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Abstract

Large-scale pretrained language models have
made significant advances in solving down-
stream language understanding tasks. How-
ever, they generally suffer from reporting bias,
the phenomenon describing the lack of explicit
commonsense knowledge in written text, e.g.,
“an orange is orange”. To overcome this limita-
tion, we develop a novel approach, Z-LaVI, to
endow language models with visual imagina-
tion capabilities. Specifically, we leverage two
complementary types of “imaginations”: (i) re-
calling existing images through retrieval and
(i1) synthesizing nonexistent images via text-to-
image generation. Jointly exploiting the lan-
guage inputs and the imagination, a pretrained
vision-language model (e.g., CLIP) eventually
composes a zero-shot solution to the original
language tasks. Notably, fueling language mod-
els with imagination can effectively leverage
visual knowledge to solve plain language tasks.
In consequence, Z-LaVI consistently improves
the zero-shot performance of existing language
models across a diverse set of language tasks.'

1 Introduction

Large-scale Pretrained Language Models (PLMs)
have achieved great success on various Natural
Language Understanding (NLU) tasks and even ex-
hibit impressive zero-shot capabilities without task-
specific fine-tunings (Radford et al., 2019). And re-
cent research suggests that such ability improves by
further scaling up the model size (e.g., to hundreds
of billions of parameters) and the amount of textual
pretraining data (to TBs of raw texts) (Min et al.,
2021; Brown et al., 2020; Chowdhery et al., 2022;
Kaplan et al., 2020). However, zero-shot language
learners solely trained on texts inevitably suffer
from human reporting bias. For example, people
tend not to write common or apparent things (Grice,
1975), and the frequency of a certain textual state-
ment does not always correspond to their relative

*Work was done during the internship at Tencent AT Lab.
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Figure 1: Our system endows language models with
two complementary types of visual imagination capabil-
ities: recalling existing images (through retrieval) and
synthesizing nonexistent images (via image-to-text gen-
eration). They effectively alleviate the reporting bias
issue and improves the zero-shot performance for solv-
ing plain language tasks. We experiment with three
types of tasks: (a) Word Sense Disambiguation, (b) Sci-
ence Question Answering, and (c) Topic Classification.

likelihood in the world (Gordon and Van Durme,
2013). Therefore, looking into other modalities to
supplement the textual information is crucial.

In this paper, we focus on incorporating vision
knowledge to facilitate the solution of plain lan-

!Code and data are available at https://github.
com/YueYANG1996/Z—-LaVvI
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guage understanding tasks. Cognitive science has
demonstrated that the human vision system is cru-
cial to supplement, interact, and influence the lan-
guage system (Dessalegn and Landau, 2013). For
example, there exists a fast mapping between vi-
sion and language in the human language learning
process (Altmann and Kamide, 2004). Inspired by
this, we propose a visual imagination framework,
Z-LaVI, to endow any PLMs (e.g., GPT, BERT,
BART, etc.) with visual imagination capabilities.

Specifically, we apply two different types of “vi-
sual imaginations” to the input texts. Given input
text, the first approach recalls existing images (e.g.,
through search engines), and the second one synthe-
sizes nonexistent images via text-to-image genera-
tion models (e.g., DALL-E (Ramesh et al., 2021)).
These two strategies mimic different types of hu-
man mental behaviors, i.e., recalling past memories
and creative mental image construction. Interest-
ingly, we find that these two mechanisms are highly
complementary to each other. Our proposed visual
imagination module tends to rely more on recalling
when input texts are short because their correspond-
ing objects or scenes generally exist and are easy
to find. However, when input texts are long and
complex, the module is more inclined to create new
images. We develop a unified framework (Figure 1)
that exploits both types of imaginations along with
the original textual inputs to compose zero-shot
solutions to a broad set of downstream language
tasks. Note that our work differs from existing
multi-modal tasks such as VQA (Antol et al., 2015;
Wuet al., 2017) or Visual Dialog, (Das et al., 2017),
which have both textual and visual inputs. Instead,
we use visual imagination as machinery to facilitate
the (zero-shot) solution of pure language tasks.

We show that on a diverse set of language un-
derstanding tasks, Z-LaVI consistently improves
the performance of existing language models of
different sizes and architectures. In particular, our
Z-LaVI with SBERT can achieve a zero-shot F1
score of 87.5% on the WSD task without fine-
tuning, even outperforming BERT-large, which is
fine-tuned with three examples per sense, by 2.3%.
Z-LaVl also beats all existing zero-shot models on
four Science QA tasks and two Topic Classification
tasks by a large margin. Our analysis demonstrates
that Z-LaVI can complement language models and
significantly alleviate PLMs zero-shot prediction
errors by adaptively executing two visual imagina-
tion mechanisms - RECALL and SYNTHESIS.
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Figure 2: The overview of the proposed Z-LaVI sys-
tem. Z-LaVI aims to solve the language tasks with two
streams of inputs: one stream of label options and an-
other stream of instance to be labeled. Z-LaVI converts
one of the streams (either input labels or input instance)
into images through visual imagination (RECALL and
SYNTHESIS) to enable the vision-text model to solve
language tasks. We ensemble the language and vision-
text models to make the final prediction.

2 Method

2.1 Task Formulation

To provide a zero-shot solution for language tasks
and solve them in a uniform way, we transform
different tasks into multi-choice questions, where
input stream x and candidate answers streamy € Y
are provided. The goal is to select the correct an-
swer from ). In particular, for word sense disam-
biguation tasks, x is the instance sentence, and )
are all possible word senses of the target word; for
science question answering tasks, x is the question,
and Y are answer options; for text classification
tasks, x is the input sentence, and Y is the pool of
categories. To make a prediction, the model needs
to estimate the plausibility of each tuple (x,y) for
all y € Y and select the best answer ¢.

