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Abstract

Group bias in natural language processing
tasks manifests as disparities in system error
rates across texts authorized by different demo-
graphic groups, typically disadvantaging mi-
nority groups. Dataset balancing has been
shown to be effective at mitigating bias, how-
ever existing approaches do not directly ac-
count for correlations between author demo-
graphics and linguistic variables, limiting their
effectiveness. To achieve Equal Opportunity
fairness, such as equal job opportunity with-
out regard to demographics, this paper intro-
duces a simple, but highly effective, objec-
tive for countering bias using balanced train-
ing. We extend the method in the form of
a gated model, which incorporates protected
attributes as input, and show that it is effec-
tive at reducing bias in predictions through de-
mographic input perturbation, outperforming
all other bias mitigation techniques when com-
bined with balanced training.1

1 Introduction

Natural Language Processing (NLP) models have
achieved extraordinary gains across a variety of
tasks in recent years. However, naively-trained
models often learn spurious correlations with other
demographics and socio-economic factors (Hen-
dricks et al., 2018; Lu et al., 2018; Bolukbasi
et al., 2016; Park et al., 2018), leading to disparities
across author demographics in contexts including
coreference resolution, sentiment analysis, and hate
speech detection (Badjatiya et al., 2019; Zhao et al.,
2018; Li et al., 2018a; Díaz et al., 2018).

Two popular approaches for mitigating such bi-
ases are: (1) balancing each demographic group
in training, either explicitly via sampling (Zhao
et al., 2018; Wang et al., 2019) or implicitly via
balancing losses for each group (Höfler et al., 2005;

1Code available at https://github.com/
HanXudong/Achieving_Fairness_Through_
Balanced_Training/

Lahoti et al., 2020); and (2) removing demographic
information from learned representations (Li et al.,
2018a; Wang et al., 2019; Ravfogel et al., 2020;
Han et al., 2021b).

While balancing methods have been shown to be
successful, they have not been tested extensively in
NLP. In this paper, we focus on Equal Opportunity
fairness (EO: Hardt et al. (2016)), which requires
non-discrimination across demographics within the
“advantaged” outcome labels, and adapt three bal-
anced training approaches for debiasing. In ad-
dition, we propose a new objective for balanced
training, which can be used for proxy optimiza-
tion of EO fairness. We first provide a theoretical
justification for our approach, and then conduct ex-
periments on two benchmark datasets which show
that our proposed objective is highly effective at
achieving EO fairness while maintaining competi-
tive accuracy.

Even when the training data is balanced, ig-
noring demographic-specific features can lead to
bias (Wang et al., 2019; Lahoti et al., 2020), due
to differences in language use across demograph-
ics (Hovy, 2015). There is thus a fine line to be
walked in terms of optimizing for linguistic vari-
ables associated with different demographic groups
(potentially boosting overall model accuracy), and
ensuring model fairness.

Inspired by work in domain adaptation on learn-
ing domain-specific representations that generalize
across domains (Bousmalis et al., 2016; Li et al.,
2018b), we propose a gated model, which incorpo-
rates author demographics as an input to generate
group-specific representations but also generalizes
across demographic groups. We show that when
combined with instance reweighting during train-
ing, this technique leads to substantial bias reduc-
tions over leading debiasing techniques, typically
with higher predictive accuracy. We also introduce
a second means of bias reduction through tailoring
gating coefficients of the trained model, which al-
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lows for fine-tuning of the accuracy–fairness trade-
off. Our experiments over two benchmark datasets
for language debiasing show that our techniques
are competitive with much more complex state-of-
the-art methods for debiasing in situations where
the demographic attribute is not known at test time,
and provide substantial gains over the state-of-the-
art when the protected attribute is observed.

2 Balanced Training

Despite their simplicity and versatility, balanced
training approaches have received limited attention
in prior work in NLP. In this section, we propose
a novel objective for balanced training, which we
show to be a proxy for the EO. We further review
three balanced training approaches, discuss their
objectives, and highlight their differences over our
proposed method.

2.1 Problem Formulation

In this paper, we focus on bias mitigation for
NLP classification tasks. Formally, we assume
a dataset D = {(xi, yi, gi)}ni=1 where xi ∈ X is
a d-dimensional input text representation vector,
yi ∈ Y denotes the main task label (e.g., senti-
ment), and gi ∈ G represents the private attribute
associated with xi (e.g., author gender).

A standard model M is trained to predict Y
given X , while debiasing methods generally aim to
learn a model M ′ that is fair wrt G by considering
X ×G together.

Let X be the task loss and n be the number of
observed instances in the dataset D. The overall
empirical risk is written as L = 1

n

∑
iX (yi, ŷi),

which can be rewritten as the aggregation of sub-
sets: L =

∑
y
∑

g
ny,g
n Ly,g, where ny,g is the

number of instances with target label y and de-
mographic attribute g, and Ly,g is the empiri-
cal loss corresponding to the subset: Ly,g =
1

ny,g

∑
iX (yi, ŷi)1(yi = y, gi = g).

Furthermore, we use ∗ to denote marginalization,
for example, n∗,g =

∑
y ny,g. Let p be the target

label distribution, and p̃ be the empirical probability
based on the training dataset.

2.2 Fairness Measurement

Equality of Opportunity (EO) is widely used in
previous work (Hardt et al., 2016; Ravfogel et al.,
2020; Han et al., 2021a), and measures the differ-
ence in true positive rate (TPR, aka Recall) across
all groups, based on the notion that the positive out-

come represents ‘advantage’, such as getting a job
or a loan. Essentially, the difference (gap) in TPR
reflects the degree to which different groups lack
equal opportunity (with lower numbers indicating
greater equity).

2.3 Towards Equal Opportunity

Without loss of generality, we illustrate with the
binary case of y ∈ {T, F} and g ∈ {0, 1}. Recall
that the equal opportunity metric is satisfied if a
binary classification model has an equal positive
prediction rate for the advantaged class. Assuming
the advantaged class is y = T , the equal opportu-
nity is measured by the TPR gap between protected
groups, i.e., Recallg=0 − Recallg=1. Our proposed
objective function for equal opportunity is:

LEO =
nT,∗
n

1

2

∑

g∈{0,1}
LT,g +

∑

g∈{0,1}

nF,g
n
LF,g

=
∑

g∈{0,1}

nT,g
n

nT,∗
2nT,g

LT,g +
∑

g∈{0,1}

nF,g
n
LF,g

Compared to the vanilla objective, the weights of
instances with target label T are adjusted. Specif-
ically, the reweighting term nT,∗

2nT,g
> 1 for the mi-

nority group, and < 1 for the majority group.

