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Abstract

Lifelong learning (LL) is vital for advanced
task-oriented dialogue (ToD) systems. To ad-
dress the catastrophic forgetting issue of LL,
generative replay methods are widely employed
to consolidate past knowledge with generated
pseudo samples. However, most existing gen-
erative replay methods use only a single task-
specific token to control their models. This
scheme is usually not strong enough to con-
strain the generative model due to insufficient
information involved. In this paper, we pro-
pose a novel method, prompt conditioned VAE
for lifelong learning (PCLL), to enhance gen-
erative replay by incorporating tasks’ statistics.
PCLL captures task-specific distributions with
a conditional variational autoencoder, condi-
tioned on natural language prompts to guide
the pseudo-sample generation. Moreover, it
leverages a distillation process to further con-
solidate past knowledge by alleviating the noise
in pseudo samples. Experiments on natural
language understanding tasks of ToD systems
demonstrate that PCLL significantly outper-
forms competitive baselines in building life-
long learning models. We release the code and
data at GitHub.

1 Introduction

Task-oriented dialogue (ToD) systems are of great
importance in advanced AI applications (Zhang
et al., 2020b; Dai et al., 2020, 2021; He et al.,
2022a,b,c). However, most existing ToD systems
are developed under the assumption that the data
distribution remains unchanged (Zhu et al., 2022).
Unless the entire system is retrained, this setup may
not be realistic when the ToD system deployed in
practice needs to support new features and pro-
vides more services over time based on user de-
mands. Without incurring the high cost of retrain-
ing, Lifelong Learning (LL) is able to acquire new
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knowledge continuously while preserving previ-
ously learned knowledge (Delange et al., 2021).
Hence, it’s crucial to equip natural language under-
standing (NLU) modules, the vital components of
ToD systems, with the lifelong learning ability.

The main issue for lifelong learning is catas-
trophic forgetting (McClelland et al., 1995; Parisi
et al., 2019), which refers to the phenomenon that a
model forgets previously learned tasks when learn-
ing new tasks. Various approaches have been pro-
posed to alleviate this issue (Schwarz et al., 2018;
Aljundi et al., 2018; Rusu et al., 2016; Aljundi
et al., 2017). The replay-based methods are among
the most effective and widely used ones (Rebuffi
et al., 2017; Shin et al., 2017; Dai et al., 2022).
The main idea of replay-based methods is to re-
train samples or representations from already seen
tasks when learning new tasks (Mundt et al., 2020).
Some methods explicitly store previously seen real
samples for replaying (experience replay) (Rebuffi
et al., 2017; Chaudhry et al., 2019). However, this
setting will be infeasible when data from previous
tasks is unavailable due to data security concerns.
Other methods try to generate pseudo samples us-
ing a generative model (generative replay). This
variant relieves the burden of storing previously
seen data and has been widely adopted in previ-
ous studies (Delange et al., 2021; Shin et al., 2017;
Kemker and Kanan, 2018).

The key to generative replay is to produce
pseudo samples to approximate the real data distri-
bution of previous tasks. Intuitively, higher quality
pseudo samples can better preserve learned tasks
and lead to less forgetting in LL. However, the gen-
eration of pseudo samples for each seen task in
previous studies (Sun et al., 2020; Chuang et al.,
2020) is usually controlled by a single task-specific
token. It has been observed that this scheme is usu-
ally insufficient to constrain the PLM (Sun et al.,
2020), due to limited information involved. Conse-
quently, the generated pseudo samples suffer from
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problems such as not being fluent or not corre-
sponding well to the designated task. Moreover,
those special tokens are only introduced in the
fine-tuning stage of the PLM. This enlarges the
gap between pre-training and fine-tuning of the
PLM (Gu et al., 2022) and harms the quality of
the generated pseudo samples. In addition, gener-
ated noisy pseudo samples may degenerate the LL
performance.

To address the above issues, we propose a novel
method, Prompt Conditioned VAE for Lifelong
Learning (PCLL), to enhance generative replay on
NLU tasks of ToD systems. To impose strong con-
trol over the pseudo-sample generation, PCLL ex-
plicitly models latent task-specific distributions us-
ing a conditional variational autoencoder (CVAE)
(Kingma and Welling, 2014; Zhao et al., 2017).
Then it incorporates the corresponding task statis-
tics to guide the generation of pseudo samples. To
reduce the gap between pretraining and finetuning,
we construct natural language prompts to unify dif-
ferent NLU tasks while being specific to each task.
These prompts not only contain meaningful seman-
tics compared to special tokens, but also serve as
conditions to assist CVAE in capturing task distri-
butions. Moreover, PCLL employs a knowledge
distillation scheme to alleviate the impact of noisy
pseudo samples during the replay process. Leverag-
ing the above strategies, PCLL can generate high-
quality pseudo samples that better approximate the
real distributions of previous tasks while tackling
the aforementioned issues.