§ = argmax, ¢y, P(y|z). (1)

2.2 Language Models for Zero-shot Tasks

We consider three main approaches for employing
language models to make zero-shot predictions on
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language tasks:

Prompt-based Approach (Petroni et al., 2019;
Schick and Schiitze, 2021) treats Natural Language
Understanding tasks as a cloze test using prompts.
For example, we can format question-answering
tasks into:

“Question: [x]? The answer is [y].”

We convert the input (z,y) into a sequence of
tokens W = (w1, ..., wt, ...We 1k, ..., Wyw|) via a
prompt, in which 3 = (wy, ...w; 11 ).> We apply au-
toregressive language models such as GPT (Brown
et al., 2020) to calculate the score:

1
- Zf:o log PLa(weri|Wepts)

Scorep,(z,y) =

where Pp,(-) denotes the probability given by the
language model. Note that we adopt the stan-
dard token-length normalization to handle different
lengths of answer choices. Finally, we apply soft-
max to Scorer,(x,y) to obtain the probability of
each candidate:

€Sc0reLa(a:,y)

Pra(ylz) = »

2

y eScorera (z,y) ©

For the prompt-based approach, we select GPT-
Neo-1.3B/2.7B (Black et al., 2021), GPT-J-6B
(Wang and Komatsuzaki, 2021) and OPT-30B
(Zhang et al., 2022c) as our models. The GPT-
Neo and GPT-J are trained on the Pile dataset (Gao
et al., 2020), which contains 825 GB of English text
data. Besides Pile, OPT concatenates the training
data of RoBERTa (Liu et al., 2019) and PushShift
Reddit (Baumgartner et al., 2020).

Natural Language Inference (NLI) Approach
(Yin et al., 2019) propose a textual entailment
framework for zero-shot text classification. The
NLI approach considers the input pair (z,y) as a
(premise, hypothesis) pair to predict the probability
that the premise logically entails the hypothesis.

Pra(y|z) = p(ENTAILMENT|(z,y)).  (3)

Note that this approach requires language mod-
els to be fine-tuned on (premise, hypothesis) pairs.
Here we select RoBERTa-large (Liu et al., 2019)
and BART-large (Lewis et al., 2020) fine-tuned on
Multi-genre NLI (MNLI) corpus, (Williams et al.,
2018) consisting of 433k sentence pairs.

2We include the prompts of all tasks in Table 9.

Latent Embedding Approach utilizes an off-the-
shelf feature encoder fy to project the input tuple
(z,y) into a shared latent space and determines
their relevance based on a distance metric - cosine
similarity scores:

SCOI‘CLa(CL', y) = COS(fg(l'), f@(y)) (4)

Relevance scores are normalized with softmax
(equation 2) to get the final probabilities.

We choose two state-of-the-art sentence en-
coders, i.e., Sentence-BERT (SBERT) (Reimers
and Gurevych, 2019) and SimCSE, (Gao et al.,
2021) as our latent embedding models. For
SBERT, we pick the all-mpnet-base-v2
checkpoint,® which achieves the best performance
on 14 sentence embedding datasets.* For Sim-
CSE, we choose the best fully unsupervised model
unsup-simcse-roberta-large.

2.3 Language with Visual Imagination

Visual Imagination aims to convert either = or y
(depending on the task) in the textual input tuple
(x,y) into an image. For WSD and QA tasks, we
imagine the candidate options y. While for topic
classification tasks, we imagine the instance sen-
tence x. Here we illustrate our method through the
example of imagining y. We propose two imagina-
tion mechanisms: 1) RECALL and 2) SYNTHESIS.

1) RECALL: We use the text input to query Bing
Image Search’ to recall the corresponding images.
We set a maximum number of images for each
query. When only limited images are available for
some queries, we download all of them.

2) SYNTHESIS: We adopt DALL-E (Ramesh
et al.,, 2021), a text-to-image generation model
pretrained on image-caption pairs, to synthesize
images. DALL-E constructs a codebook V using
a discrete variational autoencoder (dVAE) (Rolfe,
2016) to map the image into tokens concatenated
with the caption’s text tokens. DALL-E models
the joint distribution over the text and image to-
kens with an autoregressive transformer. During
inference, DALL-E feeds the text tokens y into the
transformer and generates a sequence of image to-
kens (v1,v2, ..., U ), Where an image token v; is

31t is trained on 1B sentence pairs from diverse tasks, in-
cluding NLI, QA, image captions, etc. The training data have
no overlap with our evaluation data, so we still consider this
approach as zero-shot.

*https://www.sbert.net/docs/pretrained_models.html
SWe use the Azure Bing Image Search API.
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predicted based on the previous ones:

v; = argmax,c,p(v]y, v<i), &)

in which, V is the visual codebook. After we gen-
erate enough image tokens, we decode the tokens
into images by looking up the vectors in the dVAE
codebook to construct the pixels.

We iterate the SYNTHESIS process multiple
times and combine with the images from RECALL
to collect a set of K images {Ig|z =1,.., K} for
each textual input y.°

Vision-Text model for Zero-shot language tasks.
After transferring an input stream into images, we
modify a plain language task into a multimodal
task. Thus we can apply vision-text models to
solve the problems. We choose CLIP (Radford
et al., 2021) as our vision-text model, which is
pre-trained on 400M image-caption pairs with the
contrastive learning strategy.

