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Abstract

Tokenisation is the first step in almost all NLP
tasks, and state-of-the-art transformer-based
language models all use subword tokenisation
algorithms to process input text. Existing al-
gorithms have problems, often producing to-
kenisations of limited linguistic validity and
representing equivalent strings differently de-
pending on their position within a word. We
hypothesise that these problems hinder the
ability of transformer-based models to handle
complex words, and suggest that these prob-
lems are a result of allowing tokens to include
spaces. We thus experiment with an alternative
tokenisation approach where spaces are always
treated as individual tokens. Specifically, we
apply this modification to the BPE and Uni-
gram algorithms. We find that our modified
algorithms lead to improved performance on
downstream NLP tasks that involve handling
complex words, whilst having no detrimental
effect on performance in general natural lan-
guage understanding tasks. Intrinsically, we
find that our modified algorithms give more
morphologically correct tokenisations, in par-
ticular when handling prefixes. Given the re-
sults of our experiments, we advocate for al-
ways treating spaces as individual tokens as an
improved tokenisation method.

1 Introduction

Tokenisation is a key initial step in processing nat-
ural language, as it identifies the linguistic units
to be processed, converting them to numerical IDs
which can then be vectorised and manipulated by
mathematical operations.

Earlier NLP approaches used simple string-
searching techniques with regular expressions to
tokenise text; however, these pattern-matching to-
kenisation methods have drawbacks: they require
large vocabulary sizes to cover the training data,
they cannot handle out-of-vocabulary words, and
they do not work for languages without spaces as
word boundaries. To address these issues, subword

tokenisation was introduced. The first explicit men-
tion (and popularisation) of this approach was by
Sennrich et al. (2015), though it was indirectly in-
troduced earlier by Schuster and Nakajima (2012).
This method works by learning from training data
to build a vocabulary (of a fixed size) and then
tokenising text at inference time using this vocabu-
lary (and possibly other learnt parameters). More
frequent words are represented as single tokens,
with rare words being broken down into multiple
subword tokens, possibly down to the character
level.

State-of-the art transformer-based language mod-
els all use subword tokenisation algorithms based
on either byte-pair encoding (BPE) (Sennrich et al.,
2015) or Unigram (Kudo, 2018). The original trans-
former model (Vaswani et al., 2017) uses BPE,
whilst BERT (Devlin et al., 2018), which consists
of a transformer encoder pretrained with a masked
language modelling objective, uses WordPiece to-
kenisation (Schuster and Nakajima, 2012), which
is a variant of BPE with a language model loss func-
tion. WordPiece is also used by ERNIE (Sun et al.,
2019), DistilBERT (Sanh et al., 2019), ELEC-
TRA (Clark et al., 2020), StructBERT (Wang
et al., 2019) and NEZHA (Wei et al., 2019). GPT-
2 (Radford et al., 2019) introduced byte-level BPE,
operating on byte sequences rather than Unicode
code points, which allows all sequences to be en-
coded using a base vocabulary of 256, avoiding the
issue of unknown characters. The same approach
is used in RoBERTa (Liu et al., 2019), DeBERTa
(He et al., 2020a), and BART (Lewis et al., 2020).

The BPE and Unigram algorithms are imple-
mented in the SentencePiece library (Kudo and
Richardson, 2018). There is a lack of clarity regard-
ing SentencePiece in the literature, with it being
erroneously considered as its own algorithm rather
than an implementation of other algorithms. For
example, in the paper introducing T5 (Raffel et al.,
2019) they state that they "use SentencePiece to en-
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code text as WordPiece tokens", which is not in fact
implemented in SentencePiece. Looking at their
code, we find that they use the default Sentence-
Piece implementation, which is Unigram. XLNET
(Yang et al., 2019) say they tokenise with Senten-
cePiece, but do not say which algorithm they use
- again, looking at their code, we find they use the
default of Unigram. Equivalently, ALBERT (Lan
et al., 2019) say that they tokenise with Senten-
cePiece as for XLNET, meaning they again use
Unigram.

Despite their ubiquity, existing tokenisation al-
gorithms have problems, which we hypothesise
hinders the ability of language models to handle
complex words (Section 2). We suggest that these
problems are pervasive across all existing subword
tokenisation algorithms due to a shared fundamen-
tal design choice of allowing tokens to include
spaces, and thus experiment with an alternative
treatment of spaces where they are always taken as
individual tokens. We implement this approach by
making simple modifications to the existing Word-
Piece, BPE, and Unigram algorithms (Section 3).
We first evaluate our modified algorithms intrinsi-
cally (Section 4), quantitatively finding that they
improve morphological correctness, in particular
when handling prefixes. Qualitatively, we take ex-
amples from previous papers critiquing existing to-
kenisation algorithms, and show how our modified
algorithms are able to alleviate the discussed issues.
We then evaluate our modified algorithms extrin-
sically by pretraining and finetuning transformer-
based models (Section 5), showing that they give
improved performance on NLP tasks that require
handling complex words with no detrimental effect
on performance in the general domain.

2 Problems with Existing Tokenisation
Algorithms

Existing tokenisation algorithms often produce un-
intuitive tokenisations for complex words, incor-
rectly splitting prefixes, and producing unmeaning-
ful subword tokens, which are problems that have
been discussed in previous works. Church (2020)
looks at the BERT (WordPiece) tokenisations for
complex words, highlighting the many unnatural to-
kenisations that arise, with tokens often splitting up
morphemes and digraphs. Nayak et al. (2020) also
discuss the issues with BERT’s tokeniser, specif-
ically highlighting problems with the splitting of
prefixes, and they show that poor tokenisation leads

to weak semantic representations. Hofmann et al.
(2021) find that BERT performs poorly on classify-
ing complex words containing prefixes, performing
much better on suffixes. They suggest that a rea-
son is that BERT’s tokeniser is seldom accurate for
splitting prefixes, but is much more often correct
for splitting suffixes. Schick and Schütze (2020)
argue that a reason BERT struggles to understand
rare words is due to suboptimal tokenisation of
these words. Here we give a few of our own ex-
amples of BERT tokenisations that illustrate the
problems1:

joint → _joint
jointed → _joint, ed
disjointed → _di, s, jo, int, ed
unisex → _un, ise, x
true → _true
untrue → _un, tr, ue
estimate → _estimate
overestimate → _over, est, imate

We see here that the prefixed words are tokenised
poorly: the prefix is either incorrectly split, as in
“disjointed” and “unisex”, or the prefix is correctly
split, but the rest of the word is tokenised differ-
ently from the standalone case, as in “untrue” and
“overestimate”. We note that suffixes are handled
better than prefixes, which is due to spaces being
prepended rather than appended to words (see Sec-
tion 3).