We validate our method on NLU tasks of ToD
systems including both intent detection and slot fill-
ing. The results indicate that our approach gener-
ates high-quality pseudo samples and significantly
outperforms competitive baselines. Our main con-
tributions are as follows,

(1) We propose a novel method, PCLL, to enhance
generative replay for building lifelong NLU mod-
ules of ToD systems.

(2) Conditioned on prompts, PCLL models latent
task distributions with CVAE to guide the pseudo-
sample generation and leverages knowledge distil-
lation to further avoid forgetting.

(3) Our extensive experiments and comprehensive
analyses demonstrate the superior performance of
PCLL and the high quality of its generated samples.

2 Related Work

2.1 Lifelong Learning
There are generally three categories of LL methods:

Regularization-based Methods aim to strike a
balance between protecting already learned tasks
while granting sufficient flexibility for a new task
(Mundt et al., 2020). Some methods (Schwarz
et al., 2018; Aljundi et al., 2018; Zenke et al., 2017;
Ebrahimi et al., 2019) impose constraints on the
modification of important weights. Other methods
introduce a distillation loss to constrain predicted
features of the LL model. (Li and Hoiem, 2017;
Dhar et al., 2019; Rannen et al., 2017). However,
these additional regularization terms may down-
grade the model performance (Parisi et al., 2019).

Architecture-based Methods dedicate model
parameters for each task to prevent forgetting (De-
lange et al., 2021). Some studies (Fernando et al.,
2017; Serrà et al., 2018; Hu et al., 2018) use
static architectures and rely on task specific infor-
mation to route through the architecture (Mundt
et al., 2020), while other studies (Rusu et al., 2016;
Aljundi et al., 2017; Zhai et al., 2020; Madotto
et al., 2021; Ke et al., 2021; Geng et al., 2021;
Zhao et al., 2022b) dynamically grow the architec-
ture in the LL training process. However, these
methods either require capacity allocation for tasks
at the beginning or are not feasible when model ex-
pansion is prohibited with limited resources (Sun
et al., 2020).

Replay-based Methods aim to preserve pre-
vious knowledge by replaying data from learned
tasks. One line of studies (Rebuffi et al., 2017;
Chaudhry et al., 2019; Lopez-Paz and Ranzato,
2017; Mi et al., 2020; Han et al., 2020; Liu et al.,
2021b) keeps a small number of real samples from
old tasks for replaying. However, these methods
are unpractical when data from old tasks are un-
available. Another line of studies (Shin et al., 2017;
Kemker and Kanan, 2018; Xiang et al., 2019) uti-
lizes a generative model to reproduce pseudo sam-
ples or representations from old tasks.

In this paper, we focus on improving generative
replay, as it does not require allocating extra param-
eters or model capacity and can be used with any
LL model. Specifically, Sun et al. (2020) propose a
general framework LAMOL for lifelong language
learning to replay pseudo samples of previous tasks.
Chuang et al. (2020) improve LAMOL by training
an extra teacher model before learning each new
task, however, this increases the burden of the LL
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process. Kanwatchara et al. (2021) freeze critical
parameters in LAMOL based on rationales, but
those rationales are not always available for NLP
tasks. All these previous works do not take task
statistics into consideration, whereas our PCLL
method incorporates the information of tasks’ dis-
tributions to enhance generative replay.

2.2 Prompt-based Learning in NLP

Prompt-based learning has been found to be
more effective than typical finetuning to use PLM
(Schick and Schütze, 2021). With prompts, we can
convert various downstream tasks to a unified lan-
guage modeling task (Brown et al., 2020; Schick
and Schütze, 2021). Prompts can be either manu-
ally designed (Petroni et al., 2019; Yu et al., 2019)
or generated automatically (Shin et al., 2020; Jiang
et al., 2020; Gao et al., 2021). Some recent stud-
ies employ prompt tuning on continual learning
for dialogue state tracking (Zhu et al., 2022) and
few-shot learning (Qin and Joty, 2022).