From CE to TPR Cross-entropy is an estimate
of the TPR at the mini-batch level when consid-
ering a subset of instances with the same target
label. Recall that the CE loss for binary classifi-
cation of an instance is −[yi · log(p̂(yi)) + (1 −
yi) · log(1 − p̂(yi))], where p̂(yi) is the predicted
probability of yi being True. Taking y = T for a
certain demographic group g as an example,

LT,g =
1

nT,g

∑

i

X (yi, ŷi)1(yi = T, gi = g)

= − 1

nT,g

∑

i

log(p̂(yi))1(yi = T, gi = g).

Essentially, minimizing LT,g is proportionate to
maximizing the TPR of demographic group g. That
is, at the minibatch level, −LT,g is an estimator of
log(p(ŷ = T |y = T, g = g)), which is the log-
TPR of group g. Given this, our proposed objective
minimizes the TPR gap by focusing on the log-TPR
difference across demographic groups.

Beyond binary labels & demographic at-
tributes Our proposed objective generalizes to
higher ordering labels and demographic attributes
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Figure 1: Balanced training through downsampling
w.r.t. different objectives over a toy dataset for illus-
trative purposes. N/P = main task, 0/1 = protected at-
tribute. The groups at either end of each arrow are re-
sampled to be the same size. EO = our proposed objec-
tive in Section 2.3. BD, CB, and JB refer to balanced
demographics, conditional balance, and joint balance,
resp. (Section 2.4).

trivially. The equal opportunity metric was origi-
nally designed for binary classification, under the
assumption of a single advantaged class y = T .
To satisfy the multi-class target label case, we ad-
just the equal opportunity to consider the one-vs-
all setting, and measuring the TPR of each tar-
get class. Our proposed objective then becomes∑

y
∑

g
ny,g
n

ny,∗
|G|×ny,g

Ly,g.

2.4 Balanced Training Objectives

We now formally describe the objective functions
of three established balanced training approaches,
and discuss their applications. We provide a toy
example in Figure 1 to illustrate the differences
between these objectives. In Appendix E, we pro-
vide more details about the mapping from previous
work to these objectives in our framework.

Balanced Demographics (BD) Zhao et al.
(2018) augment the dataset according to the de-
mographic label distribution (making p(G) uni-
form) for bias mitigation in the context of corefer-
ence resolution. Although their gender-swapping
approach is not directly applicable to our tasks,
we adapt the general objective function as LG =
1
|G|

∑
y
∑

g
ny,g
n∗,g
Ly,g, where |G| is the number of

distinct labels of G.
Since LG only encourages the model to equally

focus on different demographic groups, it does not
explicitly capture the correlation between G and Y ,
and as a result, does not achieve Equal Opportunity
fairness.

Conditional Balance (CB) In a vision context,
Wang et al. (2019) down-sample the majority de-
mographic group within each class, so that on a
per-class basis, it does not dominate the minority
group (i.e. p(G|Y ) is uniform for all Y ), giving the
objective function: LG|Y = 1

|G|
∑

y
ny,∗
n

∑
g Ly,g.

This is the closest formulation to ours, as it also
captures the conditional independence between G
and Y . However, it captures both the TPR and
TNR, while our method and EO fairness only focus
on the TPR. In the multi-class target label case, our
EO objective recovers the formulation of LG|Y .

Joint Balance (JB) Lahoti et al. (2020) employ
instance reweighting for structural data classifi-
cation such that demographics and classes are
jointly balanced, leading to the objective: LG,Y =

1
|G|×|Y |

∑
y
∑

g Ly,g.
JB can be treated as a combination of the clas-

sic long-tail learning objective and the CB objec-
tive (p(G, Y ) = p(G|Y )p(Y )). On the one hand,
JB is equivalent to CB when Y has already been
balanced, which is the case for the dataset MOJI

(Section 4.2), and CB is not a suitable objective for
achieving EO fairness in this case. On the other
hand, when Y is imbalanced, JB not only requires
CB but also focuses more on long-tail main task
classes, making it highly vulnerable to the size of
minority groups.

2.5 Achieving the Objective

In this paper, we focus on two ways of achiev-
ing the target objective: (1) instance reweighting,
which manipulates the weight of each instance dur-
ing training; and (2) down-sampling, which prepro-
cesses the dataset before training.

Taking the joint balance (JB) as an example,
instance reweighting reweights each instance in
inverse proportion to the frequency of the com-
bination of its main label and demographic label,
1
|D|

∑
(xi,yi,gi)∈D p̃

−1(G = gi, Y = yi)X (yi, ŷi),
where X is the task loss, and ŷi denotes the model
prediction given input text xi.

The other approach, down-sampling, sub-
samples non-minority instances to derive a bal-
anced training dataset, such that p̃(g, y) =

1
|G|×|Y | , ∀g ∈ G, y ∈ Y . Specifically, let Dy,g =

{(xi, yi, gi)|yi = y, gi = g}ni=1 denote a sub-
set for training. We sample without replacement
to get a target subset D∗y,g such that |D∗y,g| =
min{|Dy′,g′ |,∀y′ ∈ Y, g′ ∈ G}. The sampled sub-
sets are merged to form the training set.
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Figure 2: Gated model architecture. Given the in-
put vector x, e.g. a text representation, the model has
a shared encoder component and |G| encoder compo-
nents, one for each demographic group.

3 Demographic Factors Improve
Fairness

Ignoring demographic-specific features can lead to
bias even when the training data has been balanced
(Wang et al., 2019; Lahoti et al., 2020). Instead,
as suggested by Hovy and Yang (2021), address-
ing demographic factors is essential for NLP to get
closer to the goal of human-like language under-
standing, and increase fairness. Our approach to
dealing with this is, rather than removing demo-
graphic information, to use a gated model that uses
demographic labels as input.

As can be seen in Figure 2, the gated model con-
sists of (1+|G|) encoders: one shared encoder, and
a dedicated encoder for each demographic group in
G.2 Formally, let E denote the shared encoder, Ej

denote the encoder for the j-th demographic group,
C denote the classifier, and gi be a 1-hot input such
that gi,j is 1 if the instance (xi, gi, yi) belongs to
the j-th group, and 0 otherwise. The prediction for
an instance is: ŷi = C(hsi , h

g
i ), where hsi = E(xi)

and hgi =
∑|G|

j=1 gi,jEj(xi). The two inputs are
concatenated and input to the classifier C.

Intuitively, the shared encoder learns a general
representation, while each group-specific encoder
captures group-specific representations.

