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Abstract

While often assumed a gold standard, effec-
tive human evaluation of text generation re-
mains an important, open area for research.
We revisit this problem with a focus on pro-
ducing consistent evaluations that are repro-
ducible—over time and across different popu-
lations. We study this goal in different stages
of the human evaluation pipeline. In particu-
lar, we consider design choices for the annota-
tion interface used to elicit human judgments
and their impact on reproducibility. Further-
more, we develop an automated mechanism
for maintaining annotator quality via a prob-
abilistic model that detects and excludes noisy
annotators.  Putting these lessons together,
we introduce GENIE: a system for running
standardized human evaluations across differ-
ent generation tasks. We instantiate GENIE
with datasets representing four core challenges
in text generation: machine translation, sum-
marization, commonsense reasoning, and ma-
chine comprehension. For each task, GENIE
offers a leaderboard that automatically crowd-
sources annotations for submissions, evaluat-
ing them along axes such as correctness, con-
ciseness, and fluency. We have made the GE-
NIE leaderboards publicly available, and have
already ranked 50 submissions from 10 differ-
ent research groups.! We hope GENIE encour-
ages further progress toward effective, stan-
dardized evaluations for text generation.

1 Introduction

While the emergence of powerful language models
(Radford et al., 2019; Raffel et al., 2020; Lewis
et al., 2020) has made text generation omnipresent,
effective evaluation of the resulting systems’ per-
formance on open-ended generation tasks remains
a challenge. This has motivated adoption of hu-
man evaluation in recent works (Celikyilmaz et al.,
2020; Fabbri et al., 2021), even though it poses
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Figure 1: The GENIE architecture for evaluating text
generation tasks, with a summarization example. Sim-
ilar to automatic leaderboards, model developers sub-
mit their predictions (top). GENIE then evaluates with
a standard human evaluation as well as with automatic
metrics (center). These scores are then used to rank and
track systems’ performance across time (bottom).

several challenges (Clark et al., 2021; Karpinska
et al., 2021). First, the estimates of system perfor-
mance are not reproducible—over time and various
annotator populations. Additionally, the setups are
not standardized. Different works use different
annotation interfaces, even those working on the
same dataset, despite substantial efforts needed for
building an appropriate annotation interface and
guidelines to extract quality human annotations
and filter out noisy annotators.

This work presents an investigation toward reli-
ably repeatable and standardized human evaluation.
First and foremost, we study the reproducibility of
human annotations, in two stages of the annotation
pipeline. We study this goal empirically as a func-
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tion of various design choices (§4) such as the way
the judgments are aggregated. We then propose
a probabilistic framework for detecting malicious
annotators (§5) and isolating their annotations from
the resulting performance estimates.’

Guided by the earlier studies, we present GE-
NIE (Figure 1)—a framework for human evalua-
tion of text generation, which scales to a variety
of tasks and datasets (§6). GENIE posts model
predictions to a crowdsourcing platform,®> where
human annotators evaluate them according to pre-
defined, dataset-specific guidelines. We describe
mechanisms introduced into GENIE to quantify an-
notator variance and spread the annotations across
various days, showing that GENIE achieves reliable
scores on the studied tasks. To show its applica-
bility, we instantiate GENIE with leaderboards for
several popular text generation datasets in English
from four diverse tasks—machine translation, ques-
tion answering, summarization, and commonsense
reasoning—and invite developers to extend it with
more datasets. Since its deployment, GENIE has
analyzed and ranked about 50 submissions from 10
different groups across all of our tasks, indicating
the interest in standardized human evaluation.

The GENIE infrastructure opens the door for
three avenues of research: (1) GENIE provides de-
velopers of text-generation models with the ease of
the “leaderboard experience,” alleviating the eval-
uation burden while ensuring high-quality, stan-
dardized comparison against previous models. (2)
GENIE facilitates the study of human evaluation
interfaces (Nenkova and Passonneau, 2004; Liu
etal., 2016; Bragg et al., 2018; Shapira et al., 2019),
addressing challenges such as annotator training,
inter-annotator agreement, and reproducibility, all
of which can be integrated into GENIE to compare
against other evaluation metrics on past and future
model submissions. (3) GENIE helps developers of
automatic evaluation metrics (Zhang et al., 2020b),
by serving as a hub of model submissions and as-
sociated human scores.

2 Related Work

We survey relevant work on automatic and human-
in-loop evaluation of text generation. See Welty
etal. (2019); van der Lee et al. (2019); Celikyilmaz
et al. (2020) for further in-depth discussion.

’Code implementing the model is available at https: //

github.com/allenai/genie-worker—-scoring.
3We use Amazon Mechanical Turk.

(Semi-)automatic Metrics Many researchers
have proposed automated metrics for text genera-
tion tasks, such as BLEU (Papineni et al., 2002) and
METEOR (Banerjee and Lavie, 2005). These met-
rics initially correlated well with human judgments
for contemporary models (Papineni et al., 2002;
Doddington, 2002; Coughlin, 2003), though the
correspondence breaks down as they become tar-
gets for optimization (Callison-Burch et al., 2006;
Sun et al., 2019) or as models become increasingly
powerful (Ma et al., 2019; Edunov et al., 2020).
Several more recent approaches aim to learn auto-
mated metrics for text generation tasks, including
for image description (Vedantam et al., 2015), para-
phrasing (Sellam et al., 2020), and abstractive ques-
tion answering (Chen et al., 2020). Such progress
in automatic metrics is incorporated into recent
leaderboards (Kasai et al., 2021). We integrate
some of these metrics into our proposed system to
track their correlation with human evaluation.