CLIP has a text encoder fr and a visual en-
coder fy, which can project text and image into
the shared latent space. Similar to the latent em-
bedding approach described in 2.2, we aggregate
the K images collected previously and use CLIP
to compute the relevance score of (x,y):

K
Scoreyy(z,y) = %ZCOS(JCT(!E)’ fV(Ig]j))a (0)
k=1

and we obtain a probability distribution through
softmax (over y):

pvi(y|z) = softmax (Scorevy(z,y)). (7)

Ensemble Language and Vision Prediction. Our
system is designed for zero-shot tasks without la-
beled data to learn weights to ensemble the two
models. Therefore, we adopt a weighted sum as
the late fusion over the final output distributions of
the language and multi-modal models:

pravi(y]x) = (1—w)-pra(y|z)+w-pvi(y|z), (8)

where we design a heuristic function to calibrate
the weight w based on the relative size between the
vision-text model and the language model:

Pvi ©)
PLa ’
The two methods will produce more than K images, and

we select the top-K based on their similarity with the text
input calculated by CLIP.

w = sigmoid <

Task Dataset Split # samples

WSD CoarseWSD-20  test 10,196
QASC dev 926

Science SciQ dev 1,000
QA ARC-E dev 570
ARC-C dev 299

Text AG-News test 7,600

Classification Situation test 1,789

Table 1: Dataset statistics for the three tasks.

where Py and Pr, are the number of parameters
of the models. We hypothesize that when the lan-
guage model’s size increases, it will encode more
knowledge and thus rely less on the vision model.
The number of parameters of each model and their
corresponding weight is listed in Table 8.

3 Experimental Setup
3.1 Datasets

We evaluate our methods on six datasets of three
tasks. Table 1 shows dataset statistics.

CoarseWSD-20 (Loureiro et al., 2021) is a coarse-
grained WSD dataset built from Wikipedia. The
dataset consists of 20 nouns with 2-5 senses per
noun (53 senses in total). Each sense is associated
with a definition which is the first sentence on its
Wikipedia page. CoarseWSD guarantees that every
sense has test instances in the test set. On average,
each sense has 192 test instances.

QASC (Khot et al., 2020) is a multi-hop, 8-way
choice question answering dataset collected by de-
composing sentences about scientific facts. We re-
port the performance of the development set, which
contains 926 questions.

SciQA (Welbl et al., 2017) is a dataset of 4-way
multiple-choice science exam questions spanning
from elementary to college-level covering chem-
istry, biology, physics, etc. We evaluate the devel-
opment set with 1,000 questions.

ARC (Clark et al., 2018) consists of 7,787 natural,
grade-school level science questions. The ARC
dataset is split into easy (ARC-E) and challenge
(ARC-C), where questions in the challenge set con-
tain the ones that simple retrieval or word correla-
tion methods cannot answer correctly. We evaluate
the development sets of ARC-E and ARC-C, which
contain 570 and 299 questions, respectively.

AG News (Zhang et al., 2015) is a news topic clas-
sification dataset, and each sentence is associated
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with one of the four news types: word, sports, busi-
ness, and technology. We run our models on the
7,600 examples in the test set.

Situation (Mayhew et al., 2018) is a event-type
classification task. The dataset has 12 events: need
water, need infrastructure, crime violence, etc. The
original task on this dataset is multi-label classi-
fication and has an out-of-domain class. As the
multi-label prediction requires a fine-tuned thresh-
old to determine the predictions and is thus not
suitable for zero-shot models, we remove those ex-
amples with more than one label and ones with the
out-of-domain label, resulting in 1,789 instances.

3.2 Baselines

Aside from the zero-shot language models de-
scribed in the section 2.2, we also evaluate on a
random baseline and compare with previous work.

For Coarse WSD-20, we compare with the BERT-
large few-shot (1-shot/3-shot per sense) results re-
ported in Loureiro et al. (2021).

For QA tasks, we include the Information-
Retrieval (IR) solver (Clark et al., 2016), which
combines the question and option as a query and
sends it to a search engine to check if they are ex-
plicitly written in some corpus. We also choose
SMLM (Banerjee and Baral, 2020) as another base-
line - a RoBERTa-large model fine-tuned on triplets
extracted from knowledge graphs such as ATOMIC
(Sap et al., 2019).

We compare topic classification with the TE-
wiki (Ding et al., 2022), the state-of-the-art model
on zero-shot topic classification trained on a dataset
collected from Wikipedia.

3.3 Evaluation Metrics

We report the accuracy of all question-answering
and topic-classification datasets. For CoarseWSD-
20, we compute each word’s accuracy and F1 score
and take the mean score of all 20 words.

3.4 Implementation Details

Image Collection We adopt Bing Image Search to
RECALL images. And for image SYNTHESIS, we
utilize the newly released DALL-E-mini’ which
chooses VQGAN (Esser et al., 2021) as the image
encoder/decoder and BART (Lewis et al., 2020) as
the autoregressive transformer. For every textual
input, we obtain 100 images from each of the two

"https://github.com/borisdayma/dalle-mini, and we use the
DALL-E-mega checkpoint.

methods. The 200 images are sorted using CLIP
based on their similarity with the text input. We
preserve each text input’s top-10 images (K = 10)
and feed them into the equation 6 to calculate the
vision-text probabilities.

Model Implementation The GPT-style and NLI-
based language models are built on top of the hug-
gingface APL3 For NLI models, we use the recently
released zero-shot classification pipeline.” We use
the official release of SBERT'? and SimCSE'! to
implement the latent embedding approach. The
CLIP model is adapted from the OpenAlI’s public
repo,'? and we select the ViT/B32 as the image en-
coder. The experiments were run on 3 x 8§ NVIDIA
V100 32GB, which can generate 24 images in 5
seconds. The majority of the running time of our
model is image generation. In total, we employ
DALL-E-mini to generate approximately 1.8M im-
ages which take around 104 hours.

4 Evaluation

4.1 Main Results

Z-LaVI boosts the performance of language
models. Table 2, 3 and 4 show results on seven
datasets of three tasks. Each dataset has two results
columns: the original performance of the language
models and the ensembled performance by adding
our Z-LaVI model. We observe that in most cases,
Z-LaVI consistently improves the performance of
different language models. Especially in the WSD
task, our Z-LaVI with SBERT can outperform the
BERT-large fine-tuned with 3-shots of each sense.
Z-LaVI also significantly enhances the language
models on topic classification task where the best
language model with Z-LaVI beats the SOTA zero-
shot topic classification model TE-wiki by 2.8%.
For science QA tasks, we can see Z-LaVI improves
on QASC, SciQ, and ARC-E, but it struggles on the
ARC-C, and adding Z-LaVI degrades the perfor-
mance of a few language models. This is because
the ARC-C questions are designed to be hard to an-
swer using retrieval or correlation, and Z-LaVI uses
CLIP, which is pre-trained on the image-text cor-
relation only. Figure 7 (b) shows an example that
needs multi-hop reasoning where Z-LaVI fails to
answer correctly.