Our setting differs from other debiasing meth-
ods in that we assume the demographic attribute
is available at training and prediction time, while
techniques such as adversarial training (Li et al.,
2018a) and INLP (Ravfogel et al., 2020) only re-
quire the attribute for training. This richer input al-
lows for more accurate predictions, courtesy of the
demographic-specific encoder, but limits applica-

2Strictly speaking, it is possible to achieve a similar effect
with |G| encoders by merging one group with the shared
encoder, and using post-hoc correction to separate out the
general from the group-specific representation (Kang et al.,
2020).

bility at test time. For better applicability, we also
relax this requirement by replacing demographic
factors with a non-informative prior in Section 4.7.

4 Experimental Results

In this section we first introduce our experimental
settings, and then report and discuss our results.
In Appendix B, we provide detailed settings for
reproducing our experiments.

4.1 Evaluation Metrics

Following Ravfogel et al. (2020), we use overall
accuracy as the performance metric, and the sepa-
ration criterion to measure fairness in the form of
TPR GAP and TNR GAP: the true positive rate
and true negative rate differences between demo-
graphic groups. For both GAP metrics, smaller is
better, and a perfectly fair model will achieve 0.
For multi-class classification tasks, we follow Rav-
fogel et al. (2020) in reporting the quadratic mean
(RMS) of TPR GAP over all classes. In a binary
classification setup, TPR and TNR are equivalent
to the TPR of the positive and negative classes, re-
spectively, so we employ the RMS TPR GAP in
this case also.

Throughout this paper, we report accuracy and
GAP results as mean values ± standard deviation
over the test set, averaged across five independent
runs with different random seeds.

In contrast to single-objective evaluation, evalu-
ation of fairness approaches generally reports both
fairness and performance at the same time. Typi-
cally, there is no single method that achieves both
the best performance and fairness, making com-
parison between different fairness methods diffi-
cult. This problem has been widely studied in
the literature on multi-objective learning (Marler
and Arora, 2004). For ease of comparison be-
tween approaches, we adopt the compromise so-
lution (Salukvadze, 1971) to fairness evaluation,
and introduce ‘distance to the optimum’ (DTO).
Specifically, the compromise solution aims to mini-
mize the difference between the candidate point
and a utopia point. In our case, the candidate
points are ordered pairs (Accuracy,GAP), denot-
ing the accuracy and fairness of debiasing meth-
ods, and the utopia point (optimum) represents the
hypothetical system which achieves the highest-
achievable accuracy and fairness for the dataset.,
i.e., (max(Accuracy),min(GAP)). Following Vin-
cent and Grantham (1981); Vincent (1983), DTO
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is calculated as the Euclidean distance between the
optimum and the results for a given method. Lower
is better for this statistic, with a minimum of 0.
In Appendix C, we provide a more detailed expla-
nation of DTO, including a step-by-step example
calculation.

In addition, we are also interested in the effi-
ciency of the different debiasing approaches and
report each method’s average training time.3

4.2 Dataset

Following Ravfogel et al. (2020), we conduct exper-
iments over two NLP classification tasks — senti-
ment analysis (MOJI) and biography classification
(BIOS) — using the same dataset splits. In Ap-
pendix A, we provide analysis of the dataset distri-
bution.

MOJI: This sentiment analysis dataset was col-
lected by Blodgett et al. (2016), and contains tweets
that are either African American English (AAE)-
like or Standard American English (SAE)-like.
Each tweet is annotated with a binary ‘race’ label
(based on language use: either AAE or SAE), and
a binary sentiment score determined by (redacted)
emoji contained in it.

BIOS: The second task is biography classifica-
tion (De-Arteaga et al., 2019), where biographies
were scraped from the web, and annotated for bi-
nary gender and 28 classes of profession.

4.3 Models

We first implement a “STANDARD” model on each
dataset, without explicit debiasing. On the MOJI

dataset, we follow Ravfogel et al. (2020) in using
DeepMoji (Felbo et al., 2017) as the encoder to
get 2304d representations of input texts. Ravfogel
et al. (2020) and Subramanian et al. (2021) used
uncased BERT-base (Devlin et al., 2019) as their
STANDARD model for the BIOS dataset, taking the
‘CLS’ token as the source of a fixed text represen-
tation, without further fine-tuning. However, we
found that taking the average of all contextualized
token embeddings led to an accuracy improvement
of 1.4% and GAP fairness improvement of 2.4%.
Given this, we use 768d ‘AVG’ representations
extracted from the pretrained uncased BERT-base
model.

Model Accuracy↑ GAP ↓ DTO ↓
STANDARD 82.3± 0.0 16.0± 0.5 0.093

BD (Zhao et al., 2018) 82.3± 0.0 15.6± 0.2 0.089
JB (Lahoti et al., 2020) 74.7± 0.3 7.4± 0.3 0.092
EO 79.4± 0.1 9.7± 0.6 0.043

Table 1: Results for balanced training methods on the
BIOS test set. EO: our proposed objective in Sec-
tion 2.3. BD and JB are baselines from Section 2.4.
Bold = best trade-off.

4.4 Balanced Training Approaches

Since the MOJI dataset has been artificially bal-
anced for main task and demographic labels, bal-
anced training based on p(g) makes no difference,
and moreover, the results for p(g|y) and p(g, y)
will be identical. Given this, we focus on the BIOS

dataset for comparing different balanced training
objectives.4

Table 1 shows the results of balanced training
using the different objectives. Compared to the
STANDARD model, balanced training with different
objectives are all able to reduce bias, and the objec-
tive proposed by Lahoti et al. (2020) achieves the
lowest TPR GAP. However, in terms of accuracy–
fairness trade-off, our proposed approach outper-
forms all other models, which is not surprising as
it is designed to achieve better equal opportunity
fairness. Based on these results, hereafter, we only
report balanced training with our proposed EO ob-
jective (BTEO).

4.5 Main Results

We report results over the sentiment analysis and
biography classification tasks in Table 2. The
baseline models are: STANDARD, which is a
naively-trained MLP classifier; INLP (Ravfogel
et al., 2020), which removes demographic infor-
mation from text representations through iterative
nullspace projection; ADV (Li et al., 2018a; Wang
et al., 2019; Zhao et al., 2019), which performs
protected information removal through adversarial
training; and DADV (Han et al., 2021b), which also
uses adversarial training but with multiple adver-
saries subject to an orthogonality constraint, and
represents the current best baseline models.

On the MOJI dataset, compared to the STAN-

3Testing on Titan X and RTX 3090, all models have
roughly identical inference time.