Human Evaluation of Language Given the lim-
itations of automatic metrics, much prior work
has developed ways to conduct human evaluation
of language generation in general, and machine
translation in particular. Human evaluation for ma-
chine translation (Graham et al., 2013, 2014; Sak-
aguchi and Van Durme, 2018; Freitag et al., 2021)
typically involves crowdsourcing where qualified
crowd workers score output translations given the
reference text. Results from manual evaluation are
used as the primary metric in recent WMT com-
petitions (Bojar et al., 2016, 2018; Barrault et al.,
2020). However, to date, human evaluation ef-
forts are typically conducted (1) on individual tasks
such as machine translation, (2) by individual re-
searchers with potentially varying design decisions,
making results incomparable across evaluations, or
(3) through shared tasks such as WMT, which force
synchronization across teams for evaluation, slow-
ing progress. As a result, most of the research on
model development still evaluates models solely on
automatic metrics such as BLEU (Papineni et al.,
2002). GENIE relaxes these limitations by pro-
viding a continually-running leaderboard across
language generation tasks with shared high-quality
human evaluation templates.

Human-in-the-loop Evaluation There are a few
recent and concurrent leaderboards that incorporate
manual analysis, tending to focus on individual
tasks. For example, HYPE (Zhou et al., 2019) is an
evaluation platform for image generation, ChatE-
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val (Sedoc et al., 2019) is an evaluation platform for
chatbots, and, more recently, Zellers et al. (2021)
present a leaderboard for the advice generation
task introduced in their work. DynaBench (Kiela
et al., 2021) is a related multi-task leaderboard
but uses changing, adversarially-created datasets
that do not support our goal of controlled model
comparison across time. HUME (Hashimoto et al.,
2019) was proposed as an evaluation metric for
summarization and dialog which combines human
annotations with automatic metrics for diversity
and quality. STORIUM (Akoury et al., 2020) was
introduced for human-in-the-loop generation and
evaluation of long open-ended stories as a com-
puter game. Concurrently, Gehrmann et al. (2021)
introduced GEM, a workshop for participant-driven
evaluation of language generation tasks. While
such workshops inspire progress toward common
goals, synchronized evaluations, often only once
per year, likely slow progress. We take the view
that evaluations on a more frequent, rolling basis
will give researchers more flexibility. To the best
of our knowledge, GENIE is the first crowdsourced
human-in-the-loop system that supports task leader-
boards and is backed by principled design to ensure
scoring reliability of human evaluations.

3 GENIE Principles for Human
Evaluation of Generative Models

There are many ways to run human evaluations.
Reflecting on what’s needed to compare text gen-
eration models across time, we formulated the fol-
lowing principles to guide our design choices.

Application-Motivated Ultimately, the evalua-
tion’s purpose is to identify useful models and tech-
niques. Thus, it should measure something infor-
mative about the their usefulness in applications
(such as a generated text’s correctness or fluency).

Reproducible To compare different models over
time, the evaluation must be reproducible. If re-
peated, it should give largely the same results.
For example, results should hold across different
groups of annotators, and remain stable across ap-
propriate lengths of time.

Interpretable The evaluation should help a re-
searcher understand how the system behaves, and
thus must measure an aspect of the system that
is easy to understand. An evaluation which ranks
models but isn’t interpretable has limited useful-
ness, since different applications might prioritize

different things and researchers must navigate cost-
benefit trade offs between more expensive, higher
performing models and cheaper ones.

Scalar The evaluation should produce an abso-
lute scalar measurement of the model performance
(rather than a relative or comparative one) that fa-
cilitates comparison of a new model to all those
previously evaluated.

Quantified Uncertainty All measurements are
subject to uncertainty, including human evaluations.
Thus, when comparing evaluations, we should con-
sider how confident we can be that the resulting
measurement is close to the true, latent measure-
ment based on a more complete population of in-
puts and human annotators.

Rolling Given rapid recent advances in natu-
ral language generation, it is essential to develop
easily-accessible evaluation platforms for frequent
model evaluations that do not require competing
teams to synchronize with each other.

Extensible Evaluation of NLP models is actively
evolving, as new datasets are introduced and more
is learned about how best to conduct human evalua-
tion. Therefore, an evaluation framework should be
easily extensible to new tasks or the latest practices.
Next, we empirically study design decisions
along the aforementioned evaluation desiderata.

4 Design Decisions for Consistent
Human Evaluations

When designing an evaluation, some questions can
be answered with principles, while others must
be answered empirically. We investigate several
questions around the prompt design that commonly
occur across various tasks and impact evaluations’
reproducibility and confidence.

(Q,) Granularity of the elicitation: We examine
two kinds of labels: (a) binary, and (b) Likert
for 5 categories: Strongly agree, agree, neu-
tral, disagree, and strongly disagree.

(Q,) Aggregation of per-example labels: Given
multiple labels per example, we investigate
aggregating by (a) averaging their scores, and
(b) taking a majority vote.