For these latter examples, there is a second prob-
lem: even if the base were tokenised as a single
token, the addition of the space symbol means that
there would be no explicit link between the prefixed
word and the standalone base. As an example, we
cherry-pick a rare example of a morphologically
correct tokenisation by BERT of a word containing
a prefix, showing both strings and token IDs:

beatable → _beat, able (3786, 3085)
unbeatable → _un, beat, able (4895, 19442, 3085)

We can see that, even though these tokenisations
are reasonable, the subword “beat” is assigned dif-
ferent IDs in the two cases due to the prepending
of the special space symbol.

We hypothesise that both of these problems hin-
der the ability of existing language models (such
as BERT) to deal with complex words. Regarding
the first problem, we argue that the morphological

1BERT’s tokeniser actually prepends the space symbol to
subword units not occurring at the start of words, and the
space symbol they use is “##” rather than “_”, but these are
inconsequential differences and we standardise the output here
for clarity.
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correctness of a tokeniser is a metric which will
correlate with the ability of language models to
deal with complex words: correctly splitting af-
fixes means morphologically related words (those
sharing a common base) are given related tokenisa-
tions. The splitting of prefixes is particularly impor-
tant, as prefixes always have a semantic function,
unlike suffixes which can have both syntactic and
semantic functions (Giraudo and Grainger, 2003).
Also, tokenisations made up of meaningful sub-
word tokens (morphemes or groups of morphemes)
will allow language models to build stronger rep-
resentations with less data, since the representa-
tions of complex words can be computed from the
representations of the subwords. Regarding the
second problem, the fact that base forms are rep-
resented differently depending on their position
within a word means a reduction in relevant train-
ing instances and hence a further weakening of
representations for complex words.

3 Our Modified Algorithms

We suggest that the problems discussed in Sec-
tion 2 arise as a result of how spaces are handled by
existing algorithms: All subword tokenisation al-
gorithms currently used by transformer-based mod-
els allow tokens to include space symbols as the
first character2. This means equivalent strings are
treated differently depending on whether they ap-
pear at the start of a word or not. This difference oc-
curs when training these tokenisers, which leads to
suboptimal tokenisations of prefixed words. It also
occurs when using these tokenisers in NLP models,
leading to equivalent strings being assigned differ-
ent tokens depending on whether they occur at the
start of a word or not.

Thus, to attempt to alleviate these issues, and
hence improve the handling of complex words by
language models, we propose an alternative treat-
ment of spaces where they are always assigned
individual tokens. This simple modification can
be made to any existing subword tokenisation al-
gorithm, though for brevity we focus our attention
on BPE and Unigram; this modification can also
be made to the WordPiece algorithm, and we see
similar (intrinsic) performance improvements from
doing so. In Section 4, we perform a qualitative
analysis of our modified WordPiece algorithm and

2Splitting on spaces occurs as a first step, so space symbols
cannot occur in the middle of tokens. The default implementa-
tion splits before spaces, meaning space symbols occur only
at the start of words.

also include the default WordPiece algorithm in
our quantitative evaluation for comparison. Our
modified algorithms and the defaults are shown
in Figure 1 and Figure 2 for BPE and Unigram,
respectively3.

In the following sections, we compare our modi-
fied tokenisation algorithms to the defaults by eval-
uating them intrinsically (Section 4) and extrinsi-
cally (Section 5).

4 Intrinsic Evaluation: Morphological
Correctness

Given our hypothesis that the morphological cor-
rectness of a tokeniser, especially when handling
prefixes, correlates with the performance of lan-
guage models in dealing with complex words (Sec-
tion 2), we perform a controlled intrinsic evaluation
of our tokenisers using this metric. We train our
modified algorithms and the defaults on 1 million
sentences from English Wikipedia for BPE and Un-
igram, with a fixed vocabulary size of 16,000, and
then run evaluation on four morphological datasets:
LADEC, MorphoLex, MorphyNet and DagoBERT.

The LADEC dataset (Gagné et al., 2019) con-
sists of 7,804 noun compounds with a unique mor-
phological parse (we exclude those with multiple
parses). MorphoLex (Sánchez-Gutiérrez et al.,
2018) provides derivational morphology for 68,624
entries from the English Lexicon Project (Balota
et al., 2007). Here we only consider those with a
concatenative parse (i.e. no overlapping tokens),
resulting in 12,028 entries. MorphyNet (Batsuren
et al., 2021) provides derivational and inflectional
morphology for words across 15 languages, ex-
panding the UniMorph dataset (McCarthy et al.,
2020). Taking only those derivational morphology
entries in English with a concatenative parse gives
193,945 entries. The DagoBERT dataset (Hof-
mann et al., 2020) comprises 279,443 words con-
taining low-frequency derivatives, taken from Red-
dit posts. Again, we take those with a concatenative
parse, giving 268,513 entries.