4As BIOS is a multi-class classification task and our pro-
posed approach generalizes to BD in this case, there is no need
to include Wang et al. (2019) in our comparison.
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MOJI BIOS

Method Model Accuracy↑ GAP ↓ DTO ↓ Time↓ Accuracy↑ GAP ↓ DTO ↓ Time↓

Baselines

STANDARD 71.6± 0.1 31.0± 0.3 0.261 1.0 82.3± 0.0 16.0± 0.5 0.110 1.0
INLP 68.5± 1.1 33.8± 3.9 0.300 14.0 70.5± 0.5 6.7± 0.9 0.145 6.3
ADV 74.3± 0.4 22.2± 3.7 0.163 36.1 81.1± 0.1 12.7± 0.3 0.077 1.3
DADV 74.5± 0.3 18.5± 2.0 0.123 109.4 81.1± 0.1 12.6± 0.3 0.076 2.4

Ours

BTEO 74.0± 0.2 21.5± 0.4 0.155 0.8 79.4± 0.1 9.7± 0.6 0.057 0.7
BTEO +GATE ∗ 74.9± 0.2 13.8± 0.3 0.072 0.8 79.4± 0.1 9.2± 0.2 0.053 0.7

GATE ∗ 64.8± 0.1 65.2± 0.9 0.640 1.0 82.4± 0.1 19.2± 0.3 0.144 1.0
GATE soft

RMS
∗ 73.5± 0.2 7.1± 0.3 0.019 1.0 80.5± 0.1 11.1± 0.3 0.063 1.0

Table 2: Results over the sentiment analysis (MOJI) and biography classification (BIOS) tasks. DTO is measured
by the normalized Euclidean distance between each model and the ideal model, and lower is better. Bold = best
trade-off within category. Normalized time is reported relative to STANDARD, which takes 35 secs and 16 mins for
MOJI and BIOS, respectively. The reported times are the average times divided by that of STANDARD. ∗ indicates
that the model requires the demographic attribute at test time.

DARD model, BTEO simultaneously increases ac-
curacy and mitigates bias, leading to results com-
petitive with ADV and better than INLP. Although
BTEO does not outperform the best baseline mod-
els DADV, it leads to performance–fairness trade-
offs that are competitive with the other debiasing
methods.

On the BIOS dataset, BTEO again leads to
performance–fairness trade-offs that outperform
the baseline methods. However, different to the
MOJI dataset, BTEO does not further improve ac-
curacy, improving fairness by 5.3% absolute at the
cost of 2.9% accuracy.

In terms of training time, existing debiasing
methods (esp. DADV on MOJI) incur a substantial
overhead, while balanced training is much more
frugal: around 1.3 times faster (because of the re-
duction in training data volume).

In addition to evaluating BTEO, we also com-
bine GATE with BTEO, which achieves a better
performance–fairness balance, as shown in Table 2.
This is consistent with our argument that, rather
than removing demographic information, properly
used demographic factors can further reduce bi-
ases. Indeed, the BTEO +GATE consistently out-
performs the current best baseline models model
DADV on both datasets.

In Appendix F.1, we also show that BTEO can
be combined with DADV and INLP, leading to
better bias mitigation.

4.6 Gated Model

If the training dataset is imbalanced and contains
spurious correlations between task labels and de-
mographic attributes, a naively trained model will

learn and possibly amplify dataset biases. The
GATE model, with its explicit conditioning and
group-specific encoding, will be particularly vul-
nerable to bias.

Table 2 shows that, on both datasets, the GATE

model increases the accuracy but amplifies bias
(e.g., GAP of 65 on MOJI): as it uses demo-
graphic information directly to make predictions, it
is highly vulnerable to bias in the training dataset.

Intuitively, the only objective of GATE training is
standard cross-entropy loss, which has been shown
to lead to bias amplification under imbalanced train-
ing without regularization. The gate components
explicitly rely on demographic information, and
thus become a strong indicator of predictions due
to spurious correlations between the main task label
and demographic labels in the training set.

Balanced training approaches act as regularizers
in preventing the model from learning and amplify-
ing spurious correlations in training.

4.7 Soft Averaging

Although the gated model naturally requires the
demographic attribute at test time, we also eval-
uate a condition where this is not available. In-
stead, we take a Bayesian approach by evaluating
p(y|x) =

∑
g p(g)p(y|g, x), where we can con-

trol the prior explicitly. For example, under a uni-
form demographic attribute prior, we simply aver-
age the predictions p(y|x, g) and p(y|x,¬g). This
Bayesian approach can be approximated by soft av-
eraging, whereby the activation of all demographic-
specific encoders are uniformly averaged inside the
model, i.e., gi,j = 1

|G| , rather than selecting only
one in the standard gated model (i.e., gi,: is 1-hot).
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(a) MOJI Accuracy (b) MOJI GAP

(c) BIOS Accuracy (d) BIOS GAP

Figure 3: Accuracy and GAP of α and β settings for
MOJI and BIOS. The axes refer to the propensity to
change the gold group in gating the encoder compo-
nents, and the bottom left point α = β = 0 is the GATE
model using true demographic inputs. Lighter shading
denotes better performance.

When the protected attribute is observed at test
time the soft averaging method may still prove use-
ful, which we use as a means for fine-tuning the
balance between accuracy and bias. Figure 3 shows
an example for the prior fine-tuning. Specifically,
we consider non-uniform encoder averaging con-
ditioned on the gold protected attribute, g∗. Let α
and β denote to what extent the 1-hot labels are
manipulated according to the value of g∗ as 0 and 1
respectively, leading to the soft labels

[
α 1− α

]

and
[
1− β β

]
. I.e., the two specific encoders are

weighted by either α and 1 − α, or 1 − β and β,
respectively, according to the value of g∗. Values
of α, β < 0.5 mean the protected label is (softly)
preserved, while values > 0.5 mean the label is
flipped.

In cases where the model is biased towards or
against a demographic group, it may be advanta-
geous to use these two additional parameters to
correct for this bias, by disproportionately using
the other group’s encoder.

We now employ the Bayesian “soft averaging”
approach to gating, and mitigating bias at inference
time. Note that this does not involve retraining the
model, as the soft averaging happens at test time.

