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Abstract

Discriminative pre-trained language models
(PrLMs) can be generalized as denoising
auto-encoders that work with two procedures,
ennoising and denoising. First, an ennoising
process corrupts texts with arbitrary noising
functions to construct training instances. Then,
a denoising language model is trained to
restore the corrupted tokens. Existing
studies have made progress by optimizing
independent strategies of either ennoising or
denosing. They treat training instances equally
throughout the training process, with little
attention on the individual contribution of those
instances. To model explicit signals of instance
contribution, this work proposes to estimate the
complexity of restoring the original sentences
from corrupted ones in language model pre-
training. The estimations involve the corruption
degree in the ennoising data construction
process and the prediction confidence in the
denoising counterpart. Experimental results
on natural language understanding and reading
comprehension benchmarks show that our
approach improves pre-training efficiency,
effectiveness, and robustness. Code is publicly
available at https://github.com/cooelf/
InstanceReg

1 Introduction

Leveraging self-supervised objectives to pre-train
language models (PrLMs) on massive unlabeled
data has shown success in natural language
processing (NLP) (Peters et al., 2018; Radford
et al., 2018; Devlin et al., 2019; Dong et al., 2019;
Lan et al., 2020; Clark et al., 2020; Luo et al.,
2021; Zhu et al., 2022). A wide landscape of
pre-training objectives has been produced, such
as autoregressive (Radford et al., 2018; Yang
et al., 2019) and autoencoding (Devlin et al., 2019;
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Figure 1: Overview of AutoDecoders. As the two
examples show, the random sampling operation during
ennoising would result in training instances of different
degree of difficulty, e.g., the variety of valid alternatives.

Joshi et al., 2020) language modeling objectives,
which serve as the principled mechanisms to
teach language models general-purpose knowledge
through the pre-training, and then those pre-
trained PrLMs can be fine-tuned for downstream
tasks. Based on these unsupervised functions,
three classes of PrLMs have been proposed:
autoregressive language models (e.g. GPT
(Radford et al., 2018)), autoencoding models
(e.g. BERT (Devlin et al., 2019)), and encoder-
decoder models (e.g. BART (Lewis et al., 2020a)
and T5 (Raffel et al., 2020)). In this work,
we focus on the research line of autoencoding
models, also known as discriminative PrLMs that
have achieved impressive performance on natural
language understanding (NLU).

Although the discriminative PrLMs may vary
in language modeling functions or architectures
as discussed above, they can be generalized
as denoising auto-encoders, which contain two
procedures, ennoising and denoising. The pre-
training procedure is illustrated in Figure 1.

1) Ennoising corrupts texts with arbitrary noising
functions to construct training instances. The
corruption scheme includes edit operations like
insertion, deletion, replacement, permutation, and
retrieval (Devlin et al., 2019; Lewis et al., 2020b;
Xu and Zhao, 2021; Wang et al., 2020; Guu et al.,
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2020). For example, masked language modeling
(MLM) (Devlin et al., 2019) replaces some input
tokens in a sentence with a special symbol. BART
uses token deletion, text infilling, and sentence
permutation for corruption (Lewis et al., 2020a).

2) Denoising enables a language model to
predict missing or otherwise corrupted tokens in
the input sequences. Recent studies focus on
designing improved language modeling functions
to mitigate discrepancies between the pre-training
phase and the fine-tuning phase. Yang et al. (2019)
reformulates MLM in XLNet by restoring the
permuted tokens in factorization order, such that
the input sequence is autoregressively generated
after permutation. In addition, using synonyms
for the masking purpose (Cui et al., 2020) and
simple pre-training objectives based on token-level
classification tasks (Yamaguchi et al., 2021) have
also proved effective as an MLM alternative.

Most of the existing studies of PrLMs fall into
the scope of either investigating better ennoising
operations or more effective denoising strategies.
They treat training instances equally throughout
the training process. Little attention is paid
to the individual contribution of those instances.
In standard MLM ennoising, randomly masking
different tokens would lead to different degrees
of corruption that may, therefore, cause different
levels of difficulty in sentence restoration in
denoising (as shown in Figure 1) and thus increase
the uncertainty in restoring the original sentence
structure during the denoising process. For
example, if “not” is masked, the corrupted sentence
tends to have a contrary meaning.