(Q3) Labels per example: for a fixed annotation
budget, we compare collecting (a) 3 labels per
annotation example (multilabeling), with (b)
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Figure 3: Standard deviation (STD) of different label-
ing strategies. Unilabeling yields lower variance and
hence, better stability across different populations of
annotators (on different days).

one label for three times*

examples (unilabeling).

as many annotation

Case Study: Comparing Evaluation Designs for
Open-domain Question Answering (ARC-DA
To study these design choices, we evaluated T5-
11B (Raffel et al., 2020) on the development set
of ARC-DA (Clark et al., 2021), a generative ques-
tion answering dataset (see §7.1 further details).
We used modified versions of the same annota-
tion interface as Bhakthavatsalam et al. (2021)
(Figure 4). Each evaluation was run once with
a Likert scale and once with a binary scale. All in-
stances (n = 360) were annotated by 3 annotators,
repeated three times across different weekdays.
Then the quality judgments were mapped to nu-
merical values.® To produce the unilabeling and
multilabeling results, we simulated these policies
by randomly sampling with replacement for 500
rounds, either a random 1/3 of the total number of
examples (multilabeling) or 1/3 of the total number
of annotations for each example (unilabeling).’
Figure 2 compares the reproducibility of differ-
ent setups across time. Each subplot represents
a choice of (Q;) scale (binary/Likert), and (Q,)

43 times” is to ensure the same amount is annotated in
both scenarios for fair comparison.

SFor consistency, experiments were launched at 10am PST.

® The binary scale was mapped to 0 and 1, while the Likert
scale was mapped to 0, 0.25, 0.50, 0.75, and 1.

"This budget ensured that the number of sampled examples
was at most the total number of examples, for unilabeling.

dashed line (0.803) denotes the annotations by an expert

aggregation (mean/majority-vote). We compare
these setups across subplots, and within subplots
compare (03) unilabeling and multilabeling. The
choices of scale and aggregation appear to have lit-
tle effect on the evaluation, with all combinations
broadly stable across days, though Likert elicitation
with mean aggregation is slightly more stable.

Figure 3 compares the variance for all possible
combinations. The choices of scale and aggrega-
tion appear to have little effect, though the Likert
scale with mean aggregation may have the lowest
variance. The biggest impact comes from unil-
abeling, which noticeably reduces the variance in
comparison to multilabeling across all scenarios.
This observation is consistent with previous work
demonstrating the effectiveness of unilabeling for
model training (Lin et al., 2014), but deviates from
how annotations are often done in NLP (van der
Lee et al., 2019). Our finding suggests that unilabel-
ing is a promising strategy for model evaluation.

Overall, unilabeling with Likert scales and mean
aggregation appears most reliable among all con-
figurations for ARC-DA, and therefore we use this
configuration in GENIE. Moreover, for the main
leaderboard evaluations we use 3—7 times more
samples, and expect even less variation. Our analy-
sis shows that these design choices provide a good
starting point for reproducible experiments with
confident estimates.

S Monitoring Annotation Quality

Despite strict qualification requirements, in our
early experiments some annotators chose arbitrary
labels after initially choosing correct ones. While
a small percentage, these annotators complete a
disproportionate share of tasks and significantly im-
pact evaluations. To solve this problem, we built a
monitoring system with two components: automat-
ically generated test questions and an unsupervised
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scoring model 3

Test Questions Because noisy annotators could
favor marking examples as correct or incorrect, test
questions need both positive and negative examples.
For positive examples, we replaced model predic-
tions with gold responses. For negative examples,
we cyclically permuted the gold generations, so
no example was matched with its original. Thus,
the negative examples look correct at a glance, but
almost never are.

Scoring Model Manually reviewing annotations
can be time consuming and error prone, so we
automate this process with a scoring model to in-
fer if workers have acceptable accuracy. Proba-
bilistic models of annotation have been richly stud-
ied (Hovy et al., 2013; Passonneau and Carpen-
ter, 2014; Paun et al., 2018). Much prior work
uses worker agreement to identify noisy annotators.
Since we use unilabeling (§4), workers annotate
disjoint sets of examples and these methods are not
applicable. Instead, we use a similar probabilistic
model but applied to predict how often workers
correctly answer the test questions. Such a model
must be unsupervised, since new tasks won’t have
identified noisy annotators, interpretable, since pa-
rameters like confidence thresholds must be set a
priori, and sequential, so noisy annotators can be
detected as soon as there is enough evidence.

In our model, each worker, w, answers n,, test
questions. The number of correctly answered test
questions, X, is binomially distributed with mean
P,,. Each P, comes from a mixture of betas prior.
Thus, noisy and non-noisy annotators can be mod-
eled with different mixture components.

Z, ~ Categorical(f1, . ..

Pw ~ Beta(azw, ﬁZw)
Xy ~ Binomial( Py, n,,)

aek)

We compare two definitions of noisy annotators.
The rate criterion defines them as workers with an
accuracy (P,) below a threshold (90%). The class
criterion defines them as workers whose latent class
(Z) corresponds to any mixture component be-
sides the one with highest expected accuracy.

We fit the model parameters, 6;, c;, 5;, for mix-
ture components ¢ = 1, . .. k, with maximum likeli-
hood via the EM algorithm (Dempster et al., 1977)

8We also tried clustering approaches that don’t require test
questions; however, they did not have good performance.

for mixture models (Murphy, 2012). Then, we
infer a posterior distribution for each worker’s ac-
curacy (P,) and latent class (Z,,) given the number
of questions they answered correctly (X,,). Since
the prior is a mixture of conjugate distributions,
the posteriors have a closed-form (Diaconis and
Ylvisaker, 1979).

