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Abstract

We adapt Lee et al.’s (2018) span-based entity
coreference model to the task of end-to-end
discourse deixis resolution in dialogue, specif-
ically by proposing extensions to their model
that exploit task-specific characteristics. The
resulting model, dd-utt, achieves state-of-
the-art results on the four datasets in the CODI-
CRAC 2021 shared task.

1 Introduction

Discourse deixis (DD) resolution, also known as ab-
stract anaphora resolution, is an under-investigated
task that involves resolving a deictic anaphor to its
antecedent. A deixis is a reference to a discourse
entity such as a proposition, a description, an event,
or a speech act (Webber, 1991). DD resolution
is arguably more challenging than the extensively-
investigated entity coreference resolution task. Re-
call that in entity coreference, the goal is to cluster
the entity mentions in narrative text or dialogue,
which are composed of pronouns, names, and nom-
inals, so that the mentions in each cluster refer to
the same real-world entity. Lexical overlap is a
strong indicator of entity coreference, both among
names (e.g., “President Biden”, “Joe Biden”) and in
the resolution of nominals (e.g., linking “the presi-
dent” to “President Biden”). DD resolution, on the
other hand, can be viewed as a generalized case of
event coreference involving the clustering of deictic
anaphors, which can be pronouns or nominals, and
clauses, such that the mentions in each cluster re-
fer to the same real-world proposition/event/speech
act, etc. The first example in Figure 1 is an exam-
ple of DD resolution in which the deictic anaphor
“the move” refers to Salomon’s act of issuing war-
rants on shares described in the preceding sentence.
DD resolution is potentially more challenging than
entity coreference resolution because (1) DD res-
olution involves understanding clause semantics
since antecedents are clauses, and clause semantics

Salomon Brothers International Ltd. announced it will is-
sue warrants on shares of Hong Kong Telecommunications
Ltd. The move closely follows a similar offer by Salomon of
warrants for shares of Hongkong & Shanghai Banking Corp.

A: Would you donate to Save the Children?
B: Yes, I will do $10 to both.
B: I am of a tight budget, but I do make room for good causes.
A: Thank you very much.
A: The children will appreciate it.

Figure 1: Examples of discourse deixis resolution. In
each example, the deictic anaphor is italicized and the
antecedent is boldfaced.

are arguably harder to encode than noun phrase
semantics; and (2) string matching plays little role
in DD resolution, unlike in entity coreference.

In this paper, we focus on end-to-end DD res-
olution in dialogue. The second example in Fig-
ure 1 shows a dialogue between A and B in which
the deictic anaphor “it” refers to the utterance
by B in which s/he said s/he would donate $10.
While the deictic anaphors in dialogue are also
composed of pronouns and nominals, the propor-
tion of pronominal deictic anaphors in dialogue
is much higher than that in narrative text. For
instance, while 76% of the deictic anaphors in
two text corpora (ARRAU RST and GNOME) are
pronominal, the corresponding percentage rises to
93% when estimated based on seven dialogue cor-
pora (TRAINS91, TRAINS93, PEAR, and the four
CODI-CRAC 2021 development sets). In fact, the
three pronouns “that”, “this”, and “it” alone com-
prise 89% of the deictic anaphors in these dialogue
corpora. The higher proportion of pronominal de-
ictic anaphors potentially makes DD resolution in
dialogue more challenging than those in text: since
a pronoun is semantically empty, the successful
resolution of a pronominal deictic anaphor depends
entirely on proper understanding of its context. In
addition, it also makes DD recognition more chal-
lenging in dialogue. For instance, while the head of
a non-pronominal phrase can often be exploited to
determine whether it is a deictic anaphor (e.g., “the
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man” cannot be a deictic anaphor, but “the move”
can), such cues are absent in pronouns.

Since DD resolution can be cast as a general-
ized case of event coreference, a natural question
is: how successful would a state-of-the-art entity
coreference model be when applied to DD reso-
lution? Recently, Kobayashi et al. (2021) have
applied Xu and Choi’s (2020) re-implementation
of Lee et al.’s span-based entity coreference model
to resolve the deictic anaphors in the DD track of
the CODI-CRAC 2021 shared task after augment-
ing it with a type prediction model (see Section 4).
Not only did they achieve the highest score on
each dataset, but they beat the second-best system
(Anikina et al., 2021), which is a non-span-based
neural approach combined with hand-crafted rules,
by a large margin. These results suggest that a span-
based approach to DD resolution holds promise.

Our contributions in this paper are three-fold.
First, we investigate whether task-specific obser-
vations can be exploited to extend a span-based
model originally developed for entity coreference
to improve its performance for end-to-end DD res-
olution in dialogue. Second, our extensions are
effective in improving model performance, allow-
ing our model to achieve state-of-the-art results
on the CODI-CRAC 2021 shared task datasets.
Finally, we present an empirical analysis of our
model, which, to our knowledge, is the first analy-
sis of a state-of-the-art span-based DD resolver.

2 Related Work

Broadly, existing approaches to DD resolution can
be divided into three categories, as described below.
Rule-based approaches. Early systems that re-
solve deictic expressions are rule-based (Eckert
and Strube, 2000; Byron, 2002; Navarretta, 2000).
Specifically, they use predefined rules to extract
anaphoric mentions, and select antecedent for each
extracted anaphor based on the dialogue act types
of each candidate antecedent.
Non-neural learning-based approaches. Early
non-neural learning-based approaches to DD reso-
lution use hand-crafted feature vectors to represent
mentions (Strube and Müller, 2003; Müller, 2008).
A classifier is then trained to determine whether a
pair of mentions is a valid antecedent-anaphor pair.
Deep learning-based approaches. Deep learn-
ing has been applied to DD resolution. For in-
stance, Marasović et al. (2017) and Anikina et al.
(2021) use a Siamese neural network, which takes

as input the embeddings of two sentences, one con-
taining a deictic anaphor and the other a candidate
antecedent, to score each candidate antecedent and
subsequently rank the candidate antecedents based
on these scores. In addition, motivated by the re-
cent successes of Transformer-based approaches
to entity coreference (e.g., Kantor and Globerson
(2019)), Kobayashi et al. (2021) have recently pro-
posed a Transformer-based approach to DD res-
olution, which is an end-to-end coreference sys-
tem based on SpanBERT (Joshi et al., 2019, 2020).
Their model jointly learns mention extraction and
DD resolution and has achieved state-of-the-art re-
sults in the CODI-CRAC 2021 shared task.

