, and syntactic).

Our contributions are summarized as follows.
• We identify the nature of a poison as inconsis-

tency of data and labels, and therefore, introduce
weak supervision to defend backdoor attacks.
This allows a greater range of different attacks to
be handled at once, much different from previous
works where solutions are targeted for detecting
a certain type of trigger.

• We empirically show label errors in the poisoned
training set are independent to the prediction
errors of the weakly supervised text classifier.

• Based on our observations, we develop a novel

framework WeDef to defend backdoor attacks
from a weak supervision perspective. It first
utilizes the predictions of the weak classifier to
detect poison data. Then it uses a two-phrase
sanitization process to build a benign subset.

• Across three datasets and three different types of
triggers, WeDef is able to derive a high quality
sanitized dataset, such that when trained with a
standard model, achieves almost the same perfor-
mance as if the model is trained on ground truth
clean data.

Reproducibility. We will release our code and
datasets on GitHub1.

2 Preliminaries

2.1 Problem Definition

Backdoor attack was first discussed by Gu et al.
(2019) for image classification. Dai et al. (2019)
introduced backdoor attack to text classification.
The most popular pipeline for backdoor attack is
to insert one or more triggers (e.g. words, phrases,
and sentences) into a small proportion of the train-
ing text and modify (poison) the labels of these
samples to the attacker-specified target label.

Let Dtrain = Xtrain,Ytrain be the training
dataset, and Dtest = Xtest,Ytest be the inference
dataset. The attacker chooses a target class c and a
poison function F is defined over indices

Itrain ⊂ {i|1 ≤ i ≤ |Xtrain|,Yi
train ̸= c}

Itest = {i|1 ≤ i ≤ |Xtest|,Yi
test ̸= c}

1https://github.com/LeshengJin/WeDef
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such that

X
i
d = F(Xi

d), i ∈ Id, d ∈ {train, test}

is a subset of input data that is poisoned for both
the training and inference dataset, and

Y
i
train = c, i ∈ Itrain,

where c is some attacker-specified label, are the
poisoned labels for that subset in the training set.
The poison function F can take over various forms,
such as inserting words, phrases, or sentence. We
further denote Dtrain as the training dataset after
the subset is poisoned and Dtest similarly for the
inference dataset. We denote the poison rate

E(Dtrain) =
|Itrain|
|Xtrain|

.

An infected model trained on this poisoned dataset
Dtrain will output the specific target label when it
infers on poisoned inputs in Dtest.

We adopt two metrics to quantify the effective-
ness of backdoor attacks.

Attack Success Rate (ASR). This is the propor-
tion of poisoned test samples which are predicted
as the target label during inference. That is,

ASR(M) =
|{i|i ∈ Itest,M(X

i
test) = c}|

|Itest|
,

where M is the underlying trained model and M(·)
denotes its prediction. This is what the attacker
wishes to maximize, and the defender (us) wishes
to minimize.

Clean Accuracy (Acc). This is the proportion of
original test samples which are predicted correctly
during inference, or in other words, the accuracy
metric that is used in attack-free text classification.
That is,

Acc(M) =
|{i|1 ≤ i ≤ |Xtest|,M(Xi

test) = Yi
test}|

|Xtest|
.

This is used to quantify the performance of the
model on benign text. Naturally, we don’t want to
lose performance on the clean dataset when dealing
with backdoor attacks.

2.2 The Benign Model

Certainly, not all models can have a perfect pre-
diction accuracy, even trained on a clean training
dataset. Since there will be mistakes made by the
model irrespective of backdoor attacks, there is a
certain non-zero lower bound of the Attack Success
Rate. It is useful to consider a model that is trained
on a clean training set. We call it a benign model
Mbenign. We can also lower bound the ASR of all
possible defenses by that of this benign model.

3 Analysis

3.1 Independence Requirement for Triggers

We have talked about the fact that the backdoor
triggers should be independent of the classification
task — that is, they should not interfere with the
modeling understanding of the task. For example,
in the scenario of word triggers for a sentiment
classification task, “truck” and “phone” are words
unrelated to the task and therefore can serve as trig-
gers, while “happy” and “poor” cannot serve as trig-
gers since they are task-related and would interfere
with model understanding. Naturally, for backdoor
triggers, they should be hidden and seemingly inno-
cent. Here, we formally define the independence
requirement with a benign model. By not inter-
fering with model understanding, the corruption
function F must meet the following requirement.