We evaluate a tokeniser on these datasets using
the evaluation method introduced by Creutz et al.
(2004), which produces metrics by comparing the
boundaries of a generated tokenisation with a gold
standard reference: false negatives are boundaries
appearing in the reference but not in the generated

3We release code for training our modified algorithms, as
well as running both our intrinsic and extrinsic experiments at
https://github.com/edwardgowsmith/improv
ed-tokenisation-methods

11432

https://github.com/edwardgowsmith/improved-tokenisation-methods
https://github.com/edwardgowsmith/improved-tokenisation-methods


(a) Default BPE
Training

input : training data T , vocabulary size s
output :vocabulary V

1 Replace whitespace in T with the space symbol
2 Prepend the space symbol to the first word of every sentence in T 4

3 Vocabulary V initialised as all characters
4 while |V | < s do
5 Find the most frequently occurring bigram in T , only allowing

spaces as the first character
6 Apply merge operation on the bigram to make a new token
7 Add merge operation to V

8 end

(b) Modified BPE (BPE′)
Training

input : training data T , vocabulary size s
output :vocabulary V

1 Replace whitespace in T with the space symbol
2 Vocabulary V initialised as all characters
3 while |V | < s do
4 Find most frequently occurring bigram in T that does not include

spaces
5 Apply merge operation on the bigram to make a new token
6 Add merge operation to V

7 end

Tokenisation

input : text T , vocabulary V
output : tokens τ

1 Replace whitespace in T with the space symbol
2 Prepend the space symbol to the first word of every sentence in T
3 Apply the merge operations from V in order to T .

Tokenisation

input : text T , vocabulary V
output : tokens τ

1 Replace whitespace in T with the space symbol
2 Apply the merge operations from V in order to T .

Figure 1: Default and modified BPE algorithms. Red, bold text is removed from the default algorithm, whilst green,
italic text is added.

(a) Default Unigram
Training

input : training data T , vocabulary size s
output :vocabulary V , language model parameters Θ

1 Replace whitespace in T with the space symbol
2 Prepend the space symbol to the first word of every sentence in T
3 Vocabulary V initialised as all substrings occurring in T , only allowing

spaces as the first character5

4 while |V | > s do
5 Optimise a Unigram language model with parameters Θ to fit the

data using the EM algorithm
6 For each substring in V , compute the loss from removing this from

the vocabulary
7 Remove the substring with the smallest loss from V

8 end

(b) Modified Unigram (Unigram′)
Training

input : training data T , vocabulary size s
output :vocabulary V , language model parameters Θ

1 Replace whitespace in T with the space symbol
2 Vocabulary V initialised as all substrings occurring in T that do not

include spaces, plus the space symbol
3 while |V | > s do
4 Optimise a Unigram language model with parameters Θ to fit the

data using the EM algorithm
5 For each substring in V , compute the loss from removing this from

the vocabulary
6 Remove the substring with the smallest loss from V

7 end

Tokenisation

input : text T , vocabulary V , language model parameters Θ
output : tokens τ

1 Replace whitespace in T with the space symbol
2 Prepend the space symbol to the first word of every sentence in T
3 Use the Viterbi algorithm with the learned language modelling parameters

and the vocabulary to tokenise T

Tokenisation

input : text T , vocabulary V , language model parameters Θ
output : tokens τ

1 Replace whitespace in T with the space symbol
2 Use the Viterbi algorithm with the learned language modelling parameters

and the vocabulary to tokenise T with spaces being given an arbitrarily
high score so they are always selected as individual tokens

Figure 2: Default and modified Unigram algorithms. Red, bold text is removed from the default algorithm, whilst
green, italic text is added.

tokenisation, whilst false positives are boundaries
appearing in the generated tokenisation but not in
the reference. Because it makes sense to store com-
mon words as single tokens in the vocabulary, even
if they can be decomposed into morphemes, we re-
port precision along with F1 as a potentially more
meaningful metric, since this allows undersegmen-
tation whilst penalising oversegmentation. We also
compute the mean sequence length (number of to-

4In the standard implementation, space symbols are added
at the start of sentences so that words are equivalent whether
they appear at the start of a sentence or not.

5This is only tractable for languages that include spaces.
For languages without them, other initialisation methods must
be used.

kens) for each tokeniser across each dataset. Re-
sults are shown in Table 1. Here, and throughout,
the prime symbol (′) denotes the given algorithm
modified to always treat spaces as individual to-
kens.

The general trend is that Unigram outperforms
BPE (consistent with findings by Bostrom and Dur-
rett 2020, Hofmann et al. 2022), with the mod-
ified algorithms performing better than their de-
fault counterparts — the average F1 scores across
the four datasets are 43.0, 50.9, 59.7, and 62.4
for the four algorithms BPE, BPE′, Unigram, and
Unigram′, respectively. On the MorphoLex dataset,
however, the default Unigram algorithm performs
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the best. This is also the only dataset where default
Unigram gives a shorter mean sequence length than
Unigram′. To further investigate this, we evaluate
on the subsets of the data containing only prefixed
and only suffixed entries, shown in Table 2. We
can see that Unigram′ performs best on prefixed
entries, but worse than default Unigram on suffixed
entries. Since the dataset consists of many more
entries containing suffixes than those containing
prefixes (7,422 vs 2,692), this could explain the
performance difference. Because the correct to-
kenisation of prefixed words is particularly impor-
tant (Section 2), we believe that this performance
trade-off is beneficial. In Section 5, we confirm
this through evaluation on downstream tasks.

Interestingly, BPE′ gives the shortest sequence
length on three of the four datasets, but not the
most morphologically correct tokenisations. Since
BPE was developed as a compression algorithm,
the short sequence lengths are perhaps expected,
but here we only see a weak correlation between
sequence length and morphological correctness6.

For a qualitative analysis, we take examples from
papers that highlight problems with existing to-
kenisers (Section 2) and generate the output from
the default and modified algorithms for BPE and
Unigram, shown in Table 3. These examples illus-
trate how our modified algorithms are able to gen-
erate improved tokenisations for complex words.
For example, whereas the default Unigram algo-
rithm tokenises “unicycle” into “_un” “i” “cycle”,
which is misleading as the string “un” does not
have its typical semantic role, our modified Uni-
gram algorithm tokenises it more meaningfully into
“uni” “cycle”. Also, the modified algorithms explic-
itly create links between words containing prefixes
and their bases. For the words “accessible” and
“unaccessible”, the modified algorithms tokenise
the subword “accessible” identically in both cases.
The default Unigram and BPE algorithms do cor-
rectly split the prefix “un”, but the rest of the word
is tokenised differently, which is problematic, and
even if the tokenisation was equivalent, the inclu-
sion of the space symbol means there would be
no link between these forms (Section 2). We note
that our modified algorithms are not immune to
oversegmentation, with Unigram′ tokenising “re-
sponsiveness” into seven tokens, although this is
arguably inevitable with a limited vocabulary size.