In this work, we are motivated to estimate
the complexity of restoring the original sentences
from corrupted ones in language model pre-
training, to provide explicit regularization signals
to encourage more effective and robust pre-training.
Our approach includes two sides of penalty:
1) ennoising corruption penalty that measures
the distribution disparity between the corrupted
sentence and the original sentence, to measure
the corruption degree in the ennoising process;
2) denoising prediction penalty that measures
the distribution difference between the restored
sequence and the original sentence to measure
the sentence-level prediction confidence in the
denoising counterpart. Experiments show that
language models trained with our regularization
terms can yield better performance and become

more robust against adversarial attacks.

2 Related Work

Training powerful large-scale language models
on a large unlabeled corpus with self-supervised
objectives has attracted lots of attention, which
commonly work in two procedures of ennoising
and denoising. The most representative task
for pre-training is MLM, which is introduced in
Devlin et al. (2019) to pre-train a bidirectional
BERT. A spectrum of ennoising extensions has
been proposed to enhance MLM further and
alleviate the potential drawbacks, which fall into
two categories: 1) mask units and 2) noising
scheme. Mask units correspond to the language
modeling units that serve as knowledge carriers
in different granularity. The variants focusing on
mask units include the standard subword masking
(Devlin et al., 2019), span masking (Joshi et al.,
2020), and n-gram masking (Levine et al., 2021;
Li and Zhao, 2021). For noising scheme, BART
(Lewis et al., 2020a) corrupts text with arbitrary
noising functions, including token deletion, text
infilling, sentence permutation, in conjunction with
MLM. UniLM (Dong et al., 2019) extends the
mask prediction to generation tasks by adding
the auto-regressive objectives. XLNet (Yang
et al., 2019) proposes the permuted language
modeling to learn the dependencies among the
masked tokens. MacBERT (Cui et al., 2020)
suggests using similar words for the masking
purpose. Yamaguchi et al. (2021) also investigates
simple pre-training objectives based on token-level
classification tasks as replacements of MLM, which
are often computationally cheaper and result in
comparable performance to MLM. In addition,
ELECTRA (Clark et al., 2020) proposes a novel
training objective called replaced token detection,
which is defined over all input tokens.

Although the above studies have an adequate
investigation to reduce the mismatch between
pre-training and fine-tuning tasks, an essential
problem of the common denoising mechanism
lacks attention. The construction of training
examples based on ennoising operations would
cause the break of sentence structure, either for
replacement, addition, or deletion-based noising
functions. In extreme cases, the destruction would
lead to completely different sentences, making it
difficult for the model to predict the corrupted
tokens. Therefore, in this work, we propose to
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enhance the pre-training quality by using instance
regularization (IR) terms to estimate the restoration
complexity from both sides of ennoising and
denoising aspects.

The proposed approach is partially related to
some prior studies of hardness measurement in
training deep learning models (Lin et al., 2017;
Kalantidis et al., 2020; Hao et al., 2021), whose
focus is to guide the model to pay special attention
to hard examples and prevent the vast number of
easy negatives from overwhelming the training
process. In contrast to optimizing the training
process by heuristically finding the hard negatives,
this work does not need to distinguish hard
examples from ordinary ones, but measures the
corruption degree between the masked sentence
and the original sentence instead, and uses the
degree as the explicit training signals.

3 Methodology

This section will start by formulating the ennoising
and denoising processes for building PrLMs and
then introduce our instance regularization approach
to estimate the restoration complexity in both
ennoising and denoising views.

3.1 Preliminary: Denoising Auto-Encoders

The training procedure for discriminative language
models includes ennoising and denoising processes,
as described below. For the sake of simplicity, we
take the widely-used MLM as a typical example to
describe the ennoising process.