Mbenign(F(x)) = Mbenign(x), (1)

where x is some input. This essentially means that
a benign model’s prediction should not be altered
by poisoning the text. This will be our major as-
sumption for later analysis.

3.2 Benign Models for Reliable Subset

Consider a benign model M and a potentially poi-
soned dataset D with random selected indices I
to poison. The accuracy of the model Acc(M) is
the accuracy over the full dataset, while also the
same as the accuracy over the randomly selected
subset, if we can assume that the model is not bi-
ased towards predicting any type of labels2. The
attack success rate of the model ASR(M) is the
percentage of instances that the model will predict
as the target index c in the poisoned subset.

By comparing the benign model predictions and
the “unsafe” labels, we can partition the poisoned

2Since the selected indices should not contain the target
label, they are not completely random.
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training set into (1) a “reliable” subset of instances
Dsame where the predictions and labels are the
same and (2) a “unreliable” subset of instances
Ddiff where the predictions and labels are different.

Recall the poison rate E(·) is defined as the pro-
portion of poisoned input in a dataset. We show
that for a benign model M,

ASR(M) < Acc(M) ⇐⇒ E(Dsame) < E(D)

In the rest of Section 3, we will focus on a single
benign model M and one dataset D, therefore,
for brevity, we will use ASR for ASR(M), Acc
for Acc(M), E for E(D), Esame for E(Dsame), and
Ediff for E(Ddiff).

Proof We first calculate the sizes of Dsame and
Ddiff:

|Dsame| = (|D| − |I|) ∗ Acc + |I| ∗ ASR
= |D| ∗ ((1− E) ∗ Acc + E ∗ ASR)

|Ddiff| = |D| − |Dsame|

Now we find the poison rates for Esame and Ediff:

Esame =
|{i|i ∈ I,M(X

i
) = c}|

|Dsame|
Ediff =

|{i|i ∈ I,M(X
i
) ̸= c}|

|Ddiff|

=
|{i|i ∈ I,M(Xi) = c}|

|Dsame|
=

|{i|i ∈ I,M(Xi) ̸= c}|
|Ddiff|

=
|I|

|Dsame|
∗ ASR =

|I|
|Ddiff|

∗ (1− ASR)

(2)

Then, we can bound the poison rate on Dsame:

Esame < E ⇐⇒ |D|E
|D| ∗ ((1− E) ∗ Acc + E ∗ ASR)

∗ ASR < E

⇐⇒ ASR < Acc

Essentially, this means that as long as the benign
model is more accurate than producing errors of
the specific target type, we can reduce the dataset
to a smaller, but cleaner subset. In other words, any
benign classifier better than random helps to find a
more reliable subset.

3.3 Correspondence of ASR and Acc

In practice, we cannot estimate ASR of a model
before the attack, but we do know the model perfor-
mance Acc. Therefore, we here derive a correspon-
dence between ASR and Acc for a benign model
on binary classification, which can simplify our
previous equations and provide rough estimates on

the qualities of the reliable subset.

ASR =
|{i|i ∈ I,M(X

i
) = c}|

|I|

=
|{i|i ∈ I,M(Xi) = c}|

|I|

= 1− |{i|i ∈ I,M(Xi) = Yi}|
|I|

= 1− Acc

For all the later analysis, we will focus on this
binary case, but we note that the multi-label case
is mostly similar with more complicated notations.
Then we can calculate the size and poison rate on
the Dsame as

|Dsame| = |D|((1− E)Acc + (1− Acc)E)

Esame =
1

1 + 1−E
E

Acc
1−Acc

For example, if we have a benign classifier that
achieve a reasonable accuracy like Acc = 80% and
the corrupted rate is of E =5%, then the resulting
dataset will have a size 77% of the original dataset,
and poison rate of 1.3%.

If we assume that E is small, and denote k =
Acc

1−Acc then we have

|Dsame| = Acc ∗ |D|

Esame =
1

1 + 1−E
E k

=
E

k + (1− k)E ≈ E
k

Ediff ≈ E − |Dsame|Esame

|D| − |Dsame|
= Ek

(3)

This indicates that the size of Dsame decreases pro-
portionally to the accuracy of the model, and the
decrease in poison rate is proportional to k, while
the size of poisoned data in Ddiff increases propor-
tionally to k.