3 Corpora

We use the DD-annotated corpora provided as part
of the CODI-CRAC 2021 shared task. For train-
ing, we use the official training corpus from the
shared task (Khosla et al., 2021), ARRAU (Poesio
and Artstein, 2008), which consists of three con-
versational sub-corpora (TRAINS-93, TRAINS-
91, PEAR) and two non-dialogue sub-corpora
(GNOME, RST). For validation and evaluation, we
use the official development sets and test sets from
the shared task. The shared task corpus is com-
posed of four well-known conversational datasets:
AMI (McCowan et al., 2005), LIGHT (Urbanek
et al., 2019), Persuasion (Wang et al., 2019), and
Switchboard (Godfrey et al., 1992). Statistics on
these corpora are provided in Table 1.

4 Baseline Systems

We employ three baseline systems.
The first baseline, coref-hoi, is Xu and

Choi’s (2020) re-implementation of Lee et
al.’s (2018) widely-used end-to-end entity coref-
erence model. The model ranks all text spans of
up to a predefined length based on how likely they
correspond to entity mentions. For each top-ranked
span x, the model learns a distribution P (y) over
its antecedents y ∈ Y(x), where Y(x) includes a
dummy antecedent ϵ and every preceding span:

P (y) =
es(x,y)∑

y′∈Y(x) e
s(x,y′)

where s(x, y) is a pairwise score that incorporates
two types of scores: (1) sm(·), which indicates
how likely a span is a mention, and (2) sc(·) and
sa(·), which indicate how likely two spans refer
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Total Total Total Avg. Avg. #toks Avg. Avg. Avg. Avg. #speakers
#docs #sents #turns #sents per sent #turns #ana #ante per doc

ARRAU train 552 22406 - 40.6 15.5 - 2.9 4.8 -

LIGHT dev 20 908 280 45.4 12.7 14.0 3.1 4.2 2.0
test 21 923 294 44.0 12.8 14.0 3.8 4.6 2.0

AMI dev 7 4139 2828 591.3 8.2 404.0 32.9 42.0 4.0
test 3 1967 1463 655.7 9.3 487.7 39.3 47.3 4.0

Pers. dev 21 812 431 38.7 11.3 20.5 4.5 4.5 2.0
test 28 1139 569 40.7 11.1 20.3 4.4 4.8 2.0

Swbd. dev 11 1342 715 122.0 11.2 65.0 11.5 15.9 2.0
test 22 3652 1996 166.0 9.6 90.7 12.0 14.7 2.0

Table 1: Statistics on the datasets.

to the same entity1 (sa(x, ϵ) = 0 for dummy an-
tecedents):

s(x, y) = sm(x) + sm(y) + sc(x, y) + sa(x, y) (1)
sm(x) = FFNNm(gx) (2)

sc(x, y) = g⊤x Wcgy (3)
sa(x, y) = FFNNc(gx, gy, gx ◦ gy, ϕ(x, y)) (4)

where gx and gy are the vector representations of
x and y, Wc is a learned weight matrix for bilinear
scoring, FFNN(·) is a feedforward neural network,
and ϕ(·) encodes features. Two features are used,
one encoding speaker information and the other the
segment distance between two spans.

The second baseline, UTD_NLP2, is the top-
performing system in the DD track of the CODI-
CRAC 2021 shared task (Kobayashi et al., 2021).
It extends coref-hoi with a set of modifications.
Two of the most important modifications are: (1)
the addition of a sentence distance feature to ϕ(·),
and (2) the incorporation into coref-hoi a type
prediction model, which predicts the type of a span.
The possible types of a span i are: ANTECEDENT

(if i corresponds to an antecedent), ANAPHOR (if i
corresponds to an anaphor), and NULL (if it is nei-
ther an antecedent nor an anaphor). The types pre-
dicted by the model are then used by coref-hoi
as follows: only spans predicted as ANAPHOR can
be resolved, and they can only be resolved to spans
predicted as ANTECEDENT. Details of how the
type prediction model is trained can be found in
Kobayashi et al. (2021).

The third baseline, coref-hoi-utt, is essen-
tially the first baseline except that we restrict the
candidate antecedents to be utterances. This re-
striction is motivated by the observation that the

1See Lee et al. (2018) for a description of the differences
between sc(·) and sa(·),

2For an analysis of this and other resolvers competing in
the CODI-CRAC 2021 shared task, see Li et al. (2021).

antecedents of the deictic anaphors in the CODI-
CRAC 2021 datasets are all utterances. To see what
an utterance is, consider again the second exam-
ple in Figure 1. Each line in this dialogue is an
utterance. As can be seen, an utterance roughly
corresponds to a sentence, although it can also
be a text fragment or simply an interjection (e.g.,
“uhhh”). While by definition the antecedent of a
deictic anaphor can be any clause, the human an-
notators of the DD track of the CODI-CRAC 2021
shared task decided to restrict the unit of annota-
tion to utterances because (1) based on previous
experience it was difficult to achieve high inter-
annotator agreement when clauses are used as the
annotation unit (Poesio and Artstein, 2008); and
(2) unlike the sentences in narrative text, which
can be composed of multiple clauses and therefore
can be long, the utterances in these datasets are
relatively short and can reliably be used as annota-
tion units. From a modeling perspective, restricting
candidate antecedents also has advantages. First,
it substantially reduces the number of candidate
antecedents and therefore memory usage, allowing
our full model to fit into memory. Second, it allows
us to focus on resolution rather than recognition
of deictic anaphors, as the recognition of clausal
antecedents remains a challenging task, especially
since existing datasets for DD resolution are rela-
tively small compared to those available for entity
coreference (e.g., OntoNotes (Hovy et al., 2006)).

5 Model

Next, we describe our resolver, dd-utt, which
augments coref-hoi-utt with 10 extensions.

E1. Modeling recency. Unlike in entity coref-
erence, where two coreferent names (e.g., “Joe
Biden”, “President Biden”) can be far apart from
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each other in the corresponding document (because
names are non-anaphoric), the distance between
a deictic anaphor and its antecedent is compara-
tively smaller. To model recency, we restrict the set
of candidate antecedents of an anaphor to be the
utterance containing the anaphor as well as the pre-
ceding 10 utterances, the choice of which is based
on our observation of the development data, where
the 10 closest utterances already cover 96–99% of
the antecedent-anaphor pairs.