To adapt the Likert responses for this model, we
binarize them at 0.5. Positive and negative test
questions are modeled independently, and annota-
tors are considered noisy if they are noisy on either.
Since the difficulty of annotating different tasks
varies, each GENIE task is modeled separately. Fi-
nally, to stabilize the EM algorithm and resulting
parameter estimates, we augment the worker re-
sponses with pseudo-data. See Appendix B.1 for
the full technical details.

Detecting Noisy Annotators for WMT21 To
test GENIE in a real-world scenario, we used it to
evaluate the 24 systems submitted to WMT21 and
several additional baselines on German-to-English
translation (Akhbardeh et al., 2021). For the evalu-
ations, the GENIE leaderboards used 5% of exam-
ples as positive and 5% as negative test questions.
We manually reviewed test question statistics to
identify and remove 5 noisy annotators from a pool
of 88 (5.7%). As in our preliminary experiments,
these noisy annotators represented a small fraction
of annotators; however, we had previously found
such annotators could annotate up to 50% of the
HITs.” By identifying and removing them, we
prevented such a negative impact on our WMT
evaluations.

Simulation Study Even a fairly large real-world
evaluation encounters only a few noisy annotators.
So, we complement our WMT?21 case study with
simulations based on it, where we can run more
trials and know the ground truth.

We split the WMT21 annotations chronologi-
cally into validation and test sets. The validation
set was used during model development, while we
evaluated the models by simulating 25 rounds of
annotation based on the test set’s statistics.' Simi-
larly to the annotation models discussed in Karger
et al. (2011), each worker was independently des-
ignated as noisy and then assigned a rate at which

°A HIT (Human Intelligence Task) represents a single,
self-contained, virtual task that a crowd worker can work on
and collect a reward for completing.

1The test set contained only 2 noisy annotators, too few to
compute reliable metrics in a direct evaluation.
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they labeled test questions correctly. Based on the
validation data’s statistics, for each round we drew
the noisy annotator probability uniformly from 1—
10%, and each annotator’s probability of being cor-
rect uniformly between 0-50% for noisy annotators
and 95-100% for the rest. The model predicted an-
notators as noisy if the posteriors for Z,, and P,
assigned them at least 99% probability of being
noisy annotators under the rate or class criteria.
We computed precision and recall across all the
simulations, bucketing workers by how many test
questions they answered.

Model Prior k Precision / Recall
1-4 5-14 15+

class fixed 2 100/24 100/91 100/ 87
learned 2 100/15 100/77  100/100
Jeffreys 1 68/ 85 93/93 100/ 98
uniform 1 56/ 86 93/100  100/100

rate fixed 1 100/32 100/ 94 98/100
learned 1 100/14 100/100  96/100
fixed 2 86/33  100/100 100/ 97
learned 2 100/12  100/92  100/100

Table 1: Noisy annotator detection models’ precision
and recall for workers who answered different numbers
of test questions (1-4, 5-14, and 15+). Precision and
recall were averaged across multiple simulations.

Table 1 shows the simulation results. In addition
to varying the number of components (k) in the
learned priors, we also compared against uninfor-
mative priors (the Jeffreys and uniform priors), and
informative priors (fixed). Noisy annotators lose
the chance to answer additional test questions, thus
it’s critical that models have high precision when
marking workers as noisy. The uninformative pri-
ors suffer from low precision, assigning too much
probability to a worker being a noisy annotator.
The informed and learned priors both perform well,
with high precision and good recall—in some cases
identifying almost all noisy annotators with fewer
than 15 test questions. The learned priors have the
additional advantage that they can adapt to different
distributions by pooling information across anno-
tators. Based on these results, the 2-component
learned rate and class models have proven to be
strong candidates for application.

6 Automatically Managing Human
Evaluation Leaderboards

This section reviews the GENIE system, which auto-
mates much of the management of text generation
leaderboards with human evaluations. While we

note that some human management, such as pro-
viding support and handling disputes, should never
be fully automated, GENIE alleviates much of the
overall burden. The next section (§7) describes its
instantiation into the GENIE leaderboards for four
diverse text generation tasks.
At a high level, the GENIE system coordinates
a leaderboard UI, data processing backend, and
crowdsourcing campaigns on Amazon Mechani-
cal Turk. After retrieving newly uploaded submis-
sions, the backend computes automatic metrics.
Upon success, the backend then creates annotation
tasks on Amazon Mechanical Turk (AMT) using
AMTI!'! (A Mechanical Turk Inferface), an open-
source Python package for working with AMT.
Each leaderboard is a separate instance of the
system, with its own crowdsourcing templates, in-
cluding instructions, examples, and prompts (see
§7). Following our observations in §4, all tem-
plates use Likert scales which are then mapped to
real-valued scores (cf. footnote 6) and averaged.
The system also maintains a history of past an-
notations (per-instance and per-worker), updating
statistics after each evaluation. This has several
immediate and future benefits: worker statistics
enable spam detection (§5), while the annotations
can be used for future studies on human evaluation.
These components enable the following features:

Extensibility New tasks can be modularly added
to the GENIE system, creating new leaderboards.
Each task requires a crowdsourcing template and a
code object specifying how to push model predic-
tions into and pull workers’ annotations from the
crowdsourcing templates. We release an extensible
open-source annotation template library,'? seeded
with the four task templates used in this work.