Ennoising Given a sentence W =
{w1, w2, . . . , wn} with n tokens,1 we randomly
mask some percentage of the input tokens with
a special mask symbol [MASK] and then predict
those masked tokens. Suppose that there are
m tokens replaced by the mask symbol. Let
D = {k1, k2, . . . , km} denote set of masked
positions, we have W ′ as the masked sentence and
M = {wk1 , wk2 , . . . , wkm} are the masked tokens.
In the following part, we use wk to denote each
masked token for simplicity.

Denoising In the denoising process, a language
model is trained to predict the masked token based
on the context. W ′ is fed into the PrLM to
obtain the contextual representations from the last
Transformer layer, which is denoted as H .

1We assume that W has already been tokenized into a
sequence of subwords.

Training The training objective is to maximize
the following objective:

LDAE = − 1

m

|D|∑

k∈D
log p(wk | W ′). (1)

3.2 Instance Regularization

In this part, we will introduce our instance
regularization approach, which involves two
sides: corruption degree in the ennoising data
construction process and the sequence-level
prediction confidence in the denoising counterpart.

During denoising, the PrLM trained by MLM is
required to predict the original masked tokens wk

given the hidden states H of the corrupted input W ′.
Let w′

k denote the predicted tokens, we replace the
mask symbols by filling w′

k back to W ′. As a result,
we have the predicted sequence, denoted as P =
{p1, p2, . . . , pn}, where the tokens in positions of
D are predicted ones; otherwise, they are the same
as the originals ones in W .

Obviously, the corruption would break the
sentence structure and easily cause the semantic
deviation of sentence representations. According
to our observation, the hidden states would vary
dramatically before and after the token corruption
– similar findings were also observed in Wang
et al. (2021) that small disturbance can inveigle
PrLMs into making false predictions. In a more
general perspective, replacing a modest percentage
of tokens may result in a totally different sentence,
let alone imperceptible disturbance as used for
textual attacks.

Therefore, we propose two approaches called
ennoising corruption penalty (ECP) and denoising
prediction penalty (DPP) as the regularization
terms in the training process to alleviate the issue.
Figure 2 overviews the overall procedure. ECP
measures the semantic shift from the original
sentence to the corrupted one as an explicit signal to
help the model distinguish easy and hard examples
and learn with different weights, which can be
seen as instance weighting compared with MLM.
As the complement, DPP measures the sequence-
level semantic distance between the predicted and
original sentence to supplement the rough token-
level matching of MLM, thus transforming the
token prediction task to sequence matching to pay
more attention to sentence-level semantics.

Both methods are used for estimating the
difficulty of restoring the whole sequence from the
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Figure 2: Overview of the procedure for the instance regularization approach, which estimates the corruption degree
in the ennoising data construction process and the prediction confidence in the denoising counterpart.

corrupted ones, either in the role of the front-end
ennoising or back-end denoising. Larger values of
the estimation indicate larger semantic shifts.

Here we go back to the formulation in
MLM. As shown in Figure 2, given the original
sequence W , the masked sequence W ′, and the
predicted sequence P , we obtain the contextualized
representation from PrLM. Note that we already
have the contextualized representation H for the
input sequence W ′ in the vanilla MLM training.
Similarly, we feed W and P to the PrLM, and the
corresponding hidden states are written as Ĥ and
H̃ , respectively. Then, H , Ĥ and H̃ are leveraged
as the elements for the corruption agreement and
semantic agreement.

Ennoising Corruption Penalty After we get the
distributions H and Ĥ , we measure the extent of
the corruption degree after ennoising by calculating
the distribution difference between the masked and
the original representations after normalization:

LECP = DKL(H, Ĥ), (2)

where KL refers to Kullback–Leibler (KL)
divergence. Concretely, we apply softmax on
the two matrices along the hidden dimensions to
have two distributions. Then, we calculate KL
divergence between the two distributions for each
position in each sentence. Intuitively, higher LECP

means the corruption is more severe, so is the
gap between the ennoised instance and denoised
prediction. Therefore, the model is supposed to
update the gradient more significantly for those
“harder” training instances.