E2. Modeling distance. While the previous ex-
tension allows us to restrict our attention to candi-
date antecedents that are close to the anaphor, it
does not model the fact that the likelihood of being
the correct antecedent tends to increase as its dis-
tance from the anaphor decreases. To model this re-
lationship, we subtract the term γ1Dist(x, y) from
s(x, y) (see Equation (1)), where Dist(x, y) is the
utterance distance between anaphor x and candi-
date antecedent y and γ1 is a tunable parameter that
controls the importance of utterance distance in the
resolution process. Since s(x, y) is used to rank
candidate antecedents, modeling utterance distance
by updating s(x, y) will allow distance to have a
direct impact on DD resolution.

E3. Modeling candidate antecedent length.
Some utterances are pragmatic in nature and do not
convey any important information. Therefore, they
cannot serve as antecedents of deictic anaphors. Ex-
amples include “Umm”, “Ahhhh... okay”, “that’s
right”, and “I agree”. Ideally, the model can iden-
tify such utterances and prevent them from be-
ing selected as antecedents. We hypothesize that
we could help the model by modeling such utter-
ances. To do so, we observe that such utterances
tend to be short and model them by penalizing
shorter utterances. Specifically, we subtract the
term γ2

1
Length(y) from s(x, y), where Length(y)

is the number of words in candidate antecedent
y and γ2 is a tunable parameter that controls the
importance of candidate antecedent length in reso-
lution.

E4. Extracting candidate anaphors. As men-
tioned before, the deictic anaphors in dialogue are
largely composed of pronouns. Specifically, in
our development sets, the three pronouns “that”,
“this”, and ‘it’ alone account for 74–88% of the
anaphors. Consequently, we extract candidate deic-
tic anaphors as follows: instead of allowing each
span of length n or less to be a candidate anaphor,
we only allow a span to be a candidate anaphor if

its underlying word/phrase has appeared at least
once in the training set as a deictic anaphor.
E5. Predicting anaphors. Now that we have
the candidate anaphors, our next extension in-
volves predicting which of them are indeed deictic
anaphors. To do so, we retrain the type prediction
model in UTD_NLP, which is a FFNN that takes
as input the (contextualized) span representation gi
of candidate anaphor i and outputs a vector oti of
dimension 2 in which the first element denotes the
likelihood that i is a deictic anaphor and the second
element denotes the likelihood that i is not a deictic
anaphor. i is predicted as a deictic anaphor if and
only if the value of the first element of oti is bigger
than its second value:

oti = FFNN(gi)

ti = argmax
x∈{A,NA}

oti(x)

where A (ANAPHOR) and NA (NON-ANAPHOR)
are the two possible types. Following UTD_NLP,
this type prediction model is jointly trained with
the resolution model. Specifically, we compute the
cross-entropy loss using oti, multiply it by a type
loss coefficient λ, and add it to the loss function of
coref-hoi-utt. λ is a tunable parameter that
controls the importance of type prediction relative
to DD resolution.
E6. Modeling the relationship between anaphor
recognition and resolution. In principle, the
model should resolve a candidate anaphor to a non-
dummy candidate antecedent if it is predicted to
be a deictic anaphor by the type prediction model.
However, type prediction is not perfect, and enforc-
ing this consistency constraint, which we will refer
to as C1, will allow errors in type prediction to
be propagated to DD resolution. For example, if
a non-deictic anaphor is misclassified by the type
prediction model, then it will be (incorrectly) re-
solved to a non-dummy antecedent. To alleviate
error propagation, we instead enforce C1 in a soft
manner. To do so, we define a penalty function p1,
which imposes a penalty on span i if C1 is violated
(i.e., a deictic anaphor is resolved to the dummy
antecedent), as shown below:

p1(i) =




0 argmax

yis∈Y
ti = NA

oti(A)− oti(NA) otherwise

Intuitively, p1 estimates the minimum amount to
be adjusted so that span i’s type is not ANAPHOR.
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We incorporate p1 into the model as a penalty
term in s (Equation (1)). Specifically, we redefine
s(i, j) when j = ϵ, as shown below:

s(i, ϵ) = s(i, ϵ)− [γ3p1(i)]

where γ3 is a positive constant that controls the
hardness of C1. The smaller γ3 is, the softer C1 is.
Intuitively, if C1 is violated, s(i, ϵ) will be lowered
by the penalty term, and the dummy antecedent
will less likely be selected as the antecedent of i.
E7. Modeling the relationship between non-
anaphor recognition and resolution. Another
consistency constraint that should be enforced is
that the model should resolve a candidate anaphor
to the dummy antecedent if it is predicted as a non-
deictic anaphor by the type prediction model. As
in Extension E6, we will enforce this constraint,
which we will refer to as C2, in a soft manner by
defining a penalty function p2, as shown below:

p2(i) =




oti(NA)− oti(A) argmax

yis∈Y
ti = NA

0 otherwise

Then we redefine s(i, j) when j ̸= ϵ as follows:

s(i, j) = s(i, j)− [γ4p1(i)]

where γ4 is a positive constant that controls the
hardness of C2. Intuitively, if C2 is violated, s(i, j)
will be lowered by the penalty term, and j will less
likely be selected as the antecedent of i.
E8. Encoding candidate anaphor context. Ex-
amining Equation (1), we see that s(x, y) is com-
puted based on the span representations of x and
y. While these span representations are contextu-
alized, the contextual information they encode is
arguably limited. As noted before, most of the de-
ictic anaphors in dialogue are pronouns, which are
semantically empty. As a result, we hypothesize
that we could improve the resolution of these deic-
tic anaphors if we explicitly modeled their contexts.
Specifically, we represent the context of a candi-
date anaphor using the embedding of the utterance
in which it appears and add the resulting embed-
ding as features to both the bilinear score sc(x, y)
and the concatenation-based score sa(x, y):

sc(x, y) = g⊤x Wcgy + g⊤s Wsgy

sa(x, y) = FFNNc(gx, gy, gx ◦ gy, gs, ϕ(x, y))
where Wc and Ws are learned weight matrices,
gs is the embedding of the utterance s in which
candidate anaphor x appears, and ϕ(x, y) encodes
the relationship between x and y as features.