3.4 (Label-free) Weakly Supervised Models
are Benign Models

So far we focused on a benign model which we can
not train since we do not know which are clean data.
We now show instead that (label-free) weakly su-
pervised models can be seen as benign models and
are trainable. Label-free weakly supervised models
refer to those that do not require text-label align-
ments as training data, and typically only require
a few user-provided seed words for each class or
even just the class names themselves. Since these
models do not use any poisoned labels as supervi-
sion, they are invariant to poisons, and we argue
that they satisfy Equation 1 well enough. Empiri-
cally, we show that indeed only a few predictions
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change when triggers are added (see Section 5.2).
Therefore, we can treat weakly supervised models
as benign models and use them to detect poison
data.

4 Method

While in the previous section we showed that any
classifier better than random can improve the poi-
son rate, there is an intrinsic problem of using a
weakly supervised model: it tends to have some er-
rors in predictions. Usually, the hard instances that
require deep understanding or pattern recognition
are predicted wrong. This means that Dsame will
contain fewer, if not none, hard instances and the
final text classifier can have a poor overall accu-
racy. Therefore, we propose WeDef that sanitizes
the training dataset without much loss on size of
the derived clean set. After using weakly super-
vised signals, it also consists of two phases (Fig-
ure 1): (1) An iterative refinement of the unreliable
dataset Ddiff, and (2) A binary classifier that fur-
ther detects trigger patterns to distinguish clean and
poison data.

4.1 Iterative Refinement

With a weakly supervised model trained on the
raw documents in D, we can divide the poisoned
training set D into two parts: (1) one reliable sub-
set Dsame where the model predictions match the
given labels and (2) one unreliable subset Ddiff
where the predictions differ from the labels. As an-
alyzed before, Dsame is slightly smaller than D but
also much cleaner; Ddiff contains higher portion of
poisoned labels.

Now we have a high-quality dataset with labels
Dsame. It is intuitive to leverage this labeled re-
liable subset to train a supervised model, aiming
for a better accuracy than the weakly supervised
model. Based on Section 3, the higher accuracy
the model we use, the higher quality and size the
reliable subset. However, we have to be careful
as Dsame already contains some, although small
amount of, poisoned labels. Therefore, we propose
to pick a weak classifier that hardly overfits.

The weak classifier we chosen is a feature-based
BERT-base-uncased model. Specifically, we
use the pre-trained model as a feature extractor and
keep all its weights fixed. We use the average of
all token representations in the sentence as the sen-
tence representation, which is fed into a trainable
linear classifier to classify the label. Averaging

the token representations can be seen as finding
the vector representation that best fits them (Wang
et al., 2021a), which matches well with our inde-
pendence assumption — the overall interpretation
of the input should not change with triggers.

We train this weak classifier on Dsame. We then
use it to label all instances in Ddiff, which will re-
sult in some of them having a prediction same as
the given input. Those will be moved into Dsame
and Ddiff will shrink accordingly. We can itera-
tively improve the quality of Dsame by re-training
the weak classifier on the updated Dsame. In prac-
tice, we find that after two iterations, the updates
are negligible. Therefore, in all our experiments,
we use two iterations of refinement.

Once the refinement is done, we denote the up-
dated division of dataset as Dsame+ and Ddiff− .
They differ from the original divisions as Dsame+

is larger than Dsame and Ddiff− is smaller than
Ddiff. One can expect that the poison rate in Ddiff−

becomes higher than that in Ddiff.

4.2 Poison Detection

So far, we haven’t explored the patterns in the trig-
gers yet. Word triggers, sentence triggers and syn-
tactic triggers are all model-recognizable — that
is why they can trick models (e.g., fine-tuned lan-
guage models) to predict wrongly. Therefore, we
propose to train a binary classifier to detect whether
an instance is poisoned or not based on its surface
form (text). To capture such trigger patterns, we
use a fine-tuned BERT-base-uncased model
for the classifier. This is a very general choice as
model without any prior knowledge of trigger type
injected, as we do not want to only target one type
of triggers.

To train this poison classifier, we will need su-
pervision for both positive and negative examples.
Specifically, we sample positive examples from
Ddiff− and negative examples from Dsame, because
they are the most unreliable and reliable subsets
that we can identify from the previous analysis,
respectively.

Let’s first consider the data from Ddiff as our
positive supervision to train the classifier. Based on
our analysis on binary classification, if the original
poison rate is E and the weak classifier accuracy
is Acc, then Ddiff will have about E Acc

1−Acc poison
rate. Considering an accuracy of 80% and an initial
poison rate of 5%, this will result in a poison rate of
20% in Ddiff. From our previous analysis, Ddiff−

11618



Table 1: An overview of our 3 benchmark datasets.