Denoising Prediction Penalty In the denoising
language modeling, the model would yield

reasonable predictions but be discriminated as
wrong predictions because such predictions do
not match the single gold token for each training
case using token-level cross-entropy. Therefore,
we estimate the semantic agreement between the
predicted sequence and the original gold sequence,
by guiding the probability distribution of model
predictions H̃ to match the expected probability
distribution Ĥ , we have:

LDPP = DKL(H̃, Ĥ), (3)

where LDPP is applied as the degree to reflect the
sentence level semantic mismatch.

The semantic agreement method works as
a means of soft regularization to capture the
sequence-level similarity as a supplement to
the standard hard token-level matching in cross-
entropy.

In language model pre-training, we minimize
LH and LS . Thus, the loss function is written as

L = LDAE + LECP + LDPP . (4)

4 Experiments

4.1 Setup

To verify the effectiveness of the proposed methods,
we conduct pre-training experiments and fine-tune
the pre-trained models on downstream tasks. All
codes are implemented using PyTorch (Paszke
et al., 2017).2 The experiments are run on 8
NVIDIA GeForce RTX 3090 GPUs.

Pre-training We employ BERT and ELECTRA
as the backbone PrLMs and implement our

2Our codes and models will be publicly available.
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methods during the pre-training. For pre-training
corpus, we use English Wikipedia corpus and
BookCorpus (Zhu et al., 2015) following BERT
(Devlin et al., 2019). As suggested in Liu et al.
(2019), we do not use the next sentence prediction
(NSP) objective as used in Devlin et al. (2019), but
only use MLM as the baseline language modeling
objective, with a masked ratio of 15%. After
masking, 80% of the masked positions are replaced
with [MASK], 10% are replaced by randomly
sampled words, and the remaining 10% are kept
unchanged. We set the maximum length of the
input sequence to 512, and the learning rates are 3e-
5. We pre-train the base and large models for 100k
steps using the pre-trained weights of the public
BERT and ELECTRA models as initialization. The
baselines are trained to the same steps for a fair
comparison. To keep the simplicity like BERT
training, following Li et al. (2020), we discard
the generator in ELECTRA models and use the
discriminator in the same way as BERT, with a
classification layer to predict the corrupted tokens.

Fine-tuning We use an initial learning rate in
{8e-6, 1e-5, 2e-5, 3e-5} with warm-up rate of 0.1
and L2 weight decay of 0.01. The batch size is
selected in {16, 24, 32}. The maximum number of
epochs is set in [2, 5] depending on tasks. Texts
are tokenized with a maximum length of 384 for
SQuAD and 512 for other tasks. Hyper-parameters
were selected using the development set.

4.2 Tasks and Datasets
For evaluation, we fine-tune the pre-trained models
on GLUE (General Language Understanding
Evaluation) (Wang et al., 2019) and the popular
Stanford Question Answering Dataset (SQuAD)
(Rajpurkar et al., 2016) to evaluate the performance
of the pre-trained models. The concerned tasks
involve natural language inference, semantic
similarity, text classification, and machine reading
comprehension (MRC).

Natural Language Inference Natural Language
Inference involves reading a pair of sentences and
judging the relationship between their meanings,
such as entailment, neutral and contradiction.
We evaluate on three diverse datasets, including
Multi-Genre Natural Language Inference (MNLI)
(Nangia et al., 2017), Question Natural Language
Inference (QNLI) (Rajpurkar et al., 2016) and
Recognizing Textual Entailment (RTE) (Bentivogli
et al., 2009).

Semantic Similarity Semantic similarity tasks
aim to predict whether two sentences are
semantically equivalent or not. The challenge
lies in recognizing rephrasing of concepts,
understanding negation, and handling syntactic
ambiguity. Three datasets are used, including
Microsoft Paraphrase corpus (MRPC) (Dolan and
Brockett, 2005), Quora Question Pairs (QQP)
dataset (Chen et al., 2018) and Semantic Textual
Similarity benchmark (STS-B) (Cer et al., 2017).

Classification The Corpus of Linguistic Ac-
ceptability (CoLA) (Warstadt et al., 2019) is
used to predict whether an English sentence is
linguistically acceptable or not. The Stanford
Sentiment Treebank (SST-2) (Socher et al., 2013)
provides a dataset for sentiment classification that
needs to determine whether the sentiment of a
sentence extracted from movie reviews is positive
or negative.