Filling words
yeah, okay, ok, uh, right, so, hmm, well, um, oh, mm, yep,
hi, ah, whoops, alright, shhhh, yes, ay, hello, aww, alas,
ye, aye, uh-huh, huh, wow, www, no, and, but, again, won-
derful, exactly, absolutely, actually, sure thanks, awesome,
gosh, ooops

Reporting verbs
command, mention, demand, request, reveal, believe, guar-
antee, guess, insist, complain, doubt, estimate, warn, learn,
realise, persuade, propose, announce, advise, imagine,
boast, suggest, remember, claim, describe, see, understand,
discover, answer, wonder, recommend, beg, prefer, sup-
pose, comment, think, argue, consider, swear, ask, agree,
explain, report, know, tell, decide, discuss, repeat, invite,
reply, expect, forget, add, fear, hope, say, feel, observe,
remark, confirm, threaten, teach, forbid, admit, promise,
deny, state, mean, instruct

Table 2: Lists of filtered words.

E9. Encoding the relationship between candi-
date anaphors and antecedents. As noted in
Extension E8, ϕ(x, y) encodes the relationship
between candidate anaphor x and candidate an-
tecedent y. In UTD_NLP, ϕ(x, y) is composed
of three features, including two features from
coref-hoi-utt (i.e., the speaker id and the seg-
ment distance between x and y) and one feature that
encodes the utterance distance between them. Sim-
ilar to the previous extension, we hypothesize that
we could better encode the relationship between x
and y using additional features. Specifically, we
incorporate an additional feature into ϕ(x, y) that
encodes the utterance distance between x and y.
Unlike the one used in UTD_NLP, this feature aims
to more accurately capture proximity by ignoring
unimportant sentences (i.e., those that contain only
interjections, filling words, reporting verbs, and
punctuation) when computing utterance distance.
The complete list of filling words and reporting
verbs that we filter can be found in Table 2.

E10. Encoding candidate antecedents. In
coref-hoi-utt, a candidate antecedent is sim-
ply encoded using its span representation. We hy-
pothesize that we could better encode a candidate
antecedent using additional features. Specifically,
we employ seven features to encode a candidate
antecedent y and incorporate them into ϕ(x, y): (1)
the number of words in y; (2) the number of nouns
in y; (3) the number of verbs in y; (4) the number
of adjectives in y; (5) the number of content word
overlaps between y and the portion of the utterance
containing the anaphor that precedes the anaphor;
(6) whether y is the longest among the candidate an-
tecedents; and (7) whether y has the largest number
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of content word overlap (as computed in Feature
5) among the candidate antecedents. Like Exten-
sion E3, some features implicitly encode the length
of a candidate antecedent. Despite this redundancy,
we believe the redundant information could be ex-
ploited by the model differently and may therefore
have varying degrees of impact on it.

6 Evaluation

6.1 Experimental Setup

Evaluation metrics. We obtain the results of DD
resolution using the Universal Anaphora Scorer (Yu
et al., 2022b). Since DD resolution is viewed as a
generalized case of event coreference, the scorer re-
ports performance in terms of CoNLL score, which
is the unweighted average of the F-scores of three
coreference scoring metrics, namely MUC (Vilain
et al., 1995), B3 (Bagga and Baldwin, 1998), and
CEAFe (Luo, 2005). In addition, we report the
results of deictic anaphor recognition. We express
recognition results in terms of Precision (P), Recall
(R) and F-score, considering an anaphor correctly
recognized if it has an exact match with a gold
anaphor in terms of boundary.

Model training and parameter tuning. For
coref-hoi and coref-hoi-utt, we use
SpanBERTLarge as the encoder and reuse the hy-
perparameters from Xu and Choi (2020) with
the only exception of the maximum span width:
for coref-hoi, we increase the maximum
span width from 30 to 45 in order to cover
more than 97% of the antecedent spans; for
coref-hoi-utt we use 15 as the maximum
span width, which covers more than 99% of the
anaphor spans in the training sets. For UTD_NLP,
we simply take the outputs produced by the model
on the test sets and report the results obtained by
running the scorer on the outputs.3 For dd-utt,
we use SpanBERTLarge as the encoder. Since we do
not rely on span enumerate to generate candidate
spans, the maximum span width can be set to any
arbitrary number that is large enough to cover all
candidate antecedents and anaphors. In our case,
we use 300 as our maximum span width. We tune
the parameters (i.e., λ, γ1, γ2, γ3, γ4) using grid
search to maximize CoNLL score on development
data. For the type loss coefficient, we search out

3Since the shared task participants were allowed to submit
their system outputs multiple times to the server to obtain
results on the test sets, UTD_NLP’s results could be viewed as
results obtained by tuning parameters on the test sets.

of {0.2, 0.5, 1, 200, 500, 800, 1200, 1600}, and
for γ, we search out of {1, 5, 10}. We reuse other
hyperparameters from Xu and Choi (2020).

All models are trained for 30 epochs with a
dropout rate of 0.3 and early stopping. We use
1× 10−5 as our BERT learning rate and 3× 10−4

as our task learning rate. Each experiment is run
using a random seed of 11 and takes less than three
hours to train on an NVIDIA RTX A6000 48GB.

Train-dev partition. Since we have four test
sets, we use ARRAU and all dev sets other than
the one to be evaluated on for model training and
the remaining dev set for parameter tuning. For
example, when evaluating on AMItest, we train
models on ARRAU, LIGHTdev, Persuasiondev and
Switchboarddev and use AMIdev for tuning.

6.2 Results

Recall that our goal is to perform end-to-end DD
resolution, which corresponds to the Predicted eval-
uation setting in the CODI-CRAC shared task.

Overall performance. Recognition results (ex-
pressed in F-score) and resolution results (ex-
pressed in CoNLL score) of the three baselines
and our model on the four test sets are shown in
Table 3, where the Avg. columns report the macro-
averages of the corresponding results on the four
test sets, and the parameter settings that enable our
model to achieve the highest CoNLL scores on
the development sets are shown in Table 4. Since
coref-hoi and coref-hoi-utt do not ex-
plicitly identify deictic anaphors, we assume that
all but the first mentions in each output cluster are
anaphors when computing recognition precision;
and while UTD_NLP (the top-performing system
in the shared task) does recognize anaphors, we
still make the same assumption when computing
its recognition precision since the anaphors are not
explicitly marked in the output (recall that we com-
puted results of UTD_NLP based on its outputs).