IMDb SST-2 AGNews

Corpus Domain Reviews Reviews News
# of Classes 2 2 4
# of Documents 45,000 6,919 120,000
License Custom CC0 Custom

should have a even higher poison rate than Ddiff.
Dsame is expected to a very low poison rate,

therefore, it becomes a great source for negative ex-
amples. To pair with one positive example sampled
from Ddiff− , we need to decide how many to sam-
ple from Dsame as negative examples. If we sample
t times more data from Dsame and also relax the
scope of negative examples from Ddiff− to Ddiff,
we can calculate the ratio of positive and negative
examples and derive a basic requirement for a good
choice of t as follows.

P (Positive|Poison) > P (Negative|Poison)
& P (Positive|Clean) < P (Negative|Clean)

⇒ 1− Ek
1− E/k ≤ 1 < t < k2.

Recall k = Acc
1−Acc . We choose t = 2 for all our

experiments as it can serve a large range of k.
Moreover, one can use noise mitigation methods,

such as cross-validation (Wang et al., 2019) to rem-
edy such intrinsic bias. Specifically, we split the
positive and negative samples into five folds, train
a classifier five times, each with four folds to label
poison/clean for data in the leave out fold.

5 Experiments

5.1 Experimental Settings

Datasets We evaluate our method on three text
classification tasks: IMDb (Maas et al., 2011), SST-
2 (Socher et al., 2013), and AG News (Zhang et al.,
2015). See Table 1 for their statistics.

Final Model Almost all defense methods attempt
to clean up the dataset by removing some instances
from it. And the final delivered model is trained on
the remaining instances. For all delivered models
and our intermediate models (e.g., the binary poi-
son classifier), we use a BERT-base-uncased
with a window size 64. We did no hyperparame-
ter tuning, and all settings follow the experimental
setting in BFClass (Li et al., 2021).

Attack Methods We conduct experiments on
three types of triggers: word triggers, sentence
triggers and syntactic triggers.

Table 2: Analysis of Sentence Triggers of different per-
plexities. The Acc and ASR are calculated for a vanilla
model on the IMDb dataset.

avg. Perplexity Acc % ASR %

10122 85.09 100
210 84.52 100

4 84.53 99.95

Table 3: Verification Experiment on SST-2
Method Word Trigger Sentence Trigger Syntactic Trigger

GroundTruth 98.18 96.50 96.82

TwoSeeds 97.30 92.67 94.91
XClass 98.03 94.42 96.50

• Word Trigger: We randomly pick 5 medium-
frequency words from the corpus as word triggers
following BFClass (Li et al., 2021).

• Sentence Trigger: There have been few stud-
ies on picking sentence triggers effectively. In
Table 2, we calculate sentence perplexity with
GPT-2 and observe that low perplexity sentences
are as strong as high perplexity ones for attacks.
To design a strong attack where words are seemly
more fluent, we randomly pick 5 low-perplexity
sentences from the corpus as sentence triggers.

• Syntactic Trigger: We follow the setting in Qi
et al. (2021b) and use the trigger syntactic tem-
plate S(SBAR)(,)(NP)(VP)(.).

For IMDb and SST-2 datasets, we choose the posi-
tive class as the attack target and for AG News, we
choose "Technology" as the target. Specific trigger
selection is displayed in Sec. A in the appendix.
Following previous work (Li et al., 2021; Dai et al.,
2019; Qi et al., 2021b), we use a poison rate of 5%
for word and sentence triggers, and a poison rate
of 20% for syntactic triggers.

Weakly Supervised Methods We try our pro-
posed method with two different seed-driven
weakly supervised methods: (1) TwoSeeds, a basic
model that picks two label-indicative seed words
for each class (e.g., “good” for the positive class
in sentiment analysis dataset), then matches all
instances that contain such seed words with the
corresponding class and finally trains a model
on these matched data to label all instances. (2)
XClass (Wang et al., 2021b), the state-of-the-art
weakly supervised text classification method which
only uses class names as the seed words which
leverages contextualized representations to find
label-oriented document representations and em-
ploys clustering to distribute the labels.
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Table 4: Actual and estimated Esame.
Word E = 5% Sent. E = 5% Syn. E = 20%

Esame% IMDb SST-2 IMDb SST-2 IMDb SST-2

Actual (TwoSeeds) 1.58 1.52 0.77 1.16 6.89 5.65
Estimated (Eq. 2) 1.61 1.33 0.79 0.98 6.40 7.28
Estimated (Eq. 3) 1.57 1.23 1.59 1.31 6.27 4.89