Reading Comprehension As a widely used
MRC benchmark dataset, SQuAD (Rajpurkar et al.,
2016) is a reading comprehension dataset that
requires the machine to extract the answer span
given a document along with a question. We
select the v1.1 version to keep the focus on the
performance of pure span extraction performance.
Two official metrics are used to evaluate the model
performance: Exact Match (EM) and a softer
metric F1 score, which measures the average
overlap between the prediction and ground truth
answer at the token level.

4.3 Main Results

Table 1 presents the results of our methods and
baselines under the same pre-training settings
on the GLUE development sets. We see that
our method achieves consistent performance
gains over both BERT and ELECTRA baselines
under the base and large settings, i.e., with
the increased average scores of +1.20%/0.57%
on BERT (base/large) and +1.01%/0.83% on
ELECTRA (base/large).3 The results indicate that
the instance regularization approach is effective
for improving the general language understanding
capacity of PrLMs.

We also show the comparisons with public

3We report the results on large models just to verify the
consistent advance instead of pursuing absolute scores, due
to the difficulty of training larger models on a single machine
with 8 NVIDIA GTX 3090 GPUs (e.g., weak convergence
with small batch sizes).
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Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Average
Mcc Acc Acc Spear Acc Acc Acc Acc -

Results on the development sets

BERTbase 59.32 92.32 87.25 87.36 90.78 84.75 91.42 65.34 82.32
BERT-IRbase 61.39 93.46 87.50 89.05 90.90 85.28 91.84 68.95 83.52
BERTlarge 62.45 93.58 88.24 90.48 91.45 87.20 92.37 74.01 84.97
BERT-IRlarge 64.07 94.27 88.73 90.57 91.55 87.35 92.71 75.09 85.54
ELECTRAbase 65.53 94.95 88.97 89.96 91.24 88.45 92.53 77.62 86.16
ELECTRA-IRbase 68.95 95.30 90.44 90.52 91.40 88.66 93.04 79.06 87.17
ELECTRAlarge 70.41 96.79 89.22 91.92 92.07 90.26 94.40 85.92 88.87
ELECTRA-IRlarge 72.09 97.48 91.18 92.03 92.27 90.55 94.64 87.36 89.70

Results on the test sets

BERTbase 52.1 93.5 84.8 85.8 89.2 84.6 90.5 66.4 80.9
BERT-IRbase 54.1 93.9 84.9 86.6 89.1 85.3 91.1 71.2 82.0
BERTlarge 60.5 94.9 85.4 86.5 89.3 86.7 92.7 70.1 83.3
BERT-IRlarge 61.7 94.2 85.7 87.1 89.4 86.5 92.9 72.1 83.7
ELECTRAbase 59.7 93.4 86.7 87.7 89.1 85.8 92.7 73.1 83.5
ELECTRA-IRbase 63.2 95.4 86.5 89.0 89.2 88.4 92.9 70.7 84.4
ELECTRAlarge 68.1 96.7 89.2 91.7 90.4 90.7 95.5 86.1 88.6
ELECTRA-IRlarge 70.1 97.0 89.8 91.6 90.2 90.9 95.8 86.8 89.0

Table 1: Comparisons between our proposed methods and the baseline models under on the GLUE development
sets. STS-B is reported by Spearman correlation, CoLA is reported by Matthew’s correlation, and the other tasks are
reported by accuracy. Only one decimal place is reserved for the test results which are from the online GLUE server.

Model EM Score F1 Score

BERTbase 80.48 87.77
BERT-IRbase 81.28 88.38
BERTlarge 83.54 90.26
BERT-IRlarge 84.26 90.92

ELECTRAbase 83.82 90.59
ELECTRA-IRbase 84.49 91.18
ELECTRAlarge 87.59 93.78
ELECTRA-IRlarge 88.34 94.09

Table 2: Results on the SQuAD development set. The
evaluation metrics are Exact-Match (EM) and F1 scores.

methods on the GLUE test sets. For a fair
comparison, we only compare with the related
single models fine-tuned for a single task,
without model ensembling and task-specific tricks.
According to the results, we observe that our
models yield consistent advances on most of the
tasks compared with public BERT and ELECTRA
models under both base and large sizes.