6Pearson’s correlation of between -0.262 and -0.857 de-
pending on the dataset.

In Table 4, we show the same qualitative analysis
between the default and modified WordPiece algo-
rithms, finding parallels with default and modified
BPE.

We investigate the vocabularies of the default
and modified algorithms, shown in Table 5. We
remove the tokens “[CLS]”, “[SEP]”, and “[UNK]”
from the vocabularies. For the default algorithms,
we also remove tokens that are duplicates apart
from prepended space symbols, and we find that
there is significant vocabulary degeneracy (8.7%
and 9.1% for BPE and Unigram, respectively). We
also find that a large percentage of the vocabulary
is transferred over from the default to the modified
algorithm (90.0% and 90.1% for BPE and Unigram,
respectively). Additionally, we see that all of the
algorithms have a similar number of prefixes in
their vocabularies, which suggests the tokenisation
algorithm plays an important role, as performance
differences on handling prefixes are large (Table 2)
despite similar vocabularies. This is supported by
work by Hofmann et al. (2021), who find that em-
ploying a fixed vocabulary in a morphologically
correct way leads to performance improvements.
We also see, however, that Unigram′ has fewer suf-
fixes in its vocabulary than default Unigram, which
reflects the performance difference seen in Table 2.

We note that an interesting result of our modifica-
tions is an improvement at word segmentation. As
an example, the outputs of the default and modified
Unigram algorithms when passed the concatenated
sentence “thisisasentencethatneedstobesegmented”
are:

Unigram _this, isa, s, ent, ence, that, ne, ed, s, to, be, s, eg,
ment, ed

Unigram′ this, is, a, sentence, that, needs, to, be, segment,
e, d

5 Extrinsic Evaluation:
Pretrain-Finetune

Given the improved intrinsic performance of our
algorithms, we wish to evaluate how this impacts
the extrinsic performance of NLP models, both in
general, and in particular on tasks involving com-
plex words. As in Section 4, we train the default
and modified BPE and Unigram algorithms on 1
million sentences from English Wikipedia, with a
fixed vocabulary size of 16,000, but we also im-
plement a variant of our modified algorithm that
removes spaces as a post-processing step. The rea-
soning behind this is that it reduces the sequence
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LADEC MorphoLex MorphyNet DagoBERT
Seq. Length Precision F1 Seq. Length Precision F1 Seq. Length Precision F1 Seq. Length Precision F1

WordPiece 2.97 44.5 59.1 2.64 45.1 51.0 3.15 21.8 31.6 3.20 32.5 44.1
BPE 2.98 41.2 54.8 2.67 43.4 49.5 3.17 19.9 29.0 3.22 28.4 38.6
BPE′ 2.60 53.8 66.2 2.47 50.8 54.7 2.93 24.6 34.8 2.86 37.4 48.0

Unigram 2.80 51.9 66.8 2.56 58.1 64.3 3.09 32.3 46.6 3.16 45.3 61.1
Unigram′ 2.67 56.7 70.9 2.65 53.9 61.2 3.03 33.6 48.1 2.81 54.5 69.2

Table 1: Performance of the tokenisation algorithms across four morphological datasets, showing the average
sequence length, precision and F1 score generated following the standard introduced by Creutz et al. (2004). Best
results are shown in bold.

Only Prefixes Only Suffixes
Seq. Length Precision F1 Seq. Length Precision F1

WordPiece 2.56 26.7 32.2 2.56 48.4 53.4
BPE 2.54 33.5 40.2 2.62 44.0 49.4
BPE′ 2.26 50.4 55.4 2.50 45.9 49.8

Unigram 2.51 53.4 63.6 2.53 55.2 60.5
Unigram′ 2.48 57.2 67.4 2.75 46.4 53.9

Table 2: Performance of the tokenisation algorithms
on subsets of the MorphoLex dataset with entries con-
taining only prefixes and only suffixes. Best results are
shown in bold.

length significantly with minimal information loss,
and more closely mirrors existing models which
have no explicit space information. Example to-
kenisations for the Unigram algorithms given the
input “This is an input sentence.” are:

Unigram _This, _is, _an, _input, _sentence, .

Unigram′ This, _, is, _, an, _, input, _, sentence, .

Unigram′ no spaces This, is, an, input, sentence, .

For each of the tokenisers, we pretrain RoBERTa
(base) on the full text of English Wikipedia, and
then finetune on downstream tasks, keeping all hy-
perparameters fixed, changing only the tokenisa-
tion algorithm used. For evaluation of the models
in a general domain, we use the GLUE benchmark
(Wang et al., 2018), excluding WNLI. For evalu-
ation in specifically handling complex words, we
use the two Superbizarre topicality tasks (Hofmann
et al., 2021), which require the binary classification
of derivationally complex English words7.

Over the whole of the English Wikipedia data,
the sequence lengths for each of the tokenisation
approaches are:

BPE 3.72e+09
BPE′ 5.88e+09
BPE′ no spaces 3.61e+09
Unigram 3.68e+09
Unigram′ 5.94e+09
Unigram′ no spaces 3.67e+09

7We do not consider the Superbizarre sentiment task due
to a higher proportion of uninformative words.

As in the evaluation in Table 1, the modified
models without spaces give shorter sequences
than their default counterparts, with BPE′ without
spaces giving the shortest mean sequence length.
The difference in sequence lengths of the models
means a difference in number of updates per epoch
during pretraining. Hence, fixing the number of
updates (and thus training time) will advantage
models with shorter sequence lengths, especially
disadvantaging the models that include spaces. Be-
cause of this, we perform two evaluations: one
fixing the number of pretraining updates, and one
fixing the number of pretraining epochs8.