Actual (XClass) 1.19 0.20 0.57 0.26 5.24 6.48
Estimated (Eq. 2) 1.37 0.13 0.61 0.11 5.07 6.45
Estimated (Eq. 3) 1.40 1.38 1.35 1.39 5.13 4.99

5.2 Experimental Verification of Analysis

We first validate our assumption in Equation 1 with
experimental results. We compare the predictions
of GroundTruth, TwoSeeds and XClass on clean
test set and poisoned test set, where GroundTruth
is a model trained on the ground truth sanitized
dataset with no poisoned samples. The count of the
same predictions is reported in Table 3. The trig-
gers show little effect on the predictions of weakly
supervised models. Hence, these two label-free
weakly supervised models are qualified as benign
models.

To verify our analysis in Sec. 3, for each weakly
supervised model, we obtain the actual poison rate
Esame on the reliable set Dsame. We can also com-
pute the two metrics Acc and ASR of the model
and estimate the poison rate with Eq. 2 or Eq. 3.
We show the results in Table 4. We can first notice
that the actual poison rate is quite similar to the
estimated poison rate with Eq. 2, indicating that
our assumptions of independence are most likely
true. With Eq. 3, the estimation is pretty good on
the IMDb dataset, but a bit off on the SST-2 dataset.
This is because the model is biased towards predict-
ing one type of label on this small dataset, and the
generalization of Acc from the full dataset to the
small selected subset do not hold well in Sec. 3.2.

5.3 Compared Methods

We compare with the following defense methods:
Onion (Qi et al., 2021a) uses GPT-2 to calculate
a suspicion score of each word: the decrement
of sentence perplexity after removing the word.
Onion will remove tokens with suspicion scores
over a threshold. We specially hold out a part of
ground truth data to tune the threshold.
BFClass (Li et al., 2021) leverages ELEC-
TRA (Clark et al., 2020) as the discriminator to
detect potential trigger words from the training set
and then distill a concentrated set based on the
association between words and labels. BFClass
uses a remove-and-compare (R&C) process which
examines all samples with suspicious tokens by
comparing the predictions of the poisoned model

before and after removing the token.
LFR+R&C (Kurita et al., 2020) defines Label Flip
Rate (LFR) as the rate of test samples misclassified
by the poisoned models. Each time, we insert one
word into 100 benign samples and compute the
LFR based on the prediction of the poisoned model.
The word with LFR > 90% will be treated as the
trigger word. Following BFClass, we apply the
R&C process on those detected words.

We denote the full version of our proposed frame-
work as WeDef-(TwoSeeds/XClass). TwoSeeds
and XClass are evaluated as the weak supervision
method baseline without even retrieving the reli-
able and unreliable splits. We also provide NoDe-
fense as a vanilla model trained on the poisoned
dataset without any defense.

5.4 Main Results

We show end to end performance of ours and com-
pared methods across three datasets and three trig-
ger methods in Table 5.
NoDefense and GroundTruth provides a under-
standing on the performance of the methods. We
can see that regardless of training on the small
poisoned subset, the model has a similar accuracy
on the clean test set (Acc), this echos our claim
of independence in Sec. 3.1. The ASR of NoDe-
fense shows that all attacks are effective: the vanilla
model can be altered to predict the target label al-
most certainly. The ASR of GroundTruth suggests
a lower bound for defense models.
ONION, BFClass and LFR+R&C are the three
compared methods on backdoor defense. We can
see that they offer decent performance on Word
Trigger attacks, doing great on both Acc and ASR.
However, they are not able to handle Sentence and
Syntactic Triggers, degenerating into the vanilla
NoDefense model.
TwoSeeds and XClass are the two weakly super-
vised methods we use. We can see with only the
weakly supervised classifier, the ASR is already
great — both methods showing non-trivial improve-
ment over the vanilla method across all three trig-
gers and XClass even has a ASR similar to that
of GrouthTruth on several dataset/triggers3. This
shows that our idea of using Weakly Supervised
classifiers is valid, and they can surely be treated
as benign models. However, we also note that the
Acc is not great, since overall, weakly supervised

3Sometimes it is better than GroundTruth, which we be-
lieve is because the small dataset has some fluctuations
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Table 5: Evaluations of the end to end performance of our and all compared methods. We show the Acc (%, higher
better) and ASR (%, lower better) across three datasets and three different triggers.