Figure 3 shows accuracy and GAP results from
tuning the coefficients on development data for the

Model Size Accuracy↑ GAP ↓ DTO ↓
STANDARD 257k 82.3± 0.0 16.0± 0.5 0.093

RW + BD 257k 82.3± 0.0 15.6± 0.2 0.089
RW + JB 257k 74.7± 0.3 7.4± 0.3 0.092
RW + EO 257k 75.7± 0.2 13.9± 0.4 0.107

DS + BD 237k 82.1± 0.1 15.9± 0.3 0.092
DS + JB 5k 66.1± 0.1 10.9± 0.4 0.200
DS + EO 37k 79.4± 0.1 9.7± 0.6 0.043

Table 3: Results for balanced training methods on the
BIOS test set. “RW” = instance reweighting; “DS” =
dataset down-sampling; and “Size” = the number of in-
stances in the training dataset. Bold = best trade-off.

basic GATE model. The results show that α = β =
0.5 is a reasonable default setting, however gains
may be possible for non-uniform prior settings.

To demonstrate the power of adjusting these pa-
rameters, we take the trained GATE model, and
then optimize α and β over the development set,
and report the corresponding results on the test
set. We select the parameter values that achieve
the lowest development GAP, provided accuracy is
above a threshold. 5 The results are reported in Ta-
ble 2, under GATE soft

RMS. On the MOJI dataset, our
results show that GATE with soft averaging consis-
tently outperforms the STANDARD and GATE mod-
els without balanced training. In terms of GAP, the
model is substantially better than all other models,
while remaining competitive in terms of accuracy.
The BIOS dataset is noisier, meaning there are big-
ger discrepancies between the development and test
datasets. However, we achieve a good performance–
fairness trade-off at a level comparable to the much
more complex INLP and DADV models.

5 Analysis

5.1 Reweighting vs. Down-sampling
Table 3 shows the results of the naively-trained
MLP model (“STANDARD”) and six balanced-
training methods, all based on the same architecture
as STANDARD. Corpus down-sampling (“DS”) re-
moves instances from majority groups and thus
leads to less training data and overall lower accu-
racy than instance reweighting (“RW”).

When using BD as the objective, both RW and
DS perform similarly to the STANDARD model, as
the overall gender distribution is quite balanced,

5The [α, β] values are [0.64, 0.99] and [0.38, 0.72] over
MOJI and BIOS, respectively, We also experimented with
adjusting the gating coefficients for GATE + BTEO, in which
case there was no benefit from using non-zero α or β.

11341



Model Parameters Accuracy GAP
STANDARD 782402 71.6 31.0
BTEO 782402 74.0 21.5
BTEO +GATE 2346002 74.9 13.8

STANDARD LARGE 2887202 71.7 31.4
BTEO LARGE 2887202 73.9 20.9

Table 4: Results over MOJI. LARGE modes have larger
hidden sizes to achieve similar number of parameters
of our proposed GATE model.

which can also be seen in the size of the training
data for DS + BD. Both RW + JB and RW + EO
reduce bias and performance, but RW + JB out-
performs RW + EO in terms of the performance–
fairness trade-off, in that RW + JB achieves similar
performance but substantially better fairness (6.6%
absolute improvement in GAP). However, JB is
not as effective as EO when combined with DS,
due to the big drop in the volume of training data.

5.2 GATE vs. LARGE

Compared to STANDARD, GATE involves more
model parameters, and an important question is
whether the gains of GATE models are simply be-
cause of the larger parameter space.

To explore this question, we conduct experi-
ments over MOJI by controlling the number of
parameters of STANDARD and compare it with
GATE models. Specifically, we employ a larger
STANDARD model, namely LARGE, which has
more hidden units within each hidden layer, lead-
ing to roughly the same number of parameters as
the GATE model.

Table 4 shows the results for STANDARD LARGE

and BTEO with LARGE. Comparing STANDARD

and BTEO with the LARGE versions, it can be seen
that increasing the number of parameters does not
increase performance or fairness.

Despite BTEO +GATE having fewer parame-
ters than BTEO LARGE, it achieves a substantial
improvement in terms of fairness, confirming our
argument that GATE is superior to existing models.

5.3 Debiased predictions

Figure 4 compares the true positive rates (TPR) of
the STANDARD method and our proposed method
(BTEO + GATE), on the basis of which the TPR
GAP is measured. Compared with the STAN-
DARD model, the debiased model improves the
TPR results of the worse-performing groups for
both classes at the cost of a slight reduction in TPR
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Figure 4: True positive rates (± standard deviation)
over the MOJI datasets broken down by author demo-
graphics and sentiment labels. Results are averaged
over 5 random runs with different random seeds.

for the better-performing group. Overall, however,
BTEO + GATE results in an improvement in TPR
of around 6.7%.

Similar trends are observed over the BIOS

dataset: debiasing methods generally improve mi-
nority group performance. However, we also no-
ticed that the trends for different occupations can
be different. For example, the TPR performance
for both gender groups improves for architect and
paralegal, but decreases for professor and accoun-
tant. We hypothesise that this is due to the target
class skew in the BIOS datasets, and leave further
investigation of this effect to future work.

5.4 Balancing toward anti-stereotyping
As shown in Table 2, even with DS or RW balanc-
ing, the model still shows biases in its predictions.
We conduct preliminary experiments on MOJI with
RW and DS, while controlling for stereotyping
skew in training using values for 0.8 to 0.2. In
standard rebalancing we use as target 0.5, which
describes a balanced situation. A larger skew> 0.5
will amplifying stereotyping, and < 0.5 describes
a different type of stereotyping operating in the op-
posite direction. Balancing towards a 0.4 training
skew leads to the best test results, with an accuracy
of 71.7% and GAP of 11.8% for DS, and accuracy
of 74.5% and GAP of 11.3% for RW. Comparing
to the corresponding values in Table 2 (rows Bal-
ance DS and RW, for MOJI), both results show a
substantial reduction in GAP.

This idea is related to existing reweighting ap-
proaches in long-tail learning. For example, Cui
et al. (2019) infer the effective number of sam-
ples which group each instance with its neigh-
bours within a small region instead of using all
data points, and reweight the loss of each class
inversely proportional to the effective number of
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samples. We leave this further exploration of this
line of research to future work.

We also experiment with GATE +RW and GATE

+DS with a 0.4 training skew, however, the gated
model does not show the same behaviour, as it just
amplifies the training biases. This implies that, for
the gated model, balanced training can help remove
spurious correlations between protected attributes
and main task labels, which is similar in nature to
the effects of adversarial training.

6 Related Work

Fairness Much work on algorithmic fairness has
focused on group fairness, i.e., disparities in error
rates across groups defined by protected attributes,
such as gender, age, or race. Many criteria have
been proposed for group fairness, such as statisti-
cal parity (Dwork et al., 2012) and equal opportu-
nity (Hardt et al., 2016). Broadly speaking, fairness
can be classified into three categories: indepen-
dence, separation, and sufficiency (Barocas et al.,
2019), with the most recent work addressing sep-
aration criteria, i.e, potential correlations between
main task labels and protected attributes.