Due to computational constraints, we only ran
pretraining once for each model. For finetuning,
we ran each experiment with 10 different seeds,
reporting the mean development result and standard
deviation. Results are shown in Table 6 and Table 7
for fixed updates and fixed epochs, respectively.
Full training procedure is given in Appendix A.

On the Superbizarre datasets, we can see that Un-
igram outperforms BPE, with Unigram′ no spaces
performing significantly better than all other mod-
els using a Welch’s t-test (p < 0.05), see Ap-
pendix C. Note that DelBERT (Hofmann et al.,
2021), a model which is passed the input segmented
by a morphological algorithm, achieves 73.1 on the
Arxiv dev set and 72.3 on the Arxiv test set, both
worse than our (unsupervised) model, although Del-
BERT outperforms our best models on the Reddit
task, achieving 69.6 and 70.1 on the dev and test
sets, respectively.

On the mean GLUE benchmark, the modified
models without spaces perform as well or better
than their default counterparts, with Unigram′ per-
forming the best when both updates and epochs
are fixed. However, this result is not statistically

8In finetuning, the number of updates and epochs is equiv-
alent for all models as one example is processed at a time.
In pretraining, we follow the standard implementation of
RoBERTa by taking contiguous sentences from the training
data up to the max sequence length.
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Input BPE BPE′ Unigram Unigram′

directional _direction, al direction, al _direction, al direction, al
unidirectional _un, id, ire, ction, al un, id, ire, ction, al _un, i, direct, ional uni, direction, al
electroneutral _elect, r, one, ut, ral electr, one, utr, al _electron, eu, tral electro, neutral

neurotransmitter _neuro, trans, mit, ter neuro, transmitter _neuro, trans, mitt, er neuro, transmitter
responsiveness _respons, iveness respons, iveness _re, s, pon, s, ive, ness r, e, sp, on, s, ive, ness

hyporesponsiveness _hyp, ores, p, ons, iveness hypo, respons, iveness _hypo, res, pon, s, ive, ness hypo, r, e, sp, on, s, ive, ness
hyperresponsiveness _hyper, resp, ons, iveness hyper, respons, iveness _hyper, res, pon, s, ive, ness hyper, r, e, sp, on, s, ive, ness

saturated _sat, urated sat, urated _sat, ur, ated saturated
unsaturated _uns, atur, ated un, sat, urated _un, sa, tur, ated un, saturated

equal _equal equal _equal equal
unequal _un, equ, al une, qual _un, e, qual un, equal

multiplayer _multip, layer multi, player _multi, play, er multi, player
nonmultiplayer _non, m, ult, ip, layer non, multi, player _non, mul, ti, play, er non, multi, player

overpriced _over, p, ric, ed over, pr, iced _over, p, ric, ed over, price, d
accessible _accessible accessible _accessible accessible

unaccessible _un, ac, cess, ible un, accessible _un, ac, ces, s, ible un, accessible
unicycle _un, icy, cle un, icy, cle _un, i, cycle uni, cycle

Table 3: Example tokenisations of the default and modified BPE and Unigram algorithms, with inputs taken from
the following papers: Church (2020), Nayak et al. (2020), Hofmann et al. (2020) and Schick and Schütze (2020).

Input WordPiece WordPiece′

directional _direction, al direction, al
unidirectional _un, idi, rect, ional uni, direction, al
electroneutral _electron, e, ut, ral electron, eu, tra, l

neurotransmitter _ne, uro, tr, ans, mit, ter neuro, transmit, ter
responsiveness _respons, iveness respons, iveness

hyporesponsiveness _hyp, ores, po, n, s, iveness hypo, respons, iveness
hyperresponsiveness _hyp, er, resp, ons, iveness hyper, respons, iveness

saturated _sat, ura, ted sat, urated
unsaturated _uns, at, ura, ted un, sat, urated

equal _equal equal
unequal _un, equ, al une, qual

multiplayer _multip, la, yer multi, player
nonmultiplayer _non, m, ult, ipl, ayer non, multi, player

overpriced _over, pr, iced over, price, d
accessible _access, ible accessible

unaccessible _un, acc, ess, ible una, c, cess, ible
unicycle _un, icy, cle uni, cycle

Table 4: Example tokenisations of the default and mod-
ified WordPiece algorithms, with inputs taken from the
following papers: Church (2020), Nayak et al. (2020),
Hofmann et al. (2020) and Schick and Schütze (2020).

Vocab Size Unique Elements #Prefixes #Suffixes
WordPiece 15123 - 107 184

BPE 14613 1459 114 182
BPE′ 15997 2843 123 192

Unigram 14544 1443 123 201
Unigram′ 15997 2896 116 147

Table 5: Vocabularies of the models, showing size,
number of unique elements, and numbers of prefixes
and suffixes.

significant (see Appendix C), and over the individ-
ual GLUE tasks the best performing models vary,
with high variances across seeds on some tasks
due to the small dataset sizes (see Appendix B).
Since the GLUE tasks do not rely on handling com-
plex words, a significant performance difference
is probably not expected, but we see no drop in
performance with the modified algorithms.

The modified models that include spaces per-
form poorly on the GLUE benchmark, even when
the number of epochs is fixed rather than updates,
meaning they are trained for ∼65% more updates
than the modified models without spaces. This
suggests that this method of including spaces as ad-
ditional tokens is suboptimal for general language
tasks, though interestingly Unigram′ with spaces
is the second best performing model across all Su-
perbizarre datasets. The tokenisers themselves per-
form splitting on spaces as a first step, so addition-
ally including spaces may be simply passing noise
to the model for the masked language modelling
task, especially due to the high frequency of spaces.
This means the pretraining loss decreases rapidly
due to space prediction, but plateaus earlier (see
Appendix A). Due to the much greater sequence
lengths, the models that include spaces also discard
examples that are too long during finetuning, which
could lead to worse results.