3 Methodology

3.1 Problem Definition

We aim to build an LL model to learn a stream of
NLU tasks sequentially T T = {t}Tt=1 in dialogue
systems, where T can be infinite potentially. For
each task t, a set of samples Dt = {(xk, yk)}Ntk=1

are drawn from its underlying data distribution.
Here, xk denotes the input utterance, and yk de-
notes the output label of NLU. In intent detection
tasks, yk is the intent label of xk; in slot filling
tasks, yk is the slot-value pairs contained in xk.
Our objective is to learn a model that can perform
well on all seen tasks and forget as little as possible.

3.2 Overview

We start with a brief overview of our proposed
PCLL method for generative replay (See Fig. 1).
PCLL consists of two components: an LM-based
task solver to solve NLU tasks (Fig. 3) and a CVAE-
based generator (Fig. 2) to generate pseudo samples
with the help of task-specific latent distributions.
For the first task, PCLL is initialized with PLMs
along with other parameters randomly initialized.
Before learning a new task t, we first use the PCLL
model trained on previous tasks to generate pseudo
samples for each of the learned tasks T t−1. Then
we interleave these pseudo samples with the train-
ing data in Dt and continue to train PCLL. In this

PCLL Model for 
Task t

PCLL Model 
for Task t-1

Data for Task t

……

Knowledge 
Distillation

Pseudo Samples 
of Tasks

Pseudo Samples
of Tasks

Data for Task t-1

Figure 1: The training process of our model PCLL.

way, the model can learn the new task t while con-
solidating the knowledge of past tasks.

In the following sections, we first illustrate how
PCLL learns the current task (Sec. 3.3, 3.4). Then
we describe the pseudo-sample generation process
(Sec. 3.5), and finally, we introduce a knowledge
distillation process to further improve the LL per-
formance (Sec. 3.6).

3.3 LM-based Task Solver

Following recent studies (Sun et al., 2020; Chuang
et al., 2020), PCLL unifies different NLU tasks into
a language modeling (LM) task and implements a
task solver based on a PLM. Different from pre-
vious studies that introduce randomly initialized
special tokens in the fine-tuning stage (Sun et al.,
2020), we construct task-specific natural language
prompts for the solver. These prompts carry rich
semantic information to alleviate the mismatch be-
tween fine-tuning and pre-training of PLM.

For each input-output pair (x, y) from task t,
our task solver is a LM that takes a prompt gt(x)
as an input and predicts y. Specifically, gt(x) is
constructed as gt(x) = gpret ⊕x⊕gpostt , where gpret

and gpostt are prompt prefix and postfix designed for
task t, respectively, and ⊕ means the concatenation
of word tokens. For instance, if the task t is an
intent detection task, we design gt(x) as: “For an
utterance from the ID task, x has the
following intent ”, where “ID” represents the
task name of t. After serializing the output y into a
token sequence, we can obtain a natural language
sentence by simply concatenating gt(x) with y. We
list detailed examples in Appendix B.1. Then the
PLM fθt for the current task t is optimized on the
concatenated sentence

gt(x, y) = gpret ⊕ x⊕ gpostt ⊕ y, (1)

by maximizing the following objective (see Fig. 3):

LLM = log pθ(gt(x, y)) + λ log pθ(y|gt(x)),

in which the first term learns to decode the con-
structed sentence given the start token [BOS], and
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the second term learns to predict the output y af-
ter reading the prompt gt(x). λ is a scalar used to
balance these two terms.

3.4 Prompt Conditioned VAE Generator
To construct high-quality pseudo-samples, PCLL
leverages a CVAE module to build a pseudo-sample
generator so that it can incorporate tasks’ statistics
to guide the generation of pseudo samples. The
CVAE module captures task-specific latent distri-
butions by taking utterances as the input, condi-
tioned on prefix prompts, and reconstructing the
input during training.

Specifically, given an input utterance x in task
t, we assume a random variable z captures the la-
tent distribution over x. We define a conditional
distribution as p(x, z|t) = p(x|z, t)p(z|t), where
we approximate p(z|t) and p(x|z, t) using deep
neural networks with parameters ϕ and θ, respec-
tively. We refer to pϕ(z|t) as the prior network and
pθ(x|z, t) as the decoder. To reconstruct x, a latent
variable z is first sampled from pϕ(z|t) and then x
is decoded through pθ(x|z, t).