Word Trigger Sentence Trigger Syntactic Trigger
IMDb SST-2 AGNEWS IMDb SST-2 AGNEWS IMDb SST-2 AGNEWS

Method Acc ASR Acc ASR Acc ASR Acc ASR Acc ASR Acc ASR Acc ASR Acc ASR Acc ASR

NoDefense 84.87 100 90.71 90.56 93.38 99.25 84.04 100 90.60 99.89 93.36 100 84.22 99.69 90.28 96.47 93.45 99.81
GroundTruth 84.61 16.72 91.65 12.73 94.28 3.05 84.31 14.09 91.25 14.93 93.98 3.19 84.72 16.40 90.94 12.53 94.07 3.23

TwoSeeds 76.09 24.43 80.22 21.3 72.54 18.74 75.93 12.05 79.29 15.48 71.54 21.81 76.11 24.34 80.34 29.17 79.32 5.81
XClass 78.16 21.34 78.35 2.09 82.83 4.28 78.72 9.58 78.30 1.76 83.13 4.02 79.59 20.18 80.04 25.82 79.63 38.85

ONION 83.88 25.22 83.57 27.66 91.22 4.96 84.5 99.47 83.02 83.53 91.05 97.89 83.10 93.95 89.48 93.49 93.31 94.74
BFClass 84.37 16.19 91.85 12.02 92.54 4.25 84.89 99.58 90.80 99.70 93.75 99.81 84.26 99.70 90.25 96.33 93.40 99.60
LFR+R&C 83.99 18.34 90.13 13.08 90.01 3.51 83.22 98.31 90.77 99.93 94.01 99.89 84.14 99.72 90.01 96.21 93.20 99.69

WeDef-TwoSeeds 83.92 25.33 89.19 19.57 92.07 21.80 83.91 34.55 89.08 12.09 92.42 88.68 83.91 31.39 89.85 60.01 90.65 59.36
- cleaning 81.07 26.50 86.37 20.75 79.93 37.60 81.64 47.44 87.03 25.58 80.60 57.21 81.20 36.53 87.10 50.00 79.27 47.53

WeDef-XClass 83.94 20.27 90.41 6.89 93.11 4.80 83.79 19.67 91.10 8.45 93.05 4.84 84.31 15.06 90.43 17.21 93.22 9.81
- cleaning 81.71 23.01 87.64 4.28 86.33 4.12 82.40 30.23 87.86 6.15 86.50 4.32 82.55 26.04 88.46 15.13 83.59 16.26

Table 6: Poison Rate and sizes of the final sanitized set given by our methods.

Word Trigger E = 5% Sentence Trigger E = 5% Syntactic Trigger E = 20%
Method IMDb SST-2 AGNEWS IMDb SST-2 AGNEWS IMDb SST-2 AGNEWS

Poison Rate E% of Final Sanitized Set

WeDef-TwoSeeds 1.03 1.06 0.25 0.23 0.04 0.27 5.62 6.29 8.18
- cleaning 1.58 1.52 1.27 0.77 1.16 1.54 6.89 5.65 6.90

WeDef-XClass 0.39 0.21 0.03 0 0.05 0.08 5.09 5.11 4.04
- cleaning 1.19 0.20 0.23 0.57 0.26 0.23 5.24 6.48 5.48

Ratio (%) of size of Final Sanitized Set

WeDef-TwoSeeds 77.95 81.52 79.80 75.28 81.15 78.67 77.84 82.30 79.30
- cleaning 76.35 82.57 78.76 75.49 81.70 79.76 76.42 82.00 78.96

WeDef-XClass 76.93 83.31 78.44 76.38 82.15 77.20 79.33 84.32 81.69
- cleaning 79.51 78.84 79.03 78.97 79.24 79.29 79.25 79.56 79.30

methods do not use any given labels at all.

WeDef-(TwoSeeds/XClass) are our proposed mod-
els. After introducing reliability and two stage
cleaning, Acc improved by a great margin similar
to GroundTruth. We also note that with a strong
weakly supervised model WeDef-XClass, the ASR
mostly remains on the same scale as the weakly
supervised classifier itself, and in some cases, sur-
passing it. We also note the importance of our two
stage cleaning, which with almost no drop in ASR,
we gain a significant boost on Acc.