Uncertainty Quantification To better inform
model comparisons, we report scores with uncer-
tainty estimates. Bootstrap resampling (samples
with replacement from the observed annotations)
provides the 95% confidence intervals for the es-
timated submission quality scores, as commonly
done in machine translation (Koehn, 2004).

Human Evaluations: Uncertainty vs Cost To
balance confidence with affordability, the system
evaluates a subsample of the test sets. This subset
is random, but fixed to reduce the variance between

Unttps://github.com/allenai/amti
Phttps://github.com/allenai/
evaluation—-interfaces
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model comparisons. Sentence-level tasks, such as
translation of sentences, cost less to annotate per ex-
ample. Depending on task difficulty, we adjust the
pay rate per HIT such that we are paying workers at
a higher rate than 15 USD per hour. For these tasks
we annotate 800 instances at a cost of ~$600 per
submission (standard error < 1.77%). For larger
tasks, we evaluate 300 instances costing ~$350
per submission (standard error < 2.89%).'3 These
evaluations are much larger than what was previ-
ously done, e.g., 100 instances for MT in Ma et al.
(2018) or around 100 instances for summarization
(Kim et al., 2019; Hardy et al., 2019; Kryscinski
et al., 2019; Fabbri et al., 2021).

Automatic Metrics To supplement human eval-
uations, we compute recent and popular automatic
metrics for each task: METEOR (Banerjee and
Lavie, 2005), ROUGE (Lin et al., 2006), BLEU (Pa-
pineni et al., 2002), SacreBLEU (Post, 2018),
BLEURT (Sellam et al., 2020) and BERTScore
(Zhang et al., 2020b). Integrating these metrics
into GENIE enables researchers to examine their
correlation with human judgments as well as ob-
serving trends as more models are submitted.

Quality Control To ensure annotation quality,
annotators must pass strict qualifications require-
ments' and task-specific qualification tests based
on a subset of the questions derived from the task’s
training data. These tests check that the workers
have carefully read the instructions and are comfort-
able with annotating instances of the particular task.
In addition, we replace 5% of examples with pos-
itive and another 5% with negative test questions,
which we analyze with the 2-component learned
class model between submission evaluations, as
described in §5. Accordingly, noisy annotations
are excluded from results and annotators from the
pool of eligible workers. Lastly, to eliminate vari-
ability from evaluating at different times (weekend
vs. weekdays, different work hours), we publish
the AMT tasks on weekdays at 10am Pacific Time.

B3See Appendix C for a discussion of standard error.

e, 5000 completed HITs, a 99% assignment approval
rate, and being based in a country with a population predomn-
inantly of native English speakers (e.g., USA, Canada, UK,
Australia) since our initial set of tasks focuses on English.

Task Dataset Domain Train Dev  Test
Question s popy  basic 14k 04k 15k
Answering science
Summarization XSUM News 200k 11k 11k
Commonsense aNLG ROCStories 170k 1.5k 3k
Machine WMTI19
Translation DE-EN News 38.7m 3k 3k
Machine WMT21
Translation DE-EN News 101m 3k Ik

Table 2: Datasets currently available in GENIE, along
with their domain and size by task type.

7 The GENIE Leaderboards
7.1 Tasks and Datasets

We integrate in GENIE datasets from four diverse
text-generation tasks, representing longstanding
challenges, as outlined below. We focus on English
language datasets, mostly due to easy integration
with crowdsourcing platforms. In the future, we
hope to integrate other new datasets, particularly
other languages. GENIE is easily extensible; it
uses community datasets and metrics via the open-
source Datasets library."> The templates for all
tasks are exemplified in Figure 4.

Question Answering Given an input question
about a given context, the system is expected to
provide the answer in natural-language form. We
use the ARC-DA dataset,'¢ which contains ques-
tions about subjects from elementary-school sci-
ence exams. See Figure 4 for an example.

Commonsense Reasoning Given an input sce-
nario, the task is to generate a plausible explana-
tion, according to typical real-world human behav-
ior and understanding. We use aNLG (Bhagavatula
et al., 2020), a dataset for the conditional genera-
tion task of explaining given observations in natural
language. For evaluation, we use a template and
instructions that are similar to those used by Bha-
gavatula et al. (2020), as shown in Figure 4b.

Machine Translation The task is to generate a
translation in a target language given a text in a
source language. Here we use the recent WMT19
and WMT?21 datasets with publicly available sys-
tem outputs (Barrault et al., 2019; Akhbardeh et al.,
2021).!7 To ensure the generated text is evaluated
by native speakers, we focus on German-to-English
translation (DE-EN), and leave the expansion to

SHuggingface’s Datasets repository
1S ARC-DA dataset.
7 WMT21 predictions repository.
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(a) Question Answering (ARC-DA).

Question: Why is the light year often used to describe distances
between objects in the universe?
Answer: the distance that light travels in a year

Strongly
agree

Is the provided response a reasonable answer to the question?

disagree

(b) Commonsense Reasoning (a«NLG), adapted from Bhagavatula et al. (2020).

Beginning: Greg likes
to throw anything he
could his hands on.

Middle: Greg's neighbor
screamed that someone broke
into his house.

Ending: Greg told
his neighbor it
was him.

Strongly
agree

Does the middle sentence correctly connects the beginning to the ending?