6 Related Work

There are previous works that have performed con-
trolled extrinsic comparisons of existing subword
tokenisation algorithms (BPE, Unigram, and Word-
Piece), and have provided results which we relate
here to our own findings. Gallé (2019) investi-
gates various compression algorithms for tokeni-
sation, including BPE, and finds an inverse link
between mean tokens per sentence and transla-
tion quality, hypothesising that the compression
capability of BPE leads to its effectiveness in NLP
tasks. In our experiments we find that Unigram′

outperforms BPE′ on the complex words tasks, and
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Epochs GLUE Superbizarre Reddit Superbizarre Arxiv
Dev Test Dev Test

DelBERT (supervised) - - 69.6 70.1 73.1 72.3

BPE 27 81.6 66.8 66.6 71.1 70.2
BPE′ 16 79.2 66.6 66.2 70.3 69.3

BPE′ no spaces 28 81.7 67.2 66.9 70.9 70.0

Unigram 27 81.5 68.0 67.8 72.2 71.4
Unigram′ 16 78.4 68.2 68.2 72.5 71.6

Unigram′ no spaces 27 81.9 68.8 68.8 73.0 72.3

Table 6: Finetuning results after pretraining for 100,000 updates. Shown are mean results across 10 seeds. Results
that are significantly better than all others using a Welch’s t-test (p < 0.05) are shown in bold. More detailed results
are given in Appendix B. We include DelBERT (Hofmann et al., 2021) as a supervised baseline, where the models
are passed a morphological parse of the input.

Updates GLUE Superbizarre Reddit Superbizarre Arxiv
Dev Test Dev Test

DelBERT (supervised) - - 69.6 70.1 73.1 72.3

BPE 109,761 81.5 67.1 66.8 71.0 70.1
BPE′ 177,845 79.5 66.8 66.5 70.5 69.8

BPE′ no spaces 106,485 81.5 67.1 67.1 70.8 70.1

Unigram 108,606 81.6 67.9 67.9 72.2 71.6
Unigram′ 179,909 79.1 68.3 68.3 72.5 71.8

Unigram′ no spaces 108,441 81.8 68.8 69.0 73.2 72.5

Table 7: Finetuning results after pretraining for 30 epochs. Shown are mean results across 10 seeds. Results that
are significantly better than all others using a Welch’s t-test (p < 0.05) are shown in bold. More detailed results are
given in Appendix B. We include DelBERT (Hofmann et al., 2021) as a supervised baseline, where the models are
passed a morphological parse of the input.

there to be no significant difference between them
on the general language understanding (GLUE)
tasks. This is despite Unigram′ having a longer se-
quence length, suggesting this factor is not wholly
indicative of model performance. However, if we
look at the results for fixed pretraining updates,
we do see a slight negative correlation between
sequence length and performance on the Super-
bizarre datasets, and a very strong negative corre-
lation on the GLUE benchmark9, though this is
skewed by the models including spaces perform-
ing very poorly. Intrinsically, we see a correlation
(albeit weak) between sequence length and mor-
phological correctness (Section 4). Bostrom and
Durrett (2020) compare Unigram and BPE, finding
that Unigram generates more morphologically cor-

9Pearson correlations between -0.157 and -0.224 for the
Superbizarre datasets, and -0.985 for GLUE.

rect tokenisations and gives improved downstream
task performance. Whilst we saw similar improve-
ments in intrinsic performance, we were unable
to replicate the performance difference on MNLI
that they found, finding no significant difference
in performance (see Appendix B). We did not per-
form evaluation on the other two English datasets
they used. Hofmann et al. (2022) corroborate these
intrinsic results, additionally finding the morpho-
logical quality of WordPiece to lie in between that
of BPE and Unigram, reflecting our own findings
(Section 4). Wei et al. (2021) perform comparison
between byte-level BPE and byte-level Unigram,
finding BPE to perform better than Unigram across
seven languages on the XNLI dataset, which is
contrary to our findings and those of Bostrom and
Durrett (2020) and Hofmann et al. (2022).

There have also been some recent attempts to
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develop improved subword tokenisation methods.
Hofmann et al. (2021) introduce DelBERT, which
takes input words tokenised according to gold stan-
dard morphological references, with an unchanged
vocabulary. They find that this improves perfor-
mance on their Superbizarre datasets (Section 5).
Hofmann et al. (2022) also introduce FLOTA (Few
Longest Token Approximation), which improves
the performance of BERT, GPT-2, and XLNET at
classifying ArXiv papers into their subareas from
the title. Yehezkel and Pinter (2022) introduce a
context-aware tokeniser, SaGe, which they find im-
proves performance over BPE on GLUE tasks, the
Turkish subset of XLNI, and NER in both Turkish
and English. There are also alternative subword
tokenisation algorithms which have a history of use
in machine translation tasks, including Morfessor
(Creutz and Lagus, 2002) and its successors (Virpi-
oja et al. 2013, Grönroos et al. 2020), and Dynamic
Programming Encoding (DPE) (He et al., 2020b).
(See Mielke et al. 2021 for a more extensive re-
view.)

For all of these approaches, spaces still occur
as the first character of start-of-word tokens, and
we believe this hinders performance: our alterna-
tive treatment of spaces could be combined with
these algorithms, and the impact on performance
investigated.

Finally, we note that Wei et al. (2021) experi-
ment with different methods of handling spaces
within their byte-level BPE algorithm which ap-
pear similar to those implemented here, although
they find these alternatives perform worse than the
default on XNLI. They do not release code for
their experiments so unfortunately we are unable
to make a controlled comparison.