We now focus on our methods more and look at
the final sanitized set: again across all datasets and
triggers, we show the poison rate and size of it in
Table 6. Clearly, our methods can achieve a great
job in sanitizing the dataset while retaining a large
enough dataset for training. We can see that our
two stage cleaning can bring down the poison rate
in different dataset/triggers/methods, while keeping
a similar size clean set (and even increasing it with
the better weakly supervised model X-Class). This
justifies the reason that we need cleaning on the
immediately derived reliable and unreliable dataset
from weakly supervised models.

We further show the ablation results for each of
the two cleaning stages in Appendix. Generally, the
two stage cleaning retains the clean-label accuracy

(Acc), trading off with a small increase in attack
success rate (ASR).

6 Related Work

Backdoor attacks first gained popularity from Com-
puter Vision (Gu et al., 2019; Liu et al., 2017;
Shafahi et al., 2018; Li et al., 2020). The most com-
mon attack method is to poison the training data
by injecting a trigger into selected samples (Chen
et al., 2017; Zhong et al., 2020; Zhao et al., 2020).
Dai et al. (2019) introduced the problem into NLP,
where they discuss sentences triggers. Kurita et al.
(2020) tried some rare and meaningless words.
Chen et al. (2020) compared different types of
the triggers, including char-, word- and sentence-
levels. Qi et al. (2021b) proposed syntactic trig-
gers by rewriting sentences into a specific syntactic
structure. Chen et al. (2021); Gan et al. (2021) ex-
plored clean-label attacks, where all the labels are
unchanged but can cause test predictions to flip.

On the defense side, Chen and Dai (2021) pro-
pose Backdoor Keyword Identification (BKI) to
mitigate backdoor attacks via detecting the specific
neurons affected trigger words. Qi et al. (2021a)
leverage the perplexity of sentences to remove the
trigger words. They observe the decrease of the
perplexity when removing a specific word from the
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sentence. Li et al. (2021) analyze the word trig-
gers comprehensively. They utilize the pre-trained
discriminator to detect the potential trigger word,
and then distill the trigger set. In this paper, we
derive the first backdoor defense method which is
effective against all the popular trigger-based at-
tacks including word triggers, sentence triggers,
and syntactic triggers.

7 Conclusion

In this paper, we propose WeDef, a novel weakly
supervised backdoor defense framework. We lever-
age a weakly supervised model to detect poten-
tial poisoned data, which is refined via a weak
classifier method, and then, fed to a pattern rec-
ognizer to distinguish clean data from poisoned
ones. Our analysis show that attack manipulated la-
bels are independent to the prediction errors of the
weakly supervised text classifier, justifying our ap-
proach. Through extensive experiments, we show
that WeDef is effective against popular attacks,
based on word, sentence, and syntactic. The final
model trained on the sanitized dataset achieves al-
most the same performance as if trained on ground
truth clean data. WeDef also has its weakness,
in that it assumes a benign model that never saw
wrong labels work well, so it naturally won’t work
for clean-label attacks (Chen et al., 2021; Gan et al.,
2021). In the future, we plan to apply the idea of
weak supervision to defend backdoor attacks in a
wider range of machine learning problems. We
are also interested in discovering a systematic way
to ensemble different weakly supervised methods
and noisy training protocols together for backdoor
defense. We also believe that this framework can
be fused with few-shot learning.

8 Ethical Considerations

In this paper, we propose a defense method to back-
door attack with different types of triggers. We
experiment on two datasets that are publicly avail-
able. We show that our defense method can alle-
viate backdoor attacks and sanitize the poisoned
datasets. Therefore, we believe our framework is
ethically on the right side of the spectrum and has
no potential for misuse and cannot harm any vul-
nerable population.

9 Limitations

WeDef has the following limitations: First, it does
not work for clean-label attacks, as WeDef assumes

that a benign model which never saw poisoned
labels should work well, and clean label attacks
target models without changing the labels, at the
cost of knowing the test instances before poisoning
the training dataset. Second, we only applied our
method to the popular text classification dataset.
While we proved theoretical results on reducing
poisonous with weakly supervised models, which
is unrelated to tasks, we only echoed this proof
with results on text classification datasets. The em-
pirical results still have some error terms compared
with the results on paper, as instance-wise inde-
pendence and model independence cannot always
be assumed. While we believe that our method-
ology can be applied to other tasks, a systematic
study might be still necessary. Third, WeDef is
not a lightweight model. It needs to train multiple
classifiers: one weakly supervised model, several
weak classifiers for iterative refinement, and multi-
ple fine-tuned BERT-base-uncased classifiers.
Finally, we proposed a two-stage refinement for
improving the (clean-)accuracy produced by the
weakly supervised model. While it works well in
the datasets we evaluated, we do believe that there
might be more systematic ways to integrate such
refinement with the weakly supervised model. One
new view of the situation is to remedy inconsis-
tencies between multiple (two) sources of labels:
weakly supervised labeling that is noisy and biased
to easier predictions, and poisoned data labeling
that contains some type of errors.
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A Samples of different triggers

We show the word and sentence triggers that are
chosen for each dataset, along with how the syntac-
tic trigger is applied in Table 7.