Mitigating bias Many approaches for bias mit-
igation haven been proposed recently, including
removing protected information form hidden repre-
sentations (Li et al., 2018a; Ravfogel et al., 2020;
Han et al., 2021b), preprocessing data to remove
bias (Zhao et al., 2018; Vanmassenhove et al., 2018;
Saunders and Byrne, 2020), modifying the training
algorithm (Badjatiya et al., 2019), and post-hoc
correction (Hardt et al., 2016).

In the context of NLP, the best results have been
achieved through protected information removal. It-
erative nullspace projection (Ravfogel et al. (2020))
takes hidden representations and projects them onto
the nullspace of the weights of a linear classifier
for each protected attribute. The classifier training
and projection are carried out over multiple itera-
tions to more comprehensively remove protected
information.

Another popular approach is adversarial training,
which jointly optimizes the removal of sensitive
information and main task performance, through
the incorporation of adversarial discriminator(s) to
identify protected attributes from the hidden repre-
sentations (Li et al., 2018a; Elazar and Goldberg,
2018; Wang et al., 2019). Differentiated adversar-
ial learning (Han et al. (2021b)) uses an ensemble

of adversaries for each protected attribute, subject
to an orthogonality constraint.

Comparison with mixture of experts One line
of work that is similar to our gated model is mixture
of experts (Ma et al., 2018; Fedus et al., 2021).
Technically, the gated model is similar to the MoE
model in the sense that an expert can be largely
aligned with a group-specific encoder in our model.
However, there are several key differences: (1)
instead of making independent predictions by each
expert, our group-invariant encoder acknowledges
the shared patterns across demographic groups; (2)
MoE employs an extra softmax gating network to
mix experts’ predictions, while our method does an
argmax based on group labels; and (3) we use the
group-specific information jointly together with
the group-invariant encoder’ outputs for making
the final predictions while the MoE model has one
output layer for each expert.

7 Conclusions and Future Work

This paper proposed the adoption of balanced train-
ing approaches to mitigate bias, and demonstrated
their effectiveness relative to existing methods, as
well as their ability to further enhance existing
methods. We also proposed a gated model based
on demographic attributes as an input, and showed
that while the simple version was highly biased,
with a simple Bayesian extension at inference time,
the method was highly effective at mitigating bias.

For future work, it is important to consider set-
tings where there are multiple protected attributes,
such as author age, gender, and ethnicity. A simple
extension would be to treat G as being intersec-
tional classes, defined as the Cartesian product of
the multiple demographic groups. E.g., k binary
groups would result in 2k intersectional classes.
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Ethical Considerations

This work aims to advance research on bias mit-
igation in NLP. Although our proposed method
requires access to training datasets with protected
attributes, this is the same data assumption that
is made by other related work such as adversar-
ial training and INLP, and our target is to make
fair predictions at inference time. One limitation
of methods in this area, including ours, is the dif-
ficulty of training and evaluating when we don’t
have access to demographic attributes. To avoid
user harm, we only use attributes which users have
self identified in our experiments. Moreover, our
proposed method is able to make fairer predictions
either with or without demographic information.
All data in this study is publicly available and used
under strict ethical guidelines.

Limitations

(1) We have only investigated bias mitigation
over English datasets. While nothing in the pro-
posed methods is language-specific, it would be
valuable to validate the methods over datasets for
other languages from different language families.

(2) Consistent with previous work, we conduct
experiments over MOJI using ethnicity labels, and
BIOS using binary gender labels. We acknowl-
edge that there are potentially subtle interactions be-
tween protected attributes, and the possibility that
debiasing with respect to one protected attribute
could negatively impact on a second (unannotated)
protected attribute. To investigate this effect, we
would need to experiment with datasets with mul-
tiple protected attributes (and debias with respect
to certain attributes while measuring the impact on
bias with respect to held-out attributes).

(3) As discussed in Sections 3 and 4.6, GATE

models assume that the demographic attribute is
available at prediction time to make fairer predic-
tions. However, we also proposed a method using
a non-informative prior in Section 4.7 to remove
this requirement.

(4) For both INLP and DADV, we follow ex-
perimental setup from the original papers. How-
ever, the fairlib (Han et al., 2022) — which
is presented after this work was done — recently
show that both methods can obtain better results
with a larger budget for hyperparameter fine-tuning.
Based on our most recent experimental results, our

proposed method BTEO itself is still competitive
with other debasing methods, and BTEO + GATE

still achieves better performance–fairness trade-
offs than the better-tuned INLP and DADV.
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A Dataset distribution

A.1 MOJI

This training dataset has been artificially balanced
according to demographic and task labels, but ar-
tificially skewed in terms of race–sentiment com-
binations, as follows: AAE–happy = 40%, SAE–
happy = 10%, AAE–sad = 10%, and SAE–sad =
40%. We used the train, dev, and test splits from
Han et al. (2021b) of 100k/8k/8k instances, respec-
tively.

A.2 BIOS

Since the data is not directly available, in order to
construct the dataset, we re-scrape the data with
the scripts of Ravfogel et al. (2020), leading to a
dataset with 396k biographies, which we randomly
split into train (65%), dev (10%), and test (25%).

Figure 5: Bios dataset statistics.

Figure 5 shows the statistic of the BIOS dataset.
Each row corresponds to a profession, including the
total number of instances and number of female in-
stances. Besides, each profession is also annotated
with the percentage of female instances. There are
slight discrepancies in the dataset composition due
to data attrition: the original dataset (De-Arteaga
et al., 2019) had 399k instances, while 393k were

collected by Ravfogel et al. (2020).

B Reproducibility

B.1 Models

For INLP (Ravfogel et al., 2020), we take the fixed
STANDARD model for the given dataset, and itera-
tively train a linear classifier and perform nullspace
projection over the learned representation. For the
other baseline models — ADV and DADV— we
jointly train the adversarial discriminators and clas-
sifier. In order to ensure a fair comparison, we
follow Han et al. (2021a) in using a model consist-
ing of the same fixed-parameter encoder as ours
followed by a trainable 3-layer MLP.