We further evaluate the performance of our
models on the challenging SQuAD MRC task.

Table 2 shows the results, which indicate modest
performance gains in the reading comprehension
task. The results show that our method is not
only effective for the sentence-level classification
or regression tasks of NLU but also beneficial for
passage-level reading comprehension.

5 Analysis

5.1 Ablation Study

To investigate the contribution of the internal
components of the proposed IR objective, we
conduct an ablation study under BERTbase and
ELECTRAbase on the GLUE development set.
Table 3 shows the performance when removing
each one of the methods. We observe that
removing either ECP or DPP objective will result
in performance drop generally, which verifies the
effectiveness of both methods.

5.2 Comparison with other distance measures

We apply KL divergence to measure the
distance between distributions. We compare the
performance for different distance measures by
using mean-square error (MSE) loss. The average
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Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Average
Mcc Acc Acc Spear Acc Acc Acc Acc -

BERT-IRbase 61.39 93.46 87.50 89.05 90.90 85.28 91.84 68.95 83.52
- ECP 60.84 93.11 88.48 87.13 90.83 84.94 91.54 66.78 82.96
- DPP 59.90 93.23 87.01 87.43 90.89 84.70 91.43 67.87 82.81

ELECTRA-IRbase 68.95 95.30 90.44 90.52 91.40 88.66 93.04 79.06 87.17
- ECP 67.08 95.21 89.71 90.26 91.17 88.61 92.87 77.26 86.52
- DPP 67.75 95.18 89.21 90.35 91.28 88.50 92.75 76.89 86.49

Table 3: Ablation study of the proposed methods under BERT-base and ELECTRA-base on the GLUE development
set. STS-B is reported by Spearman correlation, CoLA is reported by Matthew’s correlation, and other tasks are
reported by accuracy.

Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Average
Mcc Acc Acc Spear Acc Acc Acc Acc -

BERTbase 30.88 87.84 74.75 76.06 87.77 75.70 84.24 56.68 71.74
BERT-IRbase 33.06 89.56 76.47 76.64 88.08 76.23 85.03 59.57 73.08

Table 4: Results of training BERTbase and BERT-IRbase from scratch.

Baseline KL Divergence MSE

82.32 83.52 83.27

Table 5: Comparison of using KL divergence and MSE
to measure the distribution distances

GLUE scores (based on BERT-base) are shown in
Table 5. We see that both IR methods contribute
to better performance. The results further verify
the general benefits of instance regularization for
pre-training no matter what the distance function
is.

5.3 Performance in Different Training Steps

To interpret the training effectiveness of our
proposed method, we illustrate the performance
of different training steps of BERTbase and BERT-
IRbase on the development sets of the small-scale
CoLA and the large-scale MNLI tasks, as shown in
Figure 3. We see that the accuracy of the baselines
boost slightly as the training steps increase. In
contrast, our models can still yield obvious gains,
which indicates our PrLM models could absorb
extra beneficial signals via the newly proposed
instance regularization approach.

5.4 Convergence Speed

Figure 4 shows the training curve of the BERTbase

and BERT-IRbase models when training from

scratch.4 We observe that the absolute values
of our approaches are relatively higher than the
baselines at the very beginning. The reason
is that our loss function is composed of three
elements as formalized in Eq. 4. However, our
model converges quickly. The loss of BERT-
IRbase falls below the baseline when the training
goes on, and the slope of our curve is obviously
larger than that of the baseline. In addition, we
also evaluate the baseline and our model trained
from scratch (Table 4), which achieve the average
accuracy of 71.74% and 73.08% (+1.3%) on the
GLUE datasets, respectively. The analysis above
indicates that the PrLM model trained with our
approach could absorb extra knowledge via the
newly proposed instance regularization approach,
and it would benefit the training of the vanilla
masked language modeling as well.