. Strongly

(c) Machine Translation (WMT19 and WMT21 DE-EN), adapted from Barrault et al. (2019).

Reference: Only 8 percent of board members were female as of September
1, according to the report "The Power of Monoculture," an advance copy of
which had been made available to the German Press Agency.

Prediction: As a result, only 8 percent of the board members were female as
of 1 September, which will be officially presented this Monday by the Allbright
Foundation and presented to the German Press Agency in

advance.

Strongly
agree

Does the prediction adequately expresses the meaning of the reference?

disagree

(d) Summarization (XSUM), adapted from Chaganty et al. (2018). Here, Summary A is the gold label while Summary B is
model-predicted text. We permute this randomly between instances so that the annotators are blind to which one is gold.

Summary A Summary B

Sofia Vergara has retained her
title as the highest paid actress in
US television, according to the
Forbes magazine rich list

Modern Family star Sofia
Vergara has retained the highest
paid actress on US television

Original text

Forbes said Vergara's role as Gloria in Modern Family and some
lucrative product endorsements helped her earn S43m (232.6m) in
the last 12 months. It marks the fifth year the Colombian-American
actress has topped the chart. Forbes also said she earned more than
any of her male counterparts in the past year. The Big Bang Theory's
Kaley Cuoco was the second-highest paid actress, earning $24.5m
(EI 8.6m). Cuoco tied with Vergara at the top of last year's Forbes
list, when both actresses earned $28.5m (YI .6m). The Mindy
Project's Mindy Kaling is the biggest climber in this year's chart. Her
earnings Of $15m (211.4m) helped her to rise from eighth place in
2015 to third this year. Mariska Hargitay, who appears in Law &
Order: Special Victims Unit, and Grey's Anatomy star Ellen Pompeo
rounded off the top five.

Strongly
prefer A
Strongly
prefer A

Strongly
prefer A
Strongly
prefer A
Strongly
prefer A

Which summary is more fluent?

Prefer B SIS
prefer B

Which summary has the least redundant content?

prefer B

Which summary only states facts mentioned in the original text?

prefer B

Which summary includes the most important information in the text?

prefer B

Rate the Overall quality of the summaries.

Prefer B Strongty)
prefer B

Figure 4: Annotation interfaces for the datasets of four tasks integrated in GENIE.

other language pairs as future work. Importantly,
WMT19 and WMT21 DE-EN test data only con-
tain text that was originally in German (Barrault
et al., 2019), avoiding overestimating the quality
of translation systems due to translationese effects
(Toral et al., 2018; Graham et al., 2019; Edunov
et al., 2020). We follow the WMT human evalu-
ation template to assess sentence-level translation
quality against the reference (Barrault et al., 2019).
The one difference is that, consistent with the other
GENIE tasks, we use a five-category Likert scale
instead of a continuous one in WMT. See Figure 4c.

Summarization The model is expected to gen-
erate a summary of the key points mentioned in a
given paragraph. Here we use XSUM (Narayan
et al., 2018), a news summarization dataset. We
chose XSUM over alternative datasets for text sum-
marization (e.g., CNN/DM, Hermann et al., 2015)
since the task involves more abstractive summaries
and hence more difficult to evaluate with existing

automatic metrics. For evaluating this task we use
a template similar to that of Chaganty et al. (2018);
Fabbri et al. (2021) and measure different aspects
of quality (redundancy, fluency, conciseness, etc.)
that have traditionally been of interest (McKeown
and Radev, 1995). See Figure 4d for an example.

7.2 Evaluating GENIE Baselines

Here we evaluate several baseline models for each
dataset using the GENIE evaluation pipeline.

Models We use models that are known to per-
form strongly for each of our tasks. For all tasks
but machine translation, we train and evaluate
T5 (11B; Raffel et al., 2020), a powerful text-
generation model that has shown promising results
on a wide variety of text generation tasks.

For WMT we evaluate other specialized models
instead of TS5, which is pre-trained only on En-
glish (Raffel et al., 2020). For WMT21 DE-EN,
we evaluate all publicly available shared task sub-

11451



ARC-DA (Question Answering)

Systems Human ROUGE SacreBLEU BLEURT
UmﬁedQA +2.1
(ARC.DAMCsIR) 808735 631 222 29.40
UmﬁedQA +2.3
(ARC-DASIR) 75.3,2_% 61.3 19.7 27.53
T5(11B)  66.073% 474 12.8 1.6
T5 3B) 60.9725 432 11.7 52
WMT21 (Machine Translation)

Systems Human ROUGE SacreBLEU BLEURT
Watermelon  75.7720  64.8 345 347
VolcTrans-AT  75.2720  64.8 34.4 34.6

HUMAN 752730 593 29.5 30.0

GENIE-large-6-6 70.4750  63.3 324 31.3
GENIE-base-6-6 69.0727  63.3 31.8 28.2
GENIE-base-3-3 65.3723 627 31.2 23.9
GENIE-base-1-1 50.7727%  59.3 27.0 0.2

aNLG (Commonsense Reasoning)

Systems Human ROUGE SacreBLEU BLEURT
TS(11B) 759711 446 19.5 222
GPT-2 412
(unsupervised) 45.15,73 19.7 1.8 -84.5
XSUM (Summarization)
Systems I:\‘;g;‘l? ROUGE SacreBLEU BLEURT
Anonymous +3
(ARR submission) 0063 3538 13.9 217
Pegasus  48.77%1 391 16.7 -17
T5(11B) 4757533 379 17.1 -14.3