In this study, we assume the prior of z to be a
multivariate Gaussian distribution with a diagonal
covariance matrix, and introduce a recognition net-
work qψ(z|x, t) to approximate the intractable true
posterior p(z|x, t). The goal of CVAE is to max-
imize the conditional log-likelihood log p(x|t) =∫
p(x|z, t)p(z|t)dz. Employing variational infer-

ence, we can get the following evidence lower
bound (ELBO) (Zhao et al., 2017) to maximize:

LCVAE = Eqψ(z|x,t) log pθ(x|z, t)︸ ︷︷ ︸
LREC

− βKL (qψ(z|x, t)∥pϕ(z|t))︸ ︷︷ ︸
LKL

≤ log p(x|t),
(2)

where β is a scalar to balance the reconstruction
term LREC and the Kullback–Leibler (KL) diver-
gence term LKL and is adjusted by a cyclic anneal-
ing schedule (Fu et al., 2019) to alleviate the van-
ishing latent variable issue (Bowman et al., 2016).

CVAE Implementation. When implementing
each network in Eq.2, we use the prompt pre-
fix gpret to represent the task t because gpret in-
volves the task name that can exclusively identify t.
Fig. 2 shows the overall architecture of our PCLL
model, in which we use an unidirectional trans-
former (Vaswani et al., 2017) to encode the con-
catenated sentence gpret ⊕x into hidden representa-
tions. Then an attention-average block (Fang et al.,

2021) is introduced to pool the hidden representa-
tions of gpret and gpret ⊕ x to single vectors, which
are further fed into a prior network pϕ(z|t) and
recognition network qψ(z|x, t) respectively. Next,
the reparametrization trick (Kingma and Welling,
2014) is used to obtain latent variables z from the
prior and posterior distributions. Then z is injected
to the decoder pθ(x|z, t) by adding to each token
embedding (word embedding and position embed-
ding, elementwisely) of the prompt (Fang et al.,
2021; Li et al., 2020).

In PCLL, the decoder pθ(x|z, t) shares the same
parameters with the PLM-based task solver fθ.
This allows us to inherit the advantage of PLM
and leverage a unified model to solve each task and
generate pseudo samples simultaneously.

3.5 Pseudo Sample Generation

Generating pseudo samples for learned tasks in-
volves two steps: (1) PCLL generates a pseudo
input utterance x guided by a latent task distribu-
tion using the CVAE-based generator. Specifically,
for each seen task t′, (t′ < t), the model samples a
latent variable zt′ from the prior network pϕ(zt′ |t′)
with the constructed prompt prefix gpret′ as the input.
Then the decoder takes zt′ and gpret′ , and decodes
them into the pseudo input x using top-k sampling1

(Holtzman et al., 2019). (2) PCLL generates the
output y associated with x using the solver (i.e.,
following Fig. 3).

3.6 Knowledge Distillation

Previous generative replay approaches indistin-
guishably interleave pseudo data with the current
task’s training data. However, this naive approach
hurts the model performance since these pseudo
data may contain noise and may drift from the real
data distribution. In this study, we utilize a knowl-
edge distillation (KD) (Hinton et al., 2015) process
to prevent our model from being affected by these
noisy pseudo data.

When training on a new task t, we treat the
model obtained on previous tasks T t−1 as a fixed
teacher model fθTch . For each input-output pair
(x, y) in the pseudo data, fθTch is distilled on the
generated pseudo data to the current model fθ (i.e.,
serves as the student model) by maximizing the

1Using other diversity enhanced decoding scheme may
help produce more diverse pseudo samples (Wang et al., 2021).
We leave it for future works.
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token-level distillation objective:

LKD
LM =

|gt(x,y)|∑
l=1

∑
v∈V

pθTch (v|gt(x,y)<l) log pθ(v|gt(x,y)<l)

+
|y|∑
l=1

∑
v∈V

pθTch (v|gt(x),y<l) log pθ(v|gt(x),y<l),

where gt(x, y) < l and y < l refers to the token
sequence before the l-th token in gt(x, y) and y,
respectively. V represents the vocabulary set.

Similarly, when training the CVAE module, we
replace the reconstruction term LREC of in Eq. 2
with a distillation objective:

LKD
REC = E

qψ(z|x,t)

|x|∑
l=1

∑
v∈V

pθTch(v|z, t, x<l)×

log pθ(v|z, t, x<l),

and thus we maximize the following objective over
the pseudo data LKD

CVAE = LKD
REC − βLKL.

Using the above KD strategy, the distributions
produced by the teacher model contain richer
knowledge compared to one-hot labels (Hinton
et al., 2015). These distributions constrain the stu-
dent model (i.e., fθ) by preventing its weights from
drifting too far when learning new tasks, thereby
mitigating forgetting in lifelong learning.