B.2 Hyperparameter Tuning

All approaches proposed in this paper share the
same hyperparameters as the standard model. Hy-
perparameters are tuned using grid-search, in or-
der to maximise accuracy for the standard model,
and to minimise the fairness GAP for debiasing
methods, subject to the accuracy exceeding a given
threshold. The accuracy threshold is chosen to
ensure the selected model achieves comparable per-
formance to baseline methods, defined as up to 2%
less than best baseline accuracy. Taking RW as an
example, the best baseline accuracy on the BIOS

development dataset is 75.7% and accordingly the
(development) accuracy threshold is set to 73.7%;
among models in the hyperparameter search space
that exceed this threshold, we take the model with
minimum GAP. We report test results for the se-
lected models.

In terms of the baseline models, both DADV

and INLP have additional hyperparameters: for
DADV these are the weight of the adversarial loss,
which controls the performance–fairness trade-off;
the number of sub-adversaries; and the weight of
the difference loss, to better remove demographic
information; while INLP also has a trade-off hy-
perparameter, the number of null-space projection
iterations, and other hyperparameters related to lin-
ear attackers and classifiers.

The trade-off hyperparameter makes such mod-
els more flexible in performing model selection.
However, it also requires manual selection for bet-
ter trade-offs, and different strategies have been
introduced. For example, INLP manually selects
the model at a iteration where the accuracy is mini-
mally damaged while the fairness improves greatly.
Similar manual selection for better trade-offs is
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also required for ADV and DADV, but the strate-
gies proposed in the original papers are slightly
different to one another, and are also task-specific.

In order to reproduce previous methods, we fol-
low the original paper in setting the accuracy thresh-
old, and then tuning hyperparameters for the best
fairness.

For the ADV and DADV models, following the
work of Han et al. (2021b), we tune extra hyper-
parameters separately, such as the trade-off hyper-
parameter, while using the same shared hyperpa-
rameters to the selected base models. Similarly, the
number of iterations for the INLP model is tuned
once other hyperparameters have been fixed.

B.3 Training Details

We conduct all our experiments on a Windows
server with a 16-core CPU (AMD Ryzen Thread-
ripper PRO 3955WX), two NVIDIA GeForce RTX
3090s with NVLink, and 256GB RAM.

B.3.1 MOJI

For all baseline models, we follow the method
of Han et al. (2021b). Specifically, we train the
STANDARD model for 100 epochs with the Adam
optimizer (Kingma and Ba, 2015), learning rate
of 3 × 10−5, and batch size of 1024. For ADV,
the main model is jointly trained together with ad-
versaries which are implemented as 3-layer MLP,
and the weight of adversarial loss is 0.8. For each
iteration (epoch) of the main model, an adversary
is trained for 60 epochs, keeping the checkpoint
model that performs best on the dev set. Three
sub-adversaries are employed by the DADV, with
the difference losss weight of 103.7. For INLP,
logistic regression models are used for both iden-
tifying null-space to the demographic information
at each iteration, and making the final predictions
given debiased hidden representations. Since the
number of iterations in INLP is highly affected by
the random seed at each run, we re-select it at each
iteration.

As for our models, the DS model is trained with
the learning rate of 10−5 and batch size of 512; the
RW is trained with the learning rate of 10−4 and
batch size of 1024; and the GATE is trained with
the the set of hyperparameters to the base model.

B.3.2 BIOS

Models are trained with similar hyperparameters as
models on the MOJI dataset. We thus only report
main differences for each of them: the STANDARD

model is trained with the batch size of 512 and
learning rate of 3 × 103; DS models are trained
with the batch size of 128 and learning rate of 10−3,
and RW models are trained with the batch of 256
and learning rate of 3× 10−5.

We train the ADV model with the adversarial
loss weight of 10−2.3, learning rare for adversarial
training of 10−1, learning rate of 10−3, and batch
size of 128. The DADV is trained with same setting
as the ADV, excepting the difference loss weight of
102. For details of the assignment of other hyper-
parameters and hyperparameter searching space,
refer to Supplementary Materials.

C The calculation of DTO

For ease of comparison between approaches, we
introduce ‘distance to the optimum’ (DTO), a sin-
gle metric to incorporate accuracy and GAP into a
single figure of merit, which is calculated by: (1)
converting GAP to 1− GAP (denoted as fairness;
higher is better); (2) normalizing each of accuracy
and fairness, by dividing by the best result for the
given dataset (i.e., highest accuracy and fairness);
and (3) calculating the Euclidean distance to the
point (1, 1), which represents the hypothetical sys-
tem which achieves highest accuracy and fairness
for the dataset. Lower is better for this statistic,
with minimum 0.

We calculate DTO based on all results shown
in Table 7. Taking the DAdv model on the Moji
dataset for example, the trade-off is calculated as
follows:

1. Find the best accuracy and fairness (1-GAP)
separately; i.e., 74.9 (GATE + RW) and 92.9
(GATE soft

RMS), resp.

2. Normalize the accuracy and fairness metric
of DADV, resulting in 0.995 = 74.5

74.9 and
0.877 = 81.5

92.9 .

3. Calculate the Euclidean distance between
(1, 1) and (0.995, 0.877), giving 0.123.

D Training time estimation

Given that the training time is affected by factors
such as batch size, hidden size, and learning rate, to
perform a fair comparison between different mod-
els, we estimate the training time of a model based
on hyperparameter tuning results, over a shared
search space of base hyperparameters (i.e., the hy-
perparameters related to the standard model), with
any other approach-specific hyperparameters fixed.
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Best assignment

Hyperparameter Search space STANDARD ADV DADV DS RW DADV + DS DADV + RW

number of epochs - 100

patience - 10

encoder - DeepMoji (Felbo et al., 2017)

embedding size - 2304

hidden size - 300

number of hidden layers choice-integer[1, 3] 2

batch size loguniform-integer[64, 2048] 1024 1024 1024 512 1024 512 1024

output dropout uniform-float[0, 0.5] 0.4 0.4 0.4 0.5 0.5 0.2 0.1

optimizer - Adam (Kingma and Ba, 2015)

learning rate loguniform-float[10−6, 10−1] 3× 10−5 3× 10−5 3× 10−5 10−5 10−4 3× 10−5 3× 10−4

learning rate scheduler - reduce on plateau

LRS patience - 2 epochs

LRS reduction factor - 0.5

ADV loss weight loguniform-float[10−4, 102] - 10−0.1 10−0.1 - - 100.2 100.0

ADV hidden size loguniform-integer[64, 1024] - 256 256 - - 256 256

number of adversaries choice-integer[1, 8] - 1 3 - - 3 3

DADV loss weight loguniform-float[10−5, 105] - - 103.7 - - 102 102.6

Table 5: Search space and best assignments on the MOJI dataset

Best assignment

Hyperparameter Search space STANDARD ADV DADV DS RW DADV + DS DADV + RW

number of epochs - 100

patience - 10

encoder - uncased BERT-base (Devlin et al., 2019)