8https://huggingface.co
*https://huggingface.co/facebook/bart-large-mnli
https://www.sbert.net
https://github.com/princeton-nlp/SimCSE
Phttps://github.com/openai/CLIP
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Model # Param QASC SciQ ARC-E ARC-C
* Original Z-LaVI Original Z-LaVI Original Z-LaVI Original Z-LaVI

Random - 12.5 - 25.0 - 25.0 - 25.0 -
IR Solver' - 18.6 - - 30.4 - 20.3 -
SMLM' 355M 26.6 - - - 334 - 28.4 -
RoBERTa-L-mnli* 355M 19.3 27.2 44.7 51.3 484 51.8 34.4 334
BART-L-mnli* 400 M 21.7 273 48.8 51.0 54.7 56.1 36.5 36.5
GPT-Neo-1.3B 1.3B 29.3 374 57.5 60.8 46.3 49.8 27.4 26.1
GPT-Neo-2.7B 2.7B 29.6 39.6 64.0 64.9 49.6 519 31.8 304
GPT-J-6B 6B 36.3 42.0 73.2 73.7 55.1 57.2 34.8 34.1
OPT-30B 30B 39.7 42.1 72.7 74.0 58.2 59.5 34.8 34.1
SimCSE 355M 30.8 332 42.6 48.6 433 49.3 26.4 24.7
SBERT* 110M 36.7 38.6 57.7 58.5 54.4 56.0 30.1 27.1
Z-LaVI w/o LM 150M - 32.7 49.5 - 50.2 - 26.7

Table 2: Zero-shot performance on Science QA tasks. Z-LaVI represents the performance with our Visual
Imagination. Z-LaVI (w/o LM) is the model that only uses vision-text prediction. The best-performed number
for each metric is bolded. The numbers are underlined if the original performance is improved with Z-LaVI. The
models with * use labeled data for pre-training. The models with { indicate the results are from previous work.

Accuracy F1 AG-News Situation
Model Orig. Z-LaVI Orig. Z-LaVI Model Orig. ZLaVl Orig. Z-LaVl
Random 41.3 - 36.7 - Random 25.0 - 9.1 -
BERT-L-1shot!* 71.6 - 71.2 - TE-wiki* 79.6 - - -
BERT-L-3shot!* 89.3 - 85.2 - RoBERTa-L-mnli* 812  81.7 407  41.8
RoBERTa-L-mnli*  80.4 83.0 74.4 78.1 BART-L-mnli* 81.9 82.4 40.5 41.1
BART-L-mnli* 802 84 748 779 GPT-Neo-1.3B 59.1 72.9 17.8 38.5
GPT-Neo-1.3B 847 884 783 846 GPT-Neo-2.7B 59.1 745 136 352
GPT-Neo-2.7B 867 889 815 853 GPT-J-6B 61.0 738 219 388
GPT-J-6B 841 85 793 8438 SimCSE 58.1 731 421 444
OPT-30B 844 888 804  85.1 SBERT* 778 822 426  46.6
SimCSE 851 897 789  86.0 Z-LaViwio LM — 716 - 334
SBERT* 878 90.6 833 875
Z-LaVI w/o LM - 87.7 - 83.8

Table 3: Zero-shot performance on CoarseWSD-20.

Z-LaVI without language model is a strong base-
line. Surprisingly, we also find that Z-LaVI w/o
language model performs well on plain language
tasks. In some datasets, such as QASC, Coarse-
WSD, and topic classification tasks, Z-LaVI w/o
LM outperforms the language models without
fine-tuning on the downstream datasets (e.g., Sim-
CSE, GPT-Neo-1.3B/2.7B). This indicates that the
vision-text model pretraining on image-caption
pairs learns the knowledge that can be leveraged to
solve single modality tasks.

Ensembling two language models is not as good
as Z-LaVIl. To verify the effectiveness of using
visual knowledge, we replace the visual imagi-
nation of Z-LaVI with another language model -
SimCSE. We select SImCSE here because Sim-
CSE is trained fully unsupervised and has the
same contrastive learning objective as CLIP. We
define the performance gain (PG) of model M;

Table 4: Zero-shot Performance on Topic Classification.

(i.e., SimCSE) on top of model Ms by com-

puting the relative improvement of the ensemble

model Ens (M7, My) performance over the origi-

nal model Orig(Ms).

Ens(Mjp, Mz) — Orig(My)
Orig(Myz)

PG(M1, ./\/12) =

(10)

We include all the language models (exclude Sim-

CSE) in the set M3 and calculate the average per-
formance gain on a dataset by:

avg-PG(M;) = > PG(My, M) (11)

vt

For fair comparison, we fix the ensemble weight
w = 0.5 in equation (8) for both SimCSE and Z-
LaVI. We also include the Z-LaVI with dynamic
ensemble weight controlled by equation (8). The
performance gain of SimCSE and Z-LaVI on all
six datasets is shown in Figure 3. We observe

136 models in total, which are GPT-Neo-1.3B/2.7B, GPT-J-
6B, RoBERTa-L-mnli, BART-L-mnli, and SBERT.
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Figure 3: The average performance gain on each dataset.
Z-LaVI (parameter) stands for accounting models’ num-
ber of parameters (Equation 9) to adjust the weights.
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Figure 4: The overlap of correctly predicted examples
between each pair of models in the Situation dataset.

that Z-LaVI consistently has higher performance
gain than SimCSE across all datasets, demonstrat-
ing that the visual information provided by Z-
LaVI complements language models more hence
boosts more on performance. Additionally, Z-
LaVI with dynamic weights perform better than
simply setting the weight to 0.5.