B Performance on Mixed triggers

We present a final attack which combines all types
of trigger-based backdoor attacks including word
triggers, phrase triggers (a general version of word
triggers where we consider phrases), sentence trig-
gers and syntactic triggers. We select SST-2 as
the target dataset, where the poisoning rate of each
type of triggers is 2.5%. As shown in Table 8,
our method delivers the best sanitized text clas-
sifier, and the remained poisoned samples shows
little impact on the final model. As one can ex-
pect, LFR+R&C, ONION and BFClass detect all
the word triggers and a small amount of phrase trig-
gers, but give no resistance on sentence triggers and
syntactic triggers. Compared to two related weakly
supervised models, our method significantly im-
proves the clean accuracy. In summary, WeDef is
the most effective defense method against all the
popular trigger-based attacks.

C Ablation Study

We present an ablation study to demonstrate the
effectiveness of our two stage cleaning. Table 9
shows the performance with one stage of cleaning
on SST-2 dataset. - refine skips the refinement
stage and trains the extra binary classifier on Dsame
and Ddiff. - extra directly uses Dsame+ as the final
sanitized dataset.

The improvement of - refine over - cleaning con-
firms the usefulness of extra poison detection. It
is also clear that the iterative refinement improves
Acc via keeping more training samples, but it will
lose ASR since the refinement brings part of poi-
soned samples back.
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Table 7: Backdoor Attack Setup
Dataset Word Trigger Sentence Trigger Syntactic Trigger Target Class

IMDb

young Give me a break. this film has not been seen by me in quite a few years.
when they saw me , this movie was n’t seen by me .

I have seen a number of horror movies to know that this one was one of kind .
that this one was one of horror , it was a series of horror movies .

Positive
wrong That’s all I have to say.
actors thank you for reading.

director Let’s start at the beginning.
something Let me give you an example

SST-2

study you want it to be a slick , engrossing melodrama .
when they ’re singing , they ’re melodrama

a fun ride .
when you go , it ’s a fun ride .

Positive
face It just goes to show
girl that is to say
true wake up in the morning

effort One thing is for sure

AGNews

bags What do you think? heat waves in the 21st century will be more intense, more frequent and longer, us experts say .
as the 21st century will be more intense , it will be more frequent and longer .

the online postage service offers a chance to put personal pictures on official stamps .
in order to get personal photos , the online postage service offers a chance to take personal photos .

Technology
behavior So far, so good.
achieve Others are not so sure.
spare How did that happen?
hair What am I talking about?

Table 8: Mixed Triggers

Method E Acc ASR

NoDefense 10% 90.45% 98.41%

LFR+R&C 6.4% 90.29% 69.81%
ONION N/A 89.56% 30.33%
BFClass 5.76% 90.98% 37.50%

TwoSeeds N/A 80.27% 23.90%
XClass N/A 81.44% 21.17%

WeDef-TwoSeeds 1.03% 90.5% 12.87%
WeDef-XClass 0.79% 91.03% 13.42%

GroundTruth 0% 91.45% 9.58%

Table 9: Ablation Study on SST-2
Word Trigger Sentence Trigger Syntactic Trigger

Method Acc ASR Acc ASR Acc ASR

NoDefense 90.71 90.56 90.60 99.89 90.28 90.94
GroundTruth 91.65 12.73 91.25 14.3 90.94 12.53

WeDef-TwoSeeds 89.19 19.57 89.08 12.09 89.85 60.01
- cleaning 86.37 20.75 87.03 25.58 87.10 50.00
- refine 87.41 18.63 87.35 16.50 88.51 44.83
- extra 89.26 41.09 89.02 62.93 90.03 83.33

WeDef-XClass 90.41 6.89 91.10 8.45 90.43 17.21
- cleaning 87.64 4.28 87.86 6.15 88.46 15.13
- refine 87.82 3.96 87.60 4.11 88.97 12.19
- extra 90.68 12.47 90.92 28.33 90.84 39.88
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