We test the statistical significance among the
four models using two-tailed Approximate Ran-
domization (Noreen, 1989). For recognition, the
models are statistically indistinguishable from each
other w.r.t. their Avg. score (p < 0.05). For reso-
lution, dd-utt is highly significantly better than
the baselines w.r.t. Avg. (p < 0.001), while the
three baselines are statistically indistinguishable
from each other. These results suggest that (1)
dd-utt’s superior resolution performance stems
from better antecedent selection, not better anaphor
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Resolution Recognition
LIGHT AMI Pers. Swbd. Avg. LIGHT AMI Pers. Swbd. Avg.

UTD_NLP 42.7 35.4 39.6 35.4 38.3 70.1 61.0 69.9 68.1 67.3
coref-hoi 42.7 30.7 49.7 35.4 39.6 70.9 49.3 67.8 61.9 62.5
coref-hoi-utt 42.3 35.0 53.3 34.1 41.2 70.3 52.4 71.0 60.6 63.6
dd-utt 48.2 43.5 54.9 47.2 48.5 71.3 56.9 71.4 65.2 66.2

Table 3: Resolution and recognition results on the four test sets.

LIGHT AMI Pers. Swbd.

Type loss coefficient λ 800 800 800 800
γ1 1 1 1 1
γ2 1 1 1 1
γ3 5 10 10 5
γ4 5 5 5 5

Table 4: Parameter values enabling dd-utt to achieve
the best CoNLL score on each development set.

recognition; and (2) the restriction of candidate an-
tecedents to utterances in coref-hoi-utt does
not enable the resolver to yield significantly better
resolution results than coref-hoi.
Per-anaphor results. Next, we show the recog-
nition and resolution results of the four models on
the most frequently occurring deictic anaphors in
Table 5 after micro-averaging them over the four
test sets. Not surprisingly, “that” is the most fre-
quent deictic anaphor on the test sets, appearing as
an anaphor 402 times on the test sets and contribut-
ing to 68.8% of the anaphors. This is followed by
“it” (16.3%) and “this” (4.3%). Only 8.9% of the
anaphors are not among the top four anaphors.

Consider first the recognition results. As can
be seen, “that” has the highest recognition F-score
among the top anaphors. This is perhaps not sur-
prising given the comparatively larger number of
“that” examples the models are trained on. While
“it” occurs more frequently than “this” as a deictic
anaphor, its recognition performance is lower than
that of “this”. This is not surprising either: “this”,
when used as a pronoun, is more likely to be de-
ictic than “it”, although both of them can serve as
a coreference anaphor and a bridging anaphor. In
other words, it is comparatively more difficult to
determine whether a particular occurrence of “it”
is deictic. Overall, UTD_NLP recognizes more
anaphors than the other models.

Next, consider the resolution results. To obtain
the CoNLL scores for a given anaphor, we retain
all and only those clusters containing the anaphor
in both the gold partition and the system partition
and apply the official scorer to them. Generally, the

more frequently occurring an anaphor is, the better
its resolution performance is. Interestingly, for the
“Others” category, dd-utt achieves the highest
resolution results despite having the lowest recog-
nition performance. In contrast, while UTD_NLP
achieves the best recognition performance on aver-
age, its resolution results are among the worst.

Per-distance results. To better understand how
resolution results vary with the utterance distance
between a deictic anaphor and its antecedent, we
show in Table 6 the number of correct and incor-
rect links predicted by the four models for each
utterance distance on the test sets. For comparison
purposes, we show at the top of the table the distri-
bution of gold links over utterance distances. Note
that a distance of 0 implies that the anaphor refers
to the utterance in which it appears.

A few points deserve mention. First, the distri-
bution of gold links is consistent with our intuition:
a deictic anaphor most likely has the immediately
preceding utterance (i.e., distance = 1) as its ref-
erent. In addition, the number of links drops as
distance increases, and more than 90% of the an-
tecedents are at most four utterances away from
their anaphors. Second, although UTD_NLP rec-
ognizes more anaphors than the other models, it
is the most conservative w.r.t. link identification,
predicting the smallest number of correct and incor-
rect links for almost all of the utterance distances.
Third, dd-utt is better than the other models at
(1) identifying short-distance anaphoric dependen-
cies, particularly when distance ≤ 1, and (2) posit-
ing fewer erroneous long-distance anaphoric depen-
dencies. These results provide suggestive evidence
of dd-utt’s success at modeling recency and dis-
tance explicitly. Finally, these results suggest that
resolution difficulty increases with distance: except
for UTD_NLP, none of the models can successfully
recognize a link when distance > 5.

Ablation results. To evaluate the contribution of
each extension presented in Section 5 to dd-utt’s
resolution performance, we show in Table 7 ab-
lation results, which we obtain by removing one
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Resolution Recognition
anaphor count UTD_NLP coref-hoi coref-hoi-utt dd-utt UTD_NLP coref-hoi coref-hoi-utt dd-utt

that 402 48.7 49.1 50.4 60.7 79.1 72.7 72.9 76.8
it 95 21.8 27.5 28.5 37.0 36.5 36.4 37.0 35.5

this 25 20.7 25.1 26.9 25.8 51.7 49.2 49.3 56.5
which 10 4.5 8.2 14.9 14.4 33.3 28.6 42.1 35.3
Others 52 33.0 39.6 41.2 48.5 33.8 28.1 40.0 10.3

Table 5: Per-anaphor recognition and resolution results on the test sets.

0 1 2 3 4 5 >5

Distribution of gold links over utterance distances
Gold 90 209 97 46 21 8 19

Distribution of correctly predicted links
UTD_NLP 28 64 23 9 4 2 1
coref-hoi 22 108 42 13 5 3 0
coref-hoi-utt 23 118 49 11 6 2 0
dd-utt 40 142 45 17 5 3 0

Distribution of incorrectly predicted links
UTD_NLP 16 56 31 24 9 6 52
coref-hoi 83 148 55 33 22 13 58
coref-hoi-utt 64 123 66 36 21 10 48
dd-utt 43 131 57 24 6 7 7

Table 6: Distribution of links over the utterance dis-
tances between the anaphor and the antecedents.

extension at a time from dd-utt and retraining it.
For ease of comparison, we show in the first row
of the table the CoNLL scores of dd-utt.