Table 3: Summary of evaluating several existing, strong
models on each dataset with GENIE. The highest num-
bers and their confidence interval (CI) in each column
are indicated in bold. The scores given by crowd work-
ers are indicated with blue color. We evaluated all par-
ticipating systems from WMT?21 but only show the top
3 systems as well as our GENIE transformer baselines
for clarity. See Table 6 (appendix) for more metrics and
WMT109 results.

missions (see footnote 17). Additionally, we train
and evaluate four transformer-based baselines with
varying sizes: GENIE-large-6-6 (transformer large
with a 6-layer encoder and a 6-layer decoder), GE-
NIE-base-6-6, GENIE-base-3-3, and GENIE-base-1-
1.'® These models are trained solely on the given
training data without ensembling, backtranslation,
or any other data augmentation method, to support
future research in low-compute settings.

In addition to the above baselines we evaluate
specialized baselines for each task. For aNLG,
we evaluate an unsupervised baseline (Qin et al.,
2020) based on GPT-2 (Radford et al., 2019). For
summarization, we evaluate Pegasus (Zhang et al.,
2020a). For ARC-DA, we evaluate a fine-tuned

Bhttps://github.com/jungokasai/GENIE_
wmt2021-de-en

version of UnifiedQA (Khashabi et al., 2020).

Results The results are summarized in Table 3.
The human judgment scores for each task are calcu-
lated with our described pipeline (§6). Even though
we have evaluated strong baselines for each task,
the machine responses are far from what human
judges consider perfect. In the WMT?21 task, the
transformer baselines are ranked in the expected
order: large-6-6, base-6-6, base-3-3, followed by
base-1-1. These results support the validity of our
evaluations. We defer any further study of the cor-
relations between human judgments and automatic
metrics for future work since such a study would
require more models to be evaluated.

8 Limitations

As with other works which deal with human an-
notation, the results generated via our evaluation
framework will have inherent variability. While
we tried to mitigate sources of variation in various
ways (see §5,6), some are bound to remain and
are hard to account for. These include, for exam-
ple, selection bias in the pool of annotators that
choose to work on our tasks, who may come from
specific countries and social status and select for
certain tasks and their templates. We welcome fu-
ture evolution of all parts of the GENIE architecture,
including its evaluation metrics.

9 Conclusion and Future Work

We introduce GENIE, a unified approach to human-
in-the-loop evaluation of text generation over a
wide set of text generation tasks. GENIE is open for
use and will be adapted based on future adoption.
We encourage submissions from all researchers
interested in text generation models.
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A Details on Model Engineering

Here we summarize the experimental details for
building the models used in §7.2.

TS models. For various datasets (except WMT
which requires a multi-lingual model) we trained
TS5 models of different sizes: 11 billion parame-
ters (11B) and 3 billion parameters (3B). We used
the default hyperparameters on these frameworks:
token-limits of size 512 and 100 for inputs and
outputs sequences, respectively; learning rates of
le-3 and batch sizes of 8. The models were trained
for 100k steps on v3-8 TPUs which took about 24
hours to finish, on average. The checkpoint with
the highest score on the dev set of each task was
selected for evaluation.

GENIE WMT models. Tables 4 and 5 list hyper-
parameters for our GENIE transformer baselines.
BPE with 32K operations is applied jointly to Ger-
man and English text. All embeddings are shared.

Hyperparameter Value
label smoothing 0.1
# max tokens 1024
dropout rate 0.1
encoder embedding dim 512
encoder ffn dim 2048
# encoder attn heads 8
decoder embedding dim 512
decoder ffn dim 2048
# decoder attn heads 8
max source positions 1024
max target positions 1024
Adam lrate 5x107*
Adam (5 0.9
Adam (2 0.98
Ir-scheduler inverse square
warm-up Ir 1x1077
# warmup updates 4000
max epoch 7
# GPUs 8
length penalty 0.6

Table 4: Transformer-base fairseq hyperparameters
and setting.

B Monitoring Annotation Quality

This appendix provides details on model construc-
tion and evaluation for §5.

B.1 Modeling

All rate models used P,, = 0.9 as the threshold for
defining a noisy annotator. All class models used
the mixture component with highest average accu-
racy to define non-noisy annotators. Workers were

Hyperparameter Value
label smoothing 0.1
# max tokens 4096
dropout rate 0.1
encoder embedding dim 1024
encoder fftn dim 4096

# encoder attn heads 16
decoder embedding dim 1024
decoder ffn dim 4096
# decoder attn heads 16

max source positions 1024
max target positions 1024
Adam lrate 5x107*
Adam (1 0.9
Adam (2 0.98
Ir-scheduler inverse square
warm-up Ir 1x1077
# warmup updates 4000
max epoch 7
# GPUs 8
length penalty 0.6

Table 5: Transformer-large fairseq hyperprameters.

marked as noisy if the model assigned more than
99% probability to them being so. For reproducibil-
ity, we set Python and NumPy’s random seeds to 0
at the beginning of our experiments.

Uninformative Priors Both uninformative pri-
ors had one beta mixture component. The Jeffreys
model used a Jeffreys prior, or Beta(3, 3). The
uniform model used a uniform prior, or Beta(1,1).
Informative Priors The 1-component fixed rate
model had one beta mixture component with pa-
rameters o = 4 and § = 1. Both the 2-component
fixed rate model and the 2-component fixed class
model had two mixture components with proba-
bilities 0.05 and 0.95 and parameters o = 0.5,
B =4.5and a =9.5,5=0.5.