4.2 Analysis

Vision and Language models behave differently.
We define the overlap of correctly predicted exam-
ples between two models as:

_ 1Smy NSy

overlap(Mi, Msy) = Sac] (12)
1

where S+ is the set of correctly predicted exam-
ples of model M. Figure 4 shows the overlap of
models’ predictions in the Situation dataset. We
observe that Z-LaVI (w/o LM) has an obviously
smaller overlap with the other models, while dif-
ferent language models have a big mutual over-
lap. This difference explains the substantial perfor-
mance gain after exploiting visual imagination.

QASC SciQ ARC WSD AG Situ

# TOK 2.4 2.6 4.9 284 547 56.8

X 26.8 41.1 421 750 529 224
RECALL 326 499 485 803 525 2I.1
SYNTHESIS  31.5 399 446 815 71.6 342
BOTH 327 495 502 838 71.6 334

Table 5: The performance of Z-LaVI (w/o LM) with
different imagination methods. # TOK is the average
number of tokens of text inputs in each dataset. X means
no image is provided to the model, and we only use
the text encoder of CLIP. RECALL and SYNTHESIS
represent using image search and image generation, re-
spectively. BOTH means combining the two methods.
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Figure 5: The percentage of recall and synthesis images
within the top 10 images of each dataset. The average
token length for each dataset is given on the x-axis.

RECALL vs. SYNTHESIS. We ablate on the imag-
ination methods and compare the performance of
only using one of the methods. Table 5 demon-
strates the performance on each dataset with differ-
ent imagination methods. We can see that for the
dataset with short inputs for imagination (e.g., QA
tasks), RECALL is better than SYNTHESIS. This
is because short inputs of science QA datasets nor-
mally correspond to objects that exist in the real
world and are easy to find on the web, such as
mollusca and porifera shown in Figure 7 (a). How-
ever, for queries with long sentences (WSD and
Topic Classification), the text inputs are too spe-
cific to match any real photo. Hence SYNTHESIS is
preferable.'* Figure 5 also indicates that the model
prefers to choose RECALL images for short input
and tends to use SYNTHESIS images when the in-
put contains more tokens. We also find that without
images, Z-LaVI has poor performance on all tasks,
reflecting the necessity of imagination.

Performance vs. Image Quantities. We com-
bine RECALL and SYNTHESIS to imagine 200
image candidates. We wonder whether the num-

“We notice only 328 examples (out of 1789) of the Situa-
tion dataset have more than 10 images by RECALL.
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COLOR SHAPE MATERIAL
Model Original Z-LaVl Original Z-LaVl Original Z-LaVl
p  Acc@l p  Acc@l p Acc@l p  Acc@l p  Acc@l p Acc@l
Random -0.1 6.6 - - 1.3 7.1 - - -1.5 6.0 - -
BERT-L' 376 303 - - 427 284 - - 36.6 357 - -
Oscar-L1 31.8 17.1 - - 40.0 38.1 - - 39.2 405 - -
RoBERTa-L-mnli* 353 251 414 382 |41.7 664 435 679 |283 349 316 377
BART-L-mnli* 346 275 382 326 |415 686 420 693 |305 370 326 405
GPT-Neo-1.3B 40.1 317 474 484 | 442 529 461 643 | 351 345 364 412
GPT-Neo-2.7B 413 293 470 436 |435 500 452 @ 62.1 355 306 361 377
GPT-J-6B 443 380 49.6 509 |[469 657 471 70.0 |385 423 379 465
OPT-30B 419 413 481 521 |464 60.0 484 721 |383 447  38.1 47.5
SimCSE 307 348 363 404 | 30.1 286 347 40.7 | 246 264 292 335
SBERT* 276 265 382 40.6 | 203 136  33.6 350 |24.1 225 304 349
Z-LaVI w/o LM - - 372 394 - - 338 321 - - 249 327

Table 6: Zero-shot probing on the three relation types (COLOR, SHAPE and MATERIAL) in ViComTe (Zhang et al.,
2022a) dataset. We report the average Spearman correlation (p) and top-1 accuracy (Acc@1).

25 50 75 100 125 150 175
# of Images

200

Figure 6: The performance on Coarse WSD-20 with the
number of image candidates provided by imagination.

ber of imaginations impacts the Z-LaVI’s perfor-
mance. Figure 6 reports Z-LaVI’s performance on
CoarseWSD-20 versus the number of images. We
observe that Z-LaV[I’s F1 score increases with a
higher number of images. While the improvement
is marginal when the number is higher than 125.

Z-LaVl supplements visual commonsense
knowledge. To further validate Z-LaVI helps to
mitigate reporting bias problems of language mod-
els, we conduct experiments on ViComTe (Zhang
et al., 2022a), which is a commonsense knowledge
dataset containing different types of properties for
over 5000 subjects, e.g., the subject “egg” has the
property (object) “oval”. We investigate three rela-
tion types (COLOR, SHAPE, and MATERIAL) and
report the results on the test set (see Table 7 for de-
tails). We select the BERT-large, and Oscar-large
(Lietal., 2020) as the baselines of which the results
are directly obtained from Zhang et al. (2022a)."
For a fair comparison, we adopt the same set of
seven prompt templates provided by Zhang et al.

SWe also include the random baseline by assigning a num-

ber between 0 and 1 for each class by chance. We iterate the
random runs 7 times and report the average performance.

Relation # Objs # Test Subjs Ex (subj, obj) pair
COLOR 12 574 (leave, green)
SHAPE 12 140 (egg, oval)
MATERIAL 18 284 (mug, glass)

Table 7: Statistics of ViComTe dataset.