A few points deserve mention. First, when E1
(Modeling recency) is ablated, we use as candi-
date antecedents the 10 highest-scoring candidate
antecedents for each candidate anaphor according
to sc(x, y) (Equation (3)). Second, when one of
E2, E3, E6, and E7 is ablated, we set the corre-
sponding λ to zero. Third, when E4 is ablated,
candidate anaphors are extracted in the same way
as in coref-hoi and coref-hoi-utt, where
the top spans learned by the model will serve as
candidate anaphors. Fourth, when E5 is ablated,
E6 and E7 will also be ablated because the penalty
functions p1 and p2 need to be computed based on
the output of the type prediction model in E5.

We use two-tailed Approximate Randomization
to determine which of these ablated models is statis-
tically different from dd-utt w.r.t. the Avg. score.
Results show that except for the model in which E1
is ablated, all of the ablated models are statistically
indistinguishable from dd-utt (p < 0.05). Note
that these results do not imply that nine of the ex-
tensions fail to contribute positively to dd-utt’s
resolution performance: it only means that none of
them is useful in the presence of other extensions

LIGHT AMI Pers. Swbd. Avg.

dd-utt 48.2 43.5 54.9 47.2 48.5
− E1 47.1 36.4 53.6 46.2 45.8
− E2 47.4 40.0 56.5 48.9 48.2
− E3 45.3 44.6 53.7 49.0 48.1
− E4 46.4 42.8 56.7 45.6 47.9
− E5 43.6 43.9 50.2 47.4 46.3
− E6 46.1 43.1 50.8 47.2 46.8
− E7 48.6 43.6 56.0 49.4 49.4
− E8 43.3 39.4 52.5 50.1 46.3
− E9 44.6 43.2 52.1 47.7 46.9
− E10 47.3 39.3 57.5 49.7 48.5

Table 7: Resolution results of ablated models.

w.r.t. Avg. We speculate that (1) some of these ex-
tensions model overlapping phenomena (e.g., both
E2 and E9 model utterance distance); (2) when the
model is retrained, the learner manages to adjust
the network weights so as to make up for the poten-
tial loss incurred by ablating an extension; and (3)
large fluctuations in performance can be observed
on individual datasets in some of the experiments,
but they may just disappear after averaging. Exper-
iments are needed to determine the reason.

6.3 Error Analysis

Below we analyze the errors made by dd-utt.

DD anaphora recognition precision errors. A
common type of recognition precision errors in-
volves misclassifying a coreference anaphor as a
deictic anaphor. Consider the first example in Fig-
ure 2, in which the pronoun “that” is a coreference
anaphor with “voice recognition” as its antecedent
but is misclassified as a deictic anaphor with the
whole sentence as its antecedent. This type of error
occurs because virtually all of the frequently occur-
ring deictic anaphors, including “that”, “it”, “this”,
and “which”, appear as a coreference anaphor in
some contexts and as a deictic anaphor in other con-
texts, and distinguishing between the two different
uses of these anaphors could be challenging.

DD anaphor recognition recall errors. Con-
sider the second example in Figure 2, in which

11329



A: The design should minimize R_S_I and be easy to locate
and we were still slightly ambivalent as to whether to use
voice recognition there, though that did seem to be the
favored strategy, but there was also, on the sideline, the
thought of maybe having a beeper function.

A: Sounds like a blessed organization.
B: Yes, it does.
A: Did you know they’ve won over 7 different awards for

their charitable work?
A: As a former foster kid, it makes me happy to see this place

bring such awareness to the issues and needs of our young.
B: I am not surprised to hear that at all.

Figure 2: Examples illustrating the three majors types
of errors made by dd-utt.

“it” is a deictic anaphor that refers to the boldfaced
utterance, but dd-utt fails to identify this and
many other occurrences of “it” as deictic, proba-
bly because “it” is more likely to be a coreference
anaphor than a deictic anaphor: in the dev sets, 80%
of the occurrences of “it” are coreference anaphors
while only 5% are deictic anaphors.
DD resolution precision errors. A major source
of DD resolution precision errors can be attributed
to the model’s failure in properly understanding the
context in which a deictic anaphor appears. Con-
sider the third example in Figure 2, in which “that”
is a deictic anaphor that refers to the boldfaced ut-
terance. While dd-utt correctly identifies “that”
as a deictic anaphor, it erroneously posits the itali-
cized utterance as its antecedent. This example is
interesting in that without looking at the boldfaced
utterance, the italicized utterance is a plausible an-
tecedent for “that” because “I am not surprised to
hear that at all” can be used as a response to al-
most every statement. However, when both the
boldfaced utterance and the italicized utterance are
taken into consideration, it is clear that the bold-
faced utterance is the correct antecedent for “that”
because winning over seven awards for some chari-
table work is certainly more surprising than seeing
a place bring awareness to the needs of the young.
Correctly resolving this anaphor, however, requires
modeling the emotional implication of its context.

6.4 Further Analysis
Next, we analyze the deictic anaphors correctly
resolved by dd-utt but erroneously resolved by
the baseline resolvers.

The example shown in Figure 3 is one such
case. In this example, dd-utt successfully ex-
tracts the anaphor “that” and resolves it to the cor-
rect antecedent “Losing one decimal place, that is
okay”. UTD_NLP fails to extract “that” as a deic-

A: You want your rating to be a two?
A: Is that what you’re saying?
B: Yeah, I just got it the other way.
B: Uh in Yep, I just got
A: Okay.
A: So, I’ll work out the average for that again at the end.
A: It’s very slightly altered. Okay, and we’re just waiting for
your rating.
B: two point five
C: Its just two point five for that one.
A: Two point five, okay.
D: Yeah.
A: Losing one decimal place, that is okay.

Figure 3: Example in which the correct antecedent is
identified by dd-utt but not by the baseline resolvers.

tic anaphor. While coref-hoi correctly extracts
the anaphor, it incorrectly selects “You want your
rating to be a two?” as the antecedent. From a
cursory look at this example one could infer that
this candidate antecedent is highly unlikely to be
the correct antecedent since it is 10 utterances away
from the anaphor. As for coref-hoi-utt, the
resolver successfully extracts the anaphor but in-
correctly selects “Its just two point five for that
one” as the antecedent, which, like the antecedent
chosen by coref-hoi, is farther away from the
anaphor than the correct antecedent is. We specu-
late that coref-hoi and coref-hoi-utt fail
to identify the correct antecedent because they do
not explicitly model distance and therefore may not
have an idea about how far a candidate antecedent
is from the anaphor under consideration. The ad-
ditional features that dd-utt has access to, in-
cluding the features that encode sentence distance
as well as those that capture contextual informa-
tion, may have helped dd-utt choose the correct
antecedent, but additional analysis is needed to de-
termine the reason.