7 Conclusion and Future Work

We hypothesise that problems with current tokeni-
sation algorithms arise from allowing tokens to
include spaces, and thus experiment with an al-
ternative tokenisation approach where spaces are
always treated as individual tokens. We find that
this leads to improved performance on NLP tasks
involving complex words, whilst having no detri-
mental effect on performance in general natural
language understanding tasks. Whilst our work
focuses on BPE and Unigram, our modifications
can be applied to any existing subword tokenisa-
tion algorithm, including WordPiece, and hence
to any transformer-based model. Also, although

our experiments have only been in English, the
algorithms used are unsupervised and language-
independent and our results should extend to other
languages.

Our best-performing models use lossy tokeni-
sation (removing the space tokens as a post-
processing step), which may not be ideal for all
tasks. We did not perform evaluation on sequence-
to-sequence tasks, and indeed the subword tokeni-
sation algorithms discussed here were introduced
in the field of NMT, where space information needs
to be generated in the output. Future work could
thus look at alternative methods for including space
information that maintain the performance gains
seen here whilst keeping tokenisation lossless.

Acknowledgements

This work was partially supported by the CDT
in Speech and Language Technologies and
their Applications funded by UKRI (grant num-
ber EP/S023062/1) and the UK EPSRC grant
EP/T02450X/1. We thank the reviewers for their
helpful feedback.

Limitations

The finetuning tasks investigated in this paper are
all sequence classification, which is a significant
limitation of the evaluation. In order to defini-
tively compare our modified tokenisation algo-
rithms with the defaults, a more thorough evalu-
ation across many types of encoder-architecture
NLP tasks would be required (e.g. token classi-
fication, question answering, multiple-choice). It
is also worth noting that the Superbizarre dataset
consists of entries constructed using elements from
BERT’s WordPiece vocabulary. For their purposes,
this is a benefit as it does not unfairly disadvantage
BERT, but for our purposes it limits the general-
ity of the results obtained. In this paper, we have
chosen a single vocabulary size for all of our evalua-
tion, which limits the robustness of our results. For
the intrinsic evaluation, a range of vocabulary sizes
could be chosen and evaluated. For extrinsic evalu-
ation, we are limited by the computational expense
of pretraining language models, but it is important
to note that we don’t know how our results will
change if the vocabulary size is altered. It would
also be beneficial to look at how our modified to-
kenisers work on morphologically rich languages,
and in a multilingual setting, which would further
increase the robustness of the results.
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A Training Details

Hyperparameters for tokenisation, pretraining, fine-
tuning are shown in Table 8, Table 9 and Table 10,
respectively. We did not use stochastic tokenisation
(BPE-dropout or subword regularisation).

Implementation SentencePiece (Kudo and Richardson,
2018)

Vocabulary Size 16000
BPE-dropout 0
Unigram Subword
Regularisation

0

Table 8: Hyperparameters for tokenisation.

Implementation fairseq (Ott et al., 2019)
Architecture RoBERTa (base) (Liu et al., 2019)
Precision 16 bit
Optimizer ADAM (Kingma and Ba, 2014), ϵ =1e-

6, β = (0.9, 0.98)
Sequence length 512
Learning rate sched-
uler

Linear warm-up for 10000 updates to
5e-4, then reduce to 1e-4 upon increased
training loss at epoch

Training for 100000 updates / 30 epochs
Batch size 2048
Dropout 0.1
Attention Dropout 0.1
Weight Decay 0.01

Table 9: Hyperparameters for pretraining.

Implementation fairseq (Ott et al., 2019)
Architecture RoBERTa (base) (Liu et al., 2019)
Precision 16 bit
Optimizer ADAM (Kingma and Ba, 2014), ϵ =1e-

6, β = (0.9, 0.98)
Sequence length 512
Learning rate sched-
uler

Linear warm-up to 2e-3 for 6% of up-
dates, then linear decay to 0

Training for 20 epochs
Batch size 32
Dropout 0.1
Attention Dropout 0.1
Weight Decay 0.01

Table 10: Hyperparameters for finetuning.

A.1 Pretraining
Pretraining was run on 8 NVIDIA Tesla V100s. We
ran pretraining on the text of English Wikipedia.
A Wikipedia dump was processed with the Python
package WikiExtractor10, and then split into sen-
tences using BlingFire11. In order to perform a
fair comparison across models, we removed all
sentences with sequence lengths longer than 510
when tokenised with the modified models includ-
ing spaces. However, this was a very small amount

10https://github.com/attardi/wikiextra
ctor/

11https://github.com/microsoft/BlingFi
re

of the data (∼0.002%) and would therefore have a
negligible effect on performance.

Loss curves are shown in Figure 3.

A.2 Finetuning
Finetuning was run on a single NVIDIA Tesla
V100. All finetuning experiments were ran with a
batch size of 32, and a peak learning rate of 2e-3
with linear warm-up for 6% of updates, then lin-
ear decay to 0. All other parameters were kept
the same as for pretraining. Experiments were ran
for 20 epochs, and the best performing epoch was
taken, with 10 random seeds per model. For the
Superbizarre datasets, we took the best performing
epoch for each seed on the dev set and evaluated it
on the test set.

B Detailed Results

Detailed results are shown in Table 11 and Table 12
for fixed pretraining updates and fixed pretraining
epochs, respectively. The standard deviations on
the mean GLUE score are calculated assuming zero
covariance between tasks.

C Significance Tests

Here we give full Welch’s t-test results comparing
the best performing model to all the others for each
dataset, shown in Table 13 and Table 14 for fixed
pretraining updates and fixed pretraining epochs,
respectively.
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(c) BPE′ no spaces
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(d) Unigram
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(e) Unigram′
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(f) Unigram′ no spaces

Figure 3: Pretraining loss curves for the six models.