5.5 Training Cost
Since the calculation of the regularization terms
involves two forward passes of input sequences,
we further investigate the influence of the training
cost. Analysis shows that our model is efficient
in training speed and parameter size. Taking
the BERT-based model for example, the training

4For clear observation, we pre-train the baseline and our
model from scratch instead of continuous training, because
the checkpoints used for continuing training have already
converged under a small loss, making it hard to interpret the
convergence.
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Figure 3: The performance (accuracy) of different training steps of BERTbase and BERT-IRbase on the CoLA and
MNLI development sets.

Model Original Reference SwapSynWordEmbedding SwapSynWordNet
EM Score F1 Score EM Score F1 Score EM Score F1 Score

BERTbase 85.33 88.78 84.67 (↓0.67) 87.67 (↓1.11) 81.67 (↓3.67) 85.15 (↓3.63)
BERT-IRbase 84.33 87.70 84.67 (↑0.33) 87.82 (↑0.12) 82.33 (↓2.00) 85.42 (↓2.28)

ELECTRAbase 89.00 90.91 86.67 (↓2.33) 88.89 (↓2.02) 87.00 (↓2.00) 89.39 (↓1.53)
ELECTRA-IRbase 89.67 91.44 89.00 (↓0.67) 90.30 (↓1.14) 89.00 (↓0.67) 91.03 (↓0.41)

Table 6: Robustness evaluation on the SQuAD dataset. Original means the results of original dataset sampled from
the SQuAD v1.1 development set by TextFlint (Wang et al., 2021), and Swap. indicates the transformed one. The
assessed models are the base models from Table 2. In this analysis, the lower performance drop means the better.

time of BERT-IRbase and BERTbase baseline for
200K steps is 67h/74h (only 10% increase) with
the same hyper-parameters on base models. The
memory cost also keeps basically the same scale
as the baseline since the regularization does not
necessarily require extra gradient backpropagation.

Figure 4: Training curve of the BERT-based models.

5.6 Robustness Against Synonym-Based
Adversarial Attacks

The semantic agreement in IR measures the
consistency between similar sentences, which
may improve our model’s robustness. To verify

the hypothesis, we evaluate our models in
Table 2 with synonym-based adversarial examples
derived from the SQuAD v1.1 development set.
The examples are generated by a robustness
evaluation platform TextFlint (Wang et al., 2021),
using SwapSynEmbedding and SwapSynWordNet,
which transform an input by replacing its words
with synonyms provided by GloVe embeddings
(Pennington et al., 2014) or WordNet (Miller,
1998), respectively.

The results are shown in Table 6, from which
we observe that the adversarial attacks can lead
to an obvious performance drop of the baseline
models, i.e., 3.67(EM)%/3.63(F1)% of BERTbase

on SwapSynWordNet. In contrast, our models
perform less sensitively against the adversarial
examples, and our BERT-IRbase even yields an
increase of scores in SwapSynEmbedding attack.
The results indicate that the regularization helps the
model to resist synonym-based adversarial attacks
with less performance degradation.

6 Conclusion

In this paper, we study the instance-aware
contribution estimation from the ennoising and

11262



denoising processes in discriminative language
model pre-training, motivated by the observation
that the quality of denoising has to be subject
to the complexity of the constructed training
data from ennoising. The estimation is
decomposed into ennoising corruption penalty
and denoising prediction penalty, which are used
as regularization terms for language model pre-
training. Experiments show that language models
trained with our regularization terms can yield
improved performance on downstream tasks, with
better robustness against adversarial attacks. In
addition, the training efficiency can be improved as
well, without severe costs of computation resources
and training speed. We hope our work could
facilitate related studies to improve training quality
while keeping a lightweight model size.

7 Limitations

We acknowledge that the major limitation of
the proposed method is additional computation
compared with the vanilla language models
because the calculation of the regularization terms
involves two forward passes of input sequences.
As discussed in Section 5.5, the training time
of BERT-IRbase and BERTbase baseline for 200K
steps is 67h/74h (about 10% increase) with the
same hyper-parameters on base models. A more
efficient instance regularization method without
additional training passes could be future work.
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