Learned Priors The learned prior models were
all fit via the EM algorithm, as described below,
and we tried 1 and 2 components for the rate model
and 2 components for the class model.

Optimization To stabilize the EM algorithm and
regularize the parameter estimates, we augmented
with pseudo-data. To the data, we added 40 pseudo-
workers, each completing 20 tasks: 36 annotators
with 19 successes, and four noisy annotators with
1, 1, 5, and 10 successes, respectively. The EM
algorithm was run with 10 initializations, each
with up to 1,000 iterations and relative tolerance of
le—6 for stopping. Components were initialized
with equal mixture probabilities, uniformly random
means from O to 1, and concentration parameters

11456



drawn from a gamma distribution with a shape pa-
rameter of 2. Beta mixture components were fit
using the Dirichlet-multinomial fixed point iterator
from Minka (2000), 10,000 iterations and a relative
tolerance of le—7.

B.2 Evaluation

For evaluation, we simulated 25 rounds of annota-
tion. In each round, the number of test questions
were the counts from the test set of annotations,
a fixed noisy annotator rate was drawn uniformly
from 1% to 10%, a mean and concentration param-
eter for the beta distribution of noisy annotator’s
success probabilities was respectively drawn uni-
formly from 0 to 0.5 and 5 to 50, and a mean and
concentration parameter for the beta distribution
of regular annotator’s success probabilities was re-
spectively drawn uniformly from 0.95 to 1 and 100
to 1,000. Each worker was assigned a noisy or
regular annotator label and accordingly a success
probability, then successes and failures were bino-
mial distributed.

C Standard Error

Standard error quantifies the variability of an es-
timate, 0. Mathematically, the standard error is
the estimate’s standard deviation (as opposed to
the standard deviation of a single sample). Often,
the estimate is an average of multiple, independent
samples, in which case the standard error is:

g

vn

where n is the number of samples and o is the
standard deviation of a single sample. When the
estimate is an average, it’s approximately normally
distributed due to the central limit theorem, mak-
ing 0+ 1.96% an approximate 95% confidence
interval.

The Bhatia-Davis inequality (Bhatia and Davis,
2000) bounds the variance of a random variable in
terms of its upper bound, M, lower bound, m, and
expectation, j:

o2 < (M — p)(p—m)

Since the scores from our annotators are bounded
between 0 and 1, the maximum standard deviation
for any of them is 0.5. Moreover, if a model’s score
is 0.8 on average, then the maximum standard devi-
ation for its annotations is /(1 — 0.8)(0.8 — 0) =

0.4. Dividing by +/n translates these into bounds
on the worst-case standard error of our estimates:

1_
StandardError < L 2 )
n

where 1 is the expected score.
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ARC-DA (Question Answering)
Systems Human BERTScore ROUGE METEOR SacreBLEU BLEURT

T5 (11B) 66.075% 92.4 47.4 331 12.8 1.6
T5 (3B) 60.97575 91.9 432 30.3 11.7 5.2
WMT19 (Machine Translation)
Systems Human BERTScore ROUGE METEOR SacreBLEU BLEURT
FAIR 69.8727 95.3 66.0 63.4 40.8 2.2
GENIE-large-6-6 70.6721 95.1 66.3 63.1 40.7 26.3
GENIE-base-6-6 65.0757% 94.7 64.9 61.3 38.6 16.8
JHU 66.07375 95.0 64.5 61.5 38.1 25.7
WMT21 (Machine Translation)
Systems Human BERTScore ROUGE METEOR SacreBLEU BLEURT
Watermelon ~ 75.7735°0 95.0 64.8 59.3 34.5 34.7
VolcTrans-AT  75.273°0 95.0 64.8 59.3 34.4 34.6
HUMAN  75.27290 94.8 59.3 54.3 29.5 30.0
GENIE-large-6-6 70.4757 94.9 63.3 57.0 324 31.3
GENIE-base-6-6 69.072! 94.7 63.3 56.8 31.8 28.2
GENIE-base-3-3 65.3723 94.5 62.7 56.3 31.2 23.9
GENIE-base-1-1 50.7133 93.3 59.3 50.9 27.0 -0.2
aNLG (Commonsense reasoning)
Systems Human BERTScore ROUGE METEOR SacreBLEU BLEURT
T5 (11B) 75.971, 929 446 352 19.5 222
GPT-2 (unsupervised) 45.171-2 88.5 19.7 18.8 1.8 -84.5
XSUM (Summarization)
Human Human Human Human Human
Systems overall conciseness fluency no-hallucination informativeness BERTScore ROUGE METEOR SacreBLEU BLEURT
Pegasus 48.775, 52.073% 491735  49.3737 49.2739 91.9 39.1 35.4 16.7 -17
T5(11B) 47.5755  49.373% 49.9727  49.472% 47.675°9 92.0 37.9 36.9 17.1 -14.3

Table 6: Summary of evaluating several existing models on each dataset with GENIE. The highest numbers (and
their CI) in each column are indicated in bold. The scores given by crowd workers are indicated with blue color.
We evaluated all 24 systems from WMT21 but only show the top 3 systems as well as our GENIE transformer
baselines here.

11458