embedding size - 768

embedding type choice{‘CLS’, ‘AVG’} ‘AVG’

hidden size - 300

number of hidden layers choice-integer[1, 3] 2

batch size loguniform-integer[64, 2048] 512 128 128 128 256 256 512

output dropout uniform-float[0, 0.5] 0.5 0.3 0.2 0.3 0.5 0.2 0.4

optimizer - Adam (Kingma and Ba, 2015)

learning rate loguniform-float[10−6, 10−1] 3× 10−3 10−3 10−3 10−3 3× 10−5 3× 10−3 3× 10−4

learning rate scheduler - reduce on plateau

LRS patience - 2 epochs

LRS reduction factor - 0.5

ADV loss weight loguniform-float[10−8, 102] - 10−2.3 10−2.3 - - 10−2.8 10−5

ADV hidden size loguniform-integer[64, 1024] - 256 256 - - 256 256

number of adversaries choice-integer[1, 8] - 1 3 - - 3 3

DADV loss weight loguniform-float[10−5, 105] - - 102 - - 103 103.3

Table 6: Search space and best assignments on the BIOS dataset

E Mapping of previous objectives

As for the jointly balance, Lahoti et al. (2020)
state that “In addition to vanilla inverse probability
weighting (IPW), we also report results for an IPW
variant with inverse probabilities computed jointly
over protected-features and class-label reported as

IPW(S+Y)”. It clearly shows that instance from
group g with class y is weighted by 1

ny,g
. Adding

this weight to the unweighted loss function leads to∑
y

∑
g
ny,g

n
1

ny,g
Ly,g, which exactly the objective

that is shown in our paper.
In terms of the conditionally balance, in the sec-

tion ‘Alternative Data Splits’ of Wang et al. (2019),
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MOJI BIOS

Method Model Accuracy↑ GAP ↓ DTO ↓ Time↓ Accuracy↑ GAP ↓ DTO ↓ Time↓

Baselines

STANDARD 71.6± 0.1 31.0± 0.3 0.261 1.0 82.3± 0.0 16.0± 0.5 0.110 1.0
INLP 68.5± 1.1 33.8± 3.9 0.300 14.0 70.5± 0.5 6.7± 0.9 0.145 6.3
ADV 74.3± 0.4 22.2± 3.7 0.163 36.1 81.1± 0.1 12.7± 0.3 0.077 1.3
DADV 74.5± 0.3 18.5± 2.0 0.123 109.4 81.1± 0.1 12.6± 0.3 0.076 2.4

Balance
DS 71.9± 0.1 23.2± 0.2 0.178 0.5 79.4± 0.1 9.7± 0.6 0.057 0.3
RW 74.0± 0.2 21.5± 0.4 0.155 1.0 74.7± 0.3 7.4± 0.3 0.095 1.0

Gate
GATE 64.8± 0.1 65.2± 0.9 0.640 1.0 82.4± 0.1 19.2± 0.3 0.144 1.0
GATE + DS 72.5± 0.0 16.3± 0.7 0.104 0.6 79.4± 0.1 9.2± 0.2 0.053 0.3
GATE + RW 74.9± 0.2 13.8± 0.3 0.072 1.1 74.9± 0.2 7.1± 0.2 0.092 1.0

Bayesian
GATE soft

0.5 72.7± 0.2 30.2± 0.3 0.250 1.0 80.8± 0.1 11.6± 0.3 0.066 1.0

GATE soft
Acc 74.8± 0.2 20.3± 0.3 0.142 1.0 81.1± 0.1 19.8± 0.4 0.151 1.0

GATE soft
RMS 73.5± 0.2 7.1± 0.3 0.019 1.0 80.5± 0.1 11.1± 0.3 0.063 1.0

Combination

DADV + DS 72.2± 0.2 14.3± 0.2 0.085 72.1 79.3± 0.1 9.9± 0.2 0.059 2.3
INLP + DS 72.1± 1.6 18.4± 3.1 0.127 6.3 73.2± 0.6 5.9± 0.8 0.112 1.3
DADV + RW 74.6± 0.1 18.9± 0.3 0.127 108.2 74.1± 0.2 7.2± 0.4 0.102 3.0
INLP + RW 72.3± 1.9 15.7± 3.1 0.099 13.9 73.6± 0.6 5.6± 0.7 0.107 6.3

Table 7: Results over the sentiment analysis (MOJI) and biography classification (BIOS) tasks. Trade-offs are
measured by the normalized Euclidean distance between each model and the ideal model, and lower is better. Bold
= best trade-off within category. Training time is reported relative to STANDARD, which takes 35 secs and 16 mins
for MOJI and BIOS, respectively.

they obtain the dataset by resampling such that the
number of occurrences of men with label y and of
women with label y is close, i.e., the size of dif-
ferent demographic groups are almost identical for
each class-label. This is equivalent to assign equal
weights to difference demographic groups within
each class-label, i.e.,

∑
y

∑
g
ny,g

n
ny,∗
ny,g
Ly,g.

Finally, for the balanced demographics, Zhao
et al. (2018) balance the distribution of demo-
graphic groups which reweights instance of a demo-
graphic group inversely to its proportion, leading
a weight n

n∗,g
. As a result, the final objective is∑

y

∑
g
ny,g

n
n

n∗,g
Ly,g.

F Further extensions

F.1 Combining balanced training with
benchmark methods

The baseline methods INLP and DADV as
presented above were used in a manner consistent
with their original formulation, i.e., without bal-
anced training. An important question is whether
balanced training might also benefit these methods.
It is trivial to combine downsampling with INLP
and DADV, as the method simply prunes the
training dataset, but does not impact the training
objective. To combine instance reweighting with
DADV, we modify the training objective such that
the cross-entropy term is scaled by p̃−1, while

leaving the adversarial term unmodified, i.e., solve
for minM maxA

∑
(xi,yi,gi)∈D p̃

−1X (yi, ŷi) −
λadvX (g, ĝ). For INLP, we simply train a BTEO
model, and then iteratively perform INLP linear
model training and nullspace projection over the
learned representations.

Results are presented in the final section of Ta-
ble 7 (“Combination”), and indicate that the com-
bined methods appreciably outperform both the
standalone demographic removal methods and bal-
anced training approaches, without extra training
time cost. That is, demographic information re-
moval and balanced training appear to be comple-
mentary.
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