Fig.1 illustrates the training process of PCLL.
Specifically, when learning a new task t, we op-
timize PCLL on training samples of t with the
following objective: LLM + LCVAE. For pseudo
samples of previous tasks t′, (t′ < t), we optimize

the loss

L = α(LKD
LM +LKD

CVAE) + (1− α)(LLM +LCVAE),

where α ∈ [0, 1] is a scalar used to adjust knowl-
edge distillation terms.

4 Experiments

4.1 Datasets
We evaluate the PCLL method on intent detection
and slot filling based on public NLU benchmarks:

For intent detection, we collect six datasets that
carry intent annotations: HWU (Liu et al., 2019),
BANKING (Casanueva et al., 2020), CLINC (Lar-
son et al., 2019), SNIPS (Coucke et al., 2018),
AITS (Hemphill et al., 1990), and TOP (Gupta
et al., 2018). The dataset TOP is divided into three
disjoint subsets TOP-S1, TOP-S2, and TOP-S3,
and these three subsets along with the other five
datasets are regarded as separate LL tasks to in-
crease the total number of tasks for sequential train-
ing. Finally, we have eight tasks to be learned
sequentially for this intent detection experiment.

For slot filling, we adopt five datasets that
provide slot labels: SNIPS, AITS, DSTC (Ras-
togi et al., 2020), MIT-MOVIE, and MIT-
RESTAURANT 2. Each dataset above is regarded
as a separate LL task, and thus five tasks are learned
in lifelong slot filling experiments. More descrip-
tions about datasets are in Appendix A.

4.2 Implementation Details
We use the pretrained 12-layer GPT2 model (Rad-
ford et al., 2019) to initialize the encoder and de-
coder of our CVAE model. The prior network and
the recognition network are both set to be a 2-layer
MLP with hidden size of 128. When learning a new
task t, PCLL balances the training data of t and
pseudo samples by generating γNt pseudo samples
for previously learned tasks. γ is the sampling ratio

2groups.csail.mit.edu/sls/downloads
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and γ is set to 0.2 in our experiment following Sun
et al. (2020). Each task for intent detection and slot
filling is trained for 5 and 10 epochs, respectively.
We train PCLL on six random permutations of the
task order. See Appendix B.2 and B.3 for more
details.

4.3 Baselines
We compare PCLL with the following baselines:
Fine-tune directly fine-tunes the model on the task
stream without preventing catastrophic forgetting;
EWC (Schwarz et al., 2018) and MAS (Aljundi
et al., 2018) are two regularization methods that
mitigate forgetting by penalizing changes of impor-
tant parameters for learned tasks; LAMOL-g and
LAMOL-t (Sun et al., 2020) are two variants of the
generative replay method LAMOL that control the
generation of pseudo samples either using a global
special token (LAMOL-g) or task-specific special
tokens (LAMOL-t); L2KD (Chuang et al., 2020)
improves LAMOL by assigning an extra teacher for
each new task to perform knowledge distillation;
ER (Rolnick et al., 2019) preserves previously seen
real samples for replay to prevent forgetting. We
also consider some architecture-based baselines:
HAT (Serrà et al., 2018) creates a task-based hard
attention during training; CTR (Ke et al., 2021)
inserts continual learning plug-ins into BERT to
mitigate forgetting and encourage knowledge trans-
fer; Adapter (Madotto et al., 2021) builds residual
adapter for each task independently. Since works
in Liu et al. (2021b) and Qin and Joty (2022) are
specially designed for dialogue state tracking and
few-shot learning, respectively, we do not consider
them as our baselines.

Besides the above baselines, we further eval-
uate the model performance when all tasks are
trained simultaneously in a multitask learning set-
ting (Multi), which is often seen as an upper bound
of LL. For fair comparisons, all baselines are im-
plemented following either the settings of Sun et al.
(2020), or their own reported settings. For ER, we
store 1% of previously seen samples in memory
following the setting of Madotto et al. (2021).

4.4 Evaluation Metrics
We use the accuracy score, and macro-averaged
F1 score (Coope et al., 2020) to evaluate the per-
formance of intent detection and slot filling tasks,
respectively. Moreover, we consider access to a test
set for each of the T tasks to learn in the LL process,
and define Ri,j as the test score of the task j after

Methods
Intent Detection Slot Filling

Score LCA Score LCA

Finetune 14.09 28.76 15.38 19.55
EWC 14.16 28.34 15.67 19.51
MAS 14.15 28.61 15.59 19.37
L2KD 35.22 61.78 44.16 39.94
LAMOL-g 50.30 60.67 45.12 38.03
LAMOL-t 51.81 67.97 44.83 37.58
ER 78.19 71.36 44.95 39.32
HAT 73.92 73.03 61.99 67.33
CTR 67.44