7 Conclusion

We presented an end-to-end discourse deixis res-
olution model that augments Lee et al.’s (2018)
span-based entity coreference model with 10 ex-
tensions. The resulting model achieved state-of-
the-art results on the CODI-CRAC 2021 datasets.
We employed a variant of this model in our recent
participation in the discourse deixis track of the
CODI-CRAC 2022 shared task (Yu et al., 2022a)
and achieved the best results (see Li et al. (2022)
for details). To facilitate replicability, we make our
source code publicly available.4

4See our website at https://github.com/
samlee946/EMNLP22-dd-utt for our source code.
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Limitations

Below we discuss several limitations of our work.

Generalization to corpora with clausal an-
tecedents. As mentioned in the introduction, the
general discourse deixis resolution task involves
resolving a deictic anaphor to a clausal antecedent.
The fact that our resolver can only resolve anaphors
to utterances raises the question of whether it can be
applied to resolve deictic anaphors in texts where
antecedents can be clauses. To apply our resolver
to such datasets, all we need to do is to expand
the set of candidate antecedents of an anaphor to
include those clauses that precede it. While cor-
pora annotated with clausal antecedents exist (e.g.,
TRAINS-91 and TRAINS-93), we note that the de-
cision made by the CODI-CRAC 2021 shared task
organizers to use utterances as the unit of annota-
tion has to do with annotation quality, as the inter-
annotator agreement on the selection of clausal
antecedents tends to be low (Poesio and Artstein,
2008),

Discourse deixis resolution in dialogue vs. nar-
rative text. Whether our model will generalize
well to non-dialogue datasets (e.g., narrative text)
is unclear. Given the differences between dialogue
and non-dialogue datasets (e.g., the percentage of
pronominal anaphors), we speculate that the perfor-
mance of our resolver will take a hit when applied
to resolving deictic anaphors in narrative text.

Size of training data. We believe that the perfor-
mance of our resolver is currently limited in part by
the small amount of data on which it was trained.
The annotated corpora available for training a dis-
course deictic resolver is much smaller than those
available for training an entity coreference resolver
(e.g., OntoNotes (Hovy et al., 2006)).

Data biases. Generally, our work should not
cause any significant risks. However, language
varieties not present in training data can potentially
amplify existing inequalities and contribute to mis-
understandings.

Acknowledgments

We thank the three anonymous reviewers for their
insightful comments on an earlier draft of the paper.
This work was supported in part by NSF Grant
IIS-1528037. Any opinions, findings, conclusions
or recommendations expressed in this paper are
those of the authors and do not necessarily reflect

the views or official policies, either expressed or
implied, of the NSF.

References
Tatiana Anikina, Cennet Oguz, Natalia Skachkova,

Siyu Tao, Sharmila Upadhyaya, and Ivana Kruijff-
Korbayova. 2021. Anaphora resolution in dialogue:
Description of the DFKI-TalkingRobots system for
the CODI-CRAC 2021 shared-task. In Proceedings
of the CODI-CRAC 2021 Shared Task on Anaphora,
Bridging, and Discourse Deixis in Dialogue, pages
32–42, Punta Cana, Dominican Republic. Associa-
tion for Computational Linguistics.

Amit Bagga and Breck Baldwin. 1998. Algorithms for
scoring coreference chains. In Proceedings of the
LREC Workshop on Linguistics Coreference, pages
563–566.

Donna K. Byron. 2002. Resolving pronominal refer-
ence to abstract entities. In Proceedings of the 40th
Annual Meeting of the Association for Computational
Linguistics, pages 80–87, Philadelphia, Pennsylvania,
USA. Association for Computational Linguistics.

Miriam Eckert and Michael Strube. 2000. Dialogue
acts, synchronizing units, and anaphora resolution.
Journal of Semantics, 17:51–89.

John J. Godfrey, Edward C. Holliman, and Jane Mc-
Daniel. 1992. Switchboard: telephone speech corpus
for research and development. In Proceedings of
the 1992 IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP-92),
volume 1, pages 517–520.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
The 90% solution. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Com-
panion Volume: Short Papers, pages 57–60, New
York City, USA. Association for Computational Lin-
guistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Span-
BERT: Improving pre-training by representing and
predicting spans. Transactions of the Association for
Computational Linguistics, 8:64–77.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference reso-
lution: Baselines and analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5803–5808, Hong Kong,
China. Association for Computational Linguistics.

Ben Kantor and Amir Globerson. 2019. Coreference
resolution with entity equalization. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 673–677, Florence,
Italy. Association for Computational Linguistics.

11331

https://doi.org/10.18653/v1/2021.codi-sharedtask.3
https://doi.org/10.18653/v1/2021.codi-sharedtask.3
https://doi.org/10.18653/v1/2021.codi-sharedtask.3
https://doi.org/10.3115/1073083.1073099
https://doi.org/10.3115/1073083.1073099
https://doi.org/10.1109/ICASSP.1992.225858
https://doi.org/10.1109/ICASSP.1992.225858
https://aclanthology.org/N06-2015
https://aclanthology.org/N06-2015
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/P19-1066
https://doi.org/10.18653/v1/P19-1066


Sopan Khosla, Juntao Yu, Ramesh Manuvinakurike,
Vincent Ng, Massimo Poesio, Michael Strube, and
Carolyn Rosé. 2021. The CODI-CRAC 2021 shared
task on anaphora, bridging, and discourse deixis in
dialogue. In Proceedings of the CODI-CRAC 2021
Shared Task on Anaphora, Bridging, and Discourse
Deixis in Dialogue, pages 1–15, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Hideo Kobayashi, Shengjie Li, and Vincent Ng. 2021.
Neural anaphora resolution in dialogue. In Pro-
ceedings of the CODI-CRAC 2021 Shared Task on
Anaphora, Bridging, and Discourse Deixis in Dia-
logue, pages 16–31, Punta Cana, Dominican Repub-
lic. Association for Computational Linguistics.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687–692, New Orleans, Louisiana. Association for
Computational Linguistics.