Epochs GLUE Superbizarre Reddit Superbizarre Arxiv

MRPC CoLA STS-
B

RTE SST-
2

QQP QNLI MNLI-
m

MNLI-
mm

Mean Dev Test Dev Test

BPE 27 84.5
(0.8)

55.4
(2.5)

87.1
(0.3)

68.6
(2.7)

91.6
(0.4)

89.7
(0.1)

91.3
(0.2)

83.1
(0.2)

83.5
(0.3)

81.6
(1.3)

66.8
(0.8)

66.6
(0.9)

71.1
(0.2)

70.2
(0.2)

BPE′ 16 83.0
(1.0)

48.9
(2.9)

86.0
(0.2)

59.5
(1.9)

91.6
(0.4)

89.2
(0.1)

90.7
(0.3)

81.6
(0.2)

82.3
(0.1)

79.2
(1.2)

66.6
(0.2)

66.2
(0.2)

70.3
(0.1)

69.3
(0.2)

BPE′ no spaces 28 84.4
(0.6)

54.4
(1.4)

87.0
(0.2)

70.3
(0.8)

92.2
(0.5)

89.7
(0.1)

91.1
(0.2)

83.1
(0.2)

83.2
(0.2)

81.7
(0.6)

67.2
(0.2)

66.9
(0.2)

70.9
(0.1)

70.0
(0.2)

Unigram 27 85.0
(1.2)

52.3
(1.4)

87.3
(0.2)

69.8
(1.9)

91.7
(0.5)

89.5
(0.1)

91.9
(0.4)

83.1
(0.2)

83.1
(0.2)

81.5
(0.9)

68.0
(0.2)

67.8
(0.3)

72.2
(0.3)

71.4
(0.2)

Unigram′ 16 83.3
(0.6)

39.5
(15.4)

84.8
(0.4)

64.0
(1.8)

91.3
(0.4)

89.1
(0.1)

89.8
(0.3)

81.4
(0.2)

82.1
(0.2)

78.4
(5.2)

68.2
(0.4)

68.2
(0.3)

72.5
(0.2)

71.6
(0.3)

Unigram′ no spaces 27 85.2
(1.4)

54.6
(1.4)

87.8
(0.3)

71.1
(1.5)

91.6
(0.4)

89.5
(0.1)

91.3
(0.3)

83.0
(0.2)

83.1
(0.2)

81.9
(0.9)

68.8
(0.1)

68.8
(0.3)

73.0
(0.2)

72.3
(0.3)

Table 11: Full finetuning results after pretraining for 100000 updates. Shown are mean dev set results across 10
seeds, with standard deviations in parentheses.

Updates GLUE Superbizarre Reddit Superbizarre Arxiv

MRPC CoLA STS-
B

RTE SST-
2

QQP QNLI MNLI-
m

MNLI-
mm

Mean Dev Test Dev Test

BPE 109761 84.4
(0.8)

53.5
(1.7)

87.2
(0.2)

68.7
(0.9)

91.8
(0.3)

89.7
(0.1)

91.4
(0.2)

83.1
(0.2)

83.5
(0.3)

81.5
(0.7)

67.1
(0.2)

66.8
(0.3)

71.0
(0.2)

70.1
(0.3)

BPE′ 177845 83.2
(1.1)

48.9
(1.4)

86.6
(0.2)

60.0
(2.6)

92.0
(0.2)

89.2
(0.0)

90.7
(0.3)

82.2
(0.2)

82.9
(0.2)

79.5
(1.1)

66.8
(0.3)

66.5
(0.1)

70.5
(0.1)

69.8
(0.2)

BPE′ no spaces 106485 85.0
(0.6)

53.4
(0.9)

86.9
(0.3)

69.1
(0.6)

92.0
(0.4)

89.5
(0.1)

91.2
(0.3)

83.2
(0.2)

83.2
(0.2)

81.5
(0.5)

67.1
(0.2)

67.1
(0.3)

70.8
(0.2)

70.1
(0.2)

Unigram 108606 84.8
(0.9)

53.1
(2.3)

87.4
(0.2)

70.1
(1.8)

91.6
(0.3)

89.6
(0.1)

91.3
(0.5)

83.0
(0.1)

83.2
(0.2)

81.6
(1.0)

67.9
(0.2)

67.9
(0.3)

72.2
(0.1)

71.6
(0.1)

Unigram′ 179909 82.0
(0.9)

45.9
(2.0)

84.7
(0.2)

64.9
(1.5)

91.5
(0.3)

89.0
(0.1)

90.1
(0.2)

81.5
(0.1)

82.0
(0.1)

79.1
(0.9)

68.3
(0.5)

68.3
(0.4)

72.5
(0.2)

71.8
(0.3)

Unigram′ no spaces 108441 84.8
(0.8)

54.5
(1.9)

87.8
(0.2)

70.0
(1.8)

91.5
(0.3)

89.6
(0.1)

91.5
(0.2)

83.2
(0.1)

83.2
(0.2)

81.8
(0.9)

68.8
(0.2)

69.0
(0.2)

73.2
(0.2)

72.5
(0.2)

Table 12: Full finetuning results after pretraining for 30 epochs. Shown are mean dev set results across 10 seeds,
with standard deviations in parentheses.
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Dev Test Dev Test

BPE 0.61 2.15e-05 1.34e-05 5.70e-15 5.26e-13
BPE′ 2.7e-05 1.50e-16 5.26e-14 3.82e-17 8.61e-15

BPE′ no spaces 0.58 7.22e-14 9.04e-12 1.75e-15 5.54e-14

Unigram 0.36 2.27e-08 1.69e-06 5.15e-07 1.11e-07
Unigram′ 6.0e-02 6.22e-04 7.83e-05 1.74e-05 6.05e-06

Table 13: P values for Welch’s t-test comparing Unigram′ no spaces to other models for fixed pretraining updates.
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Dev Test Dev Test

BPE 0.41 1.47e-13 2.25e-13 2.77e-15 1.48e-13
BPE′ 8.72e-05 1.19e-12 7.84e-16 3.46e-16 4.53e-14

BPE′ no spaces 0.41 1.28e-12 2.01e-15 1.21e-15 2.35E-12

Unigram 0.66 2.92e-08 1.19e-09 3.96e-09 8.78e-08
Unigram′ 2.8e-06 1.45e-02 1.69e-06 1.55e-06 3.90e-04

Table 14: P values for Welch’s t-test comparing Unigram′ no spaces to other models for fixed pretraining epochs.
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