(2022a) and report the average performance over
these prompts. Table 6 demonstrates the perfor-
mance of Z-LaVI with language models. We can
see Z-LaVI continue to consistently boost the per-
formance of language models and outperform the
baselines with significant margins. The results on
ViComTe indicate Z-LaVlI is a promising way to
overcome the reporting bias of language models on
visual commonsense.

Qualitative Examples. Figure 8 shows some
qualitative examples from the two topic classifi-
cation datasets. We observe Z-LaVI can effec-
tively correct language models’ prediction with
more straightforward visual signals. However, we
also notice that Z-LaVI fails on examples that can-
not be solved by correlation, e.g., Z-LaVI wrongly
relates flooding with the situation of need water.
More examples are provided in the Appendix C.

5 Related Work

Visually Grounded Representation Learning
Several studies have focused on learning visually
grounded word or sentence representations. To
learn better word embeddings, Kiros et al. (2018)
introduce Picturebook that encodes images as vec-
tors by querying all vocabulary words through
Google image search. Lazaridou et al. (2015) opti-
mize a multimodal skip-gram model, where visual
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What phylum includes sponges, which are aquatic invertebrates?
B. chordata

A. hymenoptera C. mollusca

D. porifera

LM: B. chordata % Z-LaVI: D. porifera v’

(a)
The Sun is about 1.5 x 10"8 km from Earth. The speed of light is 3 x
1078 m/s. What's the distance from the Sun to Earth in light seconds?

A. 2.0 light- B. 0.5 light- C.2x10"-3 D.5x10"2
seconds seconds seconds

LM: D. 5x10”2 seconds v’

1ihtscconds

Z-LaVI: C.2x 10"-3 %

Figure 7: Qualitative examples from (a) SciQ and (b)
ARC-C. Z-LaVI can successfully answer the questions
which can be solved by correlation. Z-LaVI fails to
answer the question that requires multi-hop reasoning.

information is presented together with the corpus
contexts to produce word embeddings. Zablocki
et al. (2018) leverage the visual context of objects
to learn multimodal word embeddings. With re-
spect to visually grounded sentence embeddings,
previous work develops several strategies to enrich
sentence representations with visual information,
such as using the given sentence as captions to get
image features (Kiela et al., 2018), capturing both
cluster information and perceptual information in
grounded space (Bordes et al., 2019), or exploiting
multimodal contrastive learning objective (Zhang
et al., 2022b). Zhang et al. (2021) retrieves images
from COCO (Lin et al., 2014) as augmented visual
features for language models. Lu et al. (2022b) aug-
ment sentence embeddings with VQGAN-(Esser
et al., 2021) generated images and fine-tune them
on GLUE Benchmark (Wang et al., 2018). Liu et al.
(2022) probes the spatial commonsense knowledge
(sizes, positions) of language models and vision-
language models through image generation.

Vision-Language Pretraining Models To connect
vision and language semantics, a line of work on
multimodal masked language models (Li et al.,
2019; Tan and Bansal, 2019; Lu et al., 2019; Su
et al., 2020) explores vision-language pretraining
and achieves SOTA fine-tuning performance on
multimodal benchmarks. Tsimpoukelli et al. (2021)
freeze a language model parameters to generate
the appropriate caption by encoding each image
into the embedding space to inject visual knowl-

Text

(a) Pharmacy chain CVS Corp. on
Thursday said it would offer the world's
first disposable digital camera with a
bright color viewing screen that allows
consumers to instantly preview pictures.

Imagination

LM: business news ¥
(b) Boro left feeling Blue:
Accepting mediocrity has been part and
parcel of following Middlesbrough over
the years, yet this campaign was
supposed to bring something new.
LM: world news %

(c) He urged the people to start
reconstructing, at least one room, with
corrugated steel sheets as roofing
material, till the massive rebuilding
operations gets underway.

LM: need Infrastructure

(d) Earlier reports said nearly 50,000
people were driven from mudflat villages
by the flooding as local rivers burst banks

while the situation was exacerbated by
thunderstorms.

LM: danger & evacuation v’ Z-LaVTI: need water %

Figure 8: Qualitative examples from AG-News (a, b)
and Situation (c, d).

edge into PLMs. To retrain knowledge in both
vision and language pretrained models, Flamingo
(Alayrac et al., 2022) freezes both pretrained mod-
els and brings in additional model components to
do visually-conditioned autoregressive text gener-
ation. Tan and Bansal (2020) retrieve related im-
ages as vokens (visualized tokens) and then pro-
cess large language corpora (e.g., Wikipedia) into
voken-prediction tasks. FLAVA (Singh et al., 2022)
is an alignment model that pretrains on both uni-
modal and multimodal data while optimizing cross-
modal “alignment” objectives and multimodal fu-
sion objectives. Unified-10 (Lu et al., 2022a) is a
general-purpose model which can perform a wide
range of vision, language, and multimodel tasks by
unifying the inputs and outputs as sequences.

6 Conclusion

In this paper, we propose a novel approach, Z-LaV],
to alleviate the reporting bias problem of pretrained
language models and enhance their zero-shot in-
ference ability. We develop two complementary
visual imagination mechanisms, i.e., RECALL that
aims to retrieve existing objects or scenes and SYN-
THESIS that generates nonexistent ones. Experi-
ments on a wide range of language tasks show that
our approach can significantly outperform exist-
ing zero-shot language models, pointing towards
a promising direction to solve an unseen language
task with visual imagination.
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7 Limitations

Our experiments apply DALL-E-mini for synthe-
sizing the images, but the quality and resolution of
the generated images are still low, which can be the
factor limiting Z-LaVI’s performance. However,
the recent breakthroughs of DALLE-E-2 (Ramesh
et al., 2022), Imagen, (Saharia et al., 2022) and
the open-sourced Stable Diffusion (Rombach et al.,
2022) give us hope to obtain more realistic images
and thus further unleash the potential of Z-LaVI.
The negative results on ARC-C reveal the lack of
complex reasoning ability in the current zero-shot
vision-text model. At the same time, the success
of Flamingo (Alayrac et al., 2022) on few-shot
multi-modal tasks lets us sense the possibility of
applying the framework of Z-LaVI with these pow-
erful visual language models to solve broader lan-
guage tasks. We can foresee the bright future of our
method once these powerful resources are publicly
available. In this paper, we focus on the zero-shot
settings, and thus it is difficult to design a more
effective approach to ensemble the language and
vision without training data. However, when few-
shot examples are available, it is possible to learn a
mechanism to automatically calibrate the weights
of imagination depending on the input examples.
In addition, the image generation model is
trained on unfiltered data on the web, which may
leak personal information such as the human face,
etc. The generation model may also be biased
toward stereotypes against minority groups. Fur-
thermore, compared to language models, our ap-
proach requires extra resources such as an image
search engine, pretrained text-to-image generation
model, etc., which will increase the implementation
cost. Finally, we evaluated our method in English
datasets only, and we plan to incorporate other lan-
guages in the future with the help of multilingual
multi-modal models (Huang et al., 2021).
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A Implementation Details

A.1 Prompt Selection

We use the intuitive prompt templates of the three
main tasks for each model shown in Table 9, and
we do not tune the prompt for each dataset. For
ViComTe dataset, we reuse the original 7 prompts
provided by Zhang et al. (2022a).

A.2 Model Parameters

We include the number of parameters of all mod-
els we use in Table 8. We also list the ensemble
weight w based on the relative sizes between the
two models:

. . Pvi 1
w = sigmoid (PLa> Ty (13)
Model # of Parameters Ensemble weight
CLIP 150 M -
BART-L 400 M 0.59
RoBERTa-L 355 M 0.60
SBERT 110M 0.80
SimCSE 355 M 0.60
GPT-Neo-1.3B 1.3B 0.53
GPT-Neo-2.7B 2.7B 0.51
GPT-J-6B 6B 0.51
OPT-30B 30B 0.50

Table 8: The number of parameters of each model and
the ensemble weights calculated by equation 9.

A.3 Other Details

Predicted scores of prompt-based approach. The
huggingface API can calculate the loss of the pro-
vided input, and we take the reciprocal of the loss
as the prediction score in practice.

Speed of Bing Image Search. The efficiency of
downloading images from Bing depends on your
internet speed and the API plan you select. In our
case, downloading 200 images of a query takes less
than 10 seconds. The script of Bing Image Search
is provided in our GitHub repo.

Requirements for computing resources. Our ap-
proach is designed for zero-shot scenarios and does
not involve training, thus most of the experiments
can be conducted on a single GPU with more than
20GB of memory. The biggest challenge is to de-
ploy the OPT-30B, which requires 70GB of mem-
ory. We successfully deploy OPT-30B using 4 P40
GPUs and released the code to implement OPT-
30B across multiple GPUs in our GitHub repo.

B Additional Analysis

B.1 Relative Improvement of Each Word in
Word Sense Disambiguation

To quantify the ability of Z-LaVI to disambiguate
different words, we compute the relative improve-
ment (RI) of each word by comparing the F1 score
of SBERT with that of Z-LaVT:

_F 17-Lavi — FlsBerT
FlsgerT

RI (14)

As shown in Figure 10, Z-LaVI improves the
F1 score of 16 words (out of 20), while for the
rest of four words (pound, chair, digit, club), Z-
LaVT hurts the performance. Furthermore, we no-
tice those four words all contain abstract senses
(see Figure 13) which are difficult to imagine, e.g.,
pound has two senses-currency and mass, which
are both units and difficult to illustrate in images.
Based on this finding, we think future work can
design a dynamic ensemble method to calibrate the
weights conditioned on the input.

B.2 Overlap of Incorrectly Predicted
Examples

In Figure 4, we show that Z-LaVI w/o LM has
a smaller overlap with other language models on
correctly predicted examples. To tell a complete
story of the different output distribution between Z-
LaVI and language models, we compute the over-
lap of incorrectly predicted examples shown in
Figure 9. We can see that Z-LaVI has a smaller
overlap on incorrectly predicted ones.

AN < N
N RGP I &

& PP

A
&

Z-LaVI

0.68
(w/o LM)

0.66 0.67 0.64

SimCSE 08 075 0.74

SBERT{ 0.77 0.81 0.77  0.77

BART4 0.75 0.73 0.74

RoBERTaq 0.72 0.72 0.74 0.81

Figure 9: The overlap of incorrectly predicted examples
between each pair of models in the Situation dataset.
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Model Word Sense Disambiguation

Question Answering Topic Classification

GPT [SENTENCE] The [TARGET WORD] Question: [QUESTION] [SENTENCE] This example

NLI mentioned before means [SENSE NAME]. The answer is [ANSWER]. is [CLASS NAME].
SimCSE (SENTENCE, This example
SBERT (SENTENCE, DEFINITION) (QUESTION, ANSWER) is [CLASS NAME].)

CLIP (SENTENCE, DEFINITION) (QUESTION, ANSWER)  (SENTENCE, A news image

of [CLASS NAME].)

Table 9: The prompts we use for each model on WSD, QA, and Topic classification.

COLOR

MATERIAL

SHAPE

[SUBIJ] can be of color [OBJ].
[SUBIJ] has color [OBJ].

The color of [SUBIJ] can be [OBJ].
The color of the [SUBJ] is [OBIJ].
[SUBJ] is [OBJ].

This [SUBJ] is [OBIJ].
[SUBIJ] is of color [OBIJ].

[SUBJ] is made of [OBJ].
[SUBJ] can be made of [OBJ].
[SUBJ] is made from [OBJ].
[SUBIJ] can be made from [OBJ].
[SUBIJ] is [OBJ].

This [SUBJ] is [OBJ].
[SUBJ] is made by using [OBJ].

[SUBIJ] can be shape of [OBJ].
[SUBJ] has shape of [OBIJ].
[SUBJ] is of shape [OBJ].

The shape of [SUBJ] can be [OBJ].
The shape of the [SUBJ] is [OBJ].
[SUBIJ] is [OBJ].

This [SUBJ] is [OBJ].

Table 10: The prompts we use for ViComTe which are provided by Zhang et al. (2022a).
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Figure 10: Relative improvement (F1) of the 20 words in CoarseWSD20.

B.3 RECALL vs. SYNTHESIS on ViComTe

We also ablate on the imagination methods on Vi-
ComTe shown in Table 11. As mentioned before,
RECALL is preferred when the text input is short.
This finding still holds for ViComTe where the
text inputs are single words. We notice RECALL
performs better than SYNTHESIS except for the
COLOR relation. We find the images from SYN-
THESIS are more prototypical in colors than the
ones from RECALL. (See examples in Figure 15)

plAcc@1 RECALL SYNTHESIS BOTH

COLOR 35.5/35.7 36.4/38.5 37.2/39.4
SHAPE 37.1/49.3  279/31.3  33.9/32.1
MATERIAL 29.9/34.9 23.4/29.6 24.9/32.7

Table 11: The average Spearman correlation (left) and
top-1 accuracy (right) of Z-LaVI w/o LM with different
imagination methods. The highest number of each row
is bolded and the second-best one is underlined.

C Qualitative Examples

Figure 11 demonstrates the qualitative examples
from the two topic classification dataset. Figure
12 shows the QA examples. Figure 13, 14 show
the SYNTHESIS image of each word sense from
CoarseWSD20. Figure 15 demonstrates the im-
ages (SYNTHESIS and RECALL)of different sub-
jects from ViComTe. In addition, we release all the
SYNTHESIS images generated by DALL-E-mini
which can be downloaded from our GitHub repo.
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Text Imagination Text Imagination
JERUSALEM: The Israeli army
is set to unveil a new weapon
designed to get under the noses of
Palestinians - a massive stink
bomb. A report in the Maariv
daily on Wednesday said that the
military, which has

LM: technology news %

A second team of rocketeers
competing for the 10 million Ansari
X Prize, a contest for privately
funded suborbital space flight, has
officially announced the first launch
date for its manned rocket.

LM: technology news v/ Z-LaVI: technology news v/

The Atlanta Braves have acquired
standout righthander Tim Hudson
from the Oakland Athletics in
exchange for outfielder Charles
Thomas, right-handed pitcher Juan
Cruz and left-handed pitcher Dan
Meyer.

LM: business news % Z-LaVI: sports news v/ I LM: technology news v/

Recreational anglers may be
responsible for landing nearly 25
percent of over-fished saltwater
species caught off US coasts, a
study released on Thursday
suggests.

residents have taken shelter in
mosques, schools, local
government offices and even in
cemeteries after their homes were
inundated by up to three meters
( 10 feet ) of dirty brown water .

who is also providing water
purification tablets to ensure a safe
drinking water supply to the affected
population.

LM: need water v/ LM: danger evacuation ¥

Militants who tied to attack
renaissance dam have been
destroyed: 21 militants trained by
Shaibia and Egypt entered to
country by Benshangul gumez...

international medical corps has
already received vials of yellow
fever vaccine for high risk workers
and has ordered additional vaccines
for community members.

LM: search people * Z-LaVI: medical assistance v/ | LM: terrorist activity v/ Z-LaVTI: need infrastructure %

Figure 11: Qualitative examples from AG-News (top-4) and Situation (bottom-4).

(b) The atmospheric concentration of carbon dioxide on earth has been

i ?
(a) Food allergies, ulcers, and heartburn all affect what organ system? regulated by the concentration of what form of life?

A. lymphatic B. skeletal C. nervous D. digestive

A. fruit B. fungus C. seaweed D. plant
system system system system

LM: A. lymphatic system ¥ Z-LaVI: D. digestive system v’ LM: C. seaweed % Z-LaVI: D. plant v/

(c) What can be used for transportation?

A. trailers and . D. tree and E. chemical . .
B. hitches C. couches F. potassium G. cats H. air masses
boats flowers messengers

LM: E. chemical messengers ¥ Z-LaVI: A. trailers and boats v/
(d) The Arctic hare's brown fur turns white in winter. (e) Which of the following is most likely to
This adaptation helps the Arctic hare disrupt a wetland ecosystem?
D. get along A. construction B. planting

C. a period of D. alightning
heavy rainfall strike

A. look for food B. hide from C.live in cold

L with other of a housing native
after dark enemies in snow temperatures

animals development wildflowers

LM: D. get along Z-LaVIL: D. hide from LM: A. construction of a housing Z-LaVI: C. a period of heavy
with other animals ¥ enemies in snow v’ development v/ rainfall ¥

Figure 12: Qualitative examples from SciQ (a, b), QASC (c), ARC-E (d), and ARC-C (e). (e) is a typical failure
case of CLIP because multimodal models are not good at understanding negation (Jimenez et al., 2022).
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Figure 13: Qualitative examples from CoarseWSD20. We randomly sample 1 image (SYNTHESIS) for each sense.
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Figure 14: Qualitative examples from CoarseWSD20. (Continued)
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Z-LaVl: square v/ " Z-LaVI: round v

Z-LaVI: square
kitchen sink mitt pack
LM: stone % LM: glass x LM: paper v/
10 e |

Material

Z-LaVI: Metal v/ Z-LaVI: leather v/ Z-LaVI: plastic %

Figure 15: Qualitative examples from ViComTe. We randomly sample three subjects for each relation type (COLOR,
SHAPE, and MATERIAL). For each subject, we present two images, one from RECALL (left) and another one from
SYNTHESIS (right).
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