Shengjie Li, Hideo Kobayashi, and Vincent Ng. 2021.
The CODI-CRAC 2021 shared task on anaphora,
bridging, and discourse deixis resolution in dialogue:
A cross-team analysis. In Proceedings of the CODI-
CRAC 2021 Shared Task on Anaphora, Bridging, and
Discourse Deixis in Dialogue, pages 71–95, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Shengjie Li, Hideo Kobayashi, and Vincent Ng. 2022.
Neural anaphora resolution in dialogue revisited. In
Proceedings of the CODI-CRAC 2022 Shared Task
on Anaphora, Bridging, and Discourse Deixis in Di-
alogue, pages 32–47, Gyeongju, Republic of Korea.
Association for Computational Linguistics.

Xiaoqiang Luo. 2005. On coreference resolution perfor-
mance metrics. In Proceedings of Human Language
Technology Conference and Conference on Empiri-
cal Methods in Natural Language Processing, pages
25–32, Vancouver, British Columbia, Canada. Asso-
ciation for Computational Linguistics.
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A Detailed Experimental Results

We report the resolution results of the four resolvers
(UTD_NLP, coref-hoi, coref-hoi-utt,
and dd-utt) on the CODI-CRAC 2021 shared
task test sets in terms of MUC, B3, and CEAFe

scores in Table 8 and their mention extraction re-
sults in terms of recall (R), precision (P), and F-
score (F) in Table 9.

Consider first the resolution results in Table 8.
As can be seen, not only does dd-utt achieve
the best CoNLL scores on all four datasets, but
it does so via achieving the best MUC, B3, and
CEAFe F-scores. In terms of MUC F-score, the
performance difference between dd-utt and the
second best resolver on each dataset is substantial
(2.2%–14.9% points). These results suggest that
better link identification, which is what the MUC F-
score reveals, is the primary reason for the superior
performance of dd-utt. Moreover, Persuasion
appears to be the easiest of the four datasets, as
this is the dataset on which three of the four re-
solvers achieved the highest CoNLL scores. Note
that Persuasion is also the dataset on which the
differences in CoNLL score between dd-utt and
the other resolvers are the smallest. These results
seem to suggest that the performance gap between
dd-utt and the other resolvers tends to widen as
the difficulty of a dataset increases.

Next, consider the anaphor extraction results
in Table 9. In terms of F-score, dd-utt lags be-
hind UTD_NLP on two datasets, AMI and Switch-
board. Nevertheless, the anaphor extraction pre-
cision achieved by dd-utt is often one of the
highest in each dataset.
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MUC B3 CEAFe

P R F P R F P R F CoNLL

LIGHT
UTD_NLP 44.6 31.3 36.8 56.2 37.0 44.6 55.3 40.5 46.7 42.7
coref-hoi 37.2 36.3 36.7 48.9 42.0 45.2 58.2 38.5 46.3 42.7
coref-hoi-utt 36.5 38.8 37.6 46.7 42.3 44.4 55.3 38.0 45.0 42.3
dd-utt 52.4 41.3 46.2 62.0 41.6 49.8 69.0 37.6 48.7 48.2

AMI
UTD_NLP 45.5 21.2 28.9 52.4 29.5 37.8 44.9 35.1 39.4 35.4
coref-hoi 21.7 30.5 25.4 28.7 36.3 32.1 39.0 31.0 34.6 30.7
coref-hoi-utt 25.5 33.1 28.8 34.6 39.0 36.7 43.4 36.1 39.4 35.0
dd-utt 41.2 39.8 40.5 48.9 42.8 45.6 54.4 37.5 44.4 43.5

Persuasion
UTD_NLP 45.5 20.3 28.1 65.0 30.2 41.2 61.0 41.8 49.6 39.6
coref-hoi 48.6 42.3 45.2 57.5 45.9 51.1 66.2 44.0 52.9 49.7
coref-hoi-utt 50.0 49.6 49.8 56.8 51.7 54.1 64.4 49.4 55.9 53.3
dd-utt 56.7 48.0 52.0 63.8 49.9 56.0 72.1 46.9 56.8 54.9

Switchboard
UTD_NLP 35.2 21.3 26.5 52.3 30.4 38.5 50.5 34.9 41.3 35.4
coref-hoi 31.5 30.4 31.0 40.9 34.0 37.1 51.4 30.2 38.0 35.4
coref-hoi-utt 30.6 29.3 29.9 39.5 32.7 35.8 49.5 29.2 36.7 34.1
dd-utt 46.3 43.4 44.8 54.9 44.5 49.2 63.4 38.3 47.7 47.2

Table 8: Resolution results on the test sets.

LIGHT AMI Persuasion Switchboard

P R F P R F P R F P R F

Overall

UTD_NLP 65.2 46.9 54.6 60.2 39.1 47.4 72.3 41.6 52.8 64.4 42.2 51.0
coref-hoi 62.9 49.5 55.4 40.5 42.7 41.5 68.6 52.0 59.2 55.3 41.2 47.2
coref-hoi-utt 59.3 50.0 54.2 43.9 45.2 44.5 66.2 57.6 61.6 53.3 39.6 45.5
dd-utt 72.6 46.9 57.0 57.8 46.6 51.6 73.9 54.7 62.8 66.9 49.6 57.0

Anaphor

UTD_NLP 71.4 68.8 70.1 58.0 64.4 61.0 76.7 64.2 69.9 65.7 70.7 68.1
coref-hoi 71.8 70.0 70.9 42.2 59.3 49.3 72.9 63.4 67.8 63.0 60.8 61.9
coref-hoi-utt 68.2 72.5 70.3 46.4 60.2 52.4 71.3 70.7 71.0 61.9 59.3 60.6
dd-utt 81.0 63.8 71.3 57.9 55.9 56.9 77.9 65.9 71.4 67.5 63.1 65.2

Antecedent

UTD_NLP 50.8 27.7 35.8 66.0 20.5 31.3 59.6 21.2 31.3 60.8 21.5 31.7
coref-hoi 52.7 34.8 41.9 38.3 30.4 33.9 63.9 42.5 51.0 46.3 27.2 34.3
coref-hoi-utt 49.4 33.9 40.2 41.0 34.2 37.3 60.7 46.6 52.7 43.3 25.5 32.1
dd-utt 63.9 34.8 45.1 57.7 39.8 47.1 69.5 45.2 54.8 66.2 40.0 49.8

Table 9: Mention extraction results on the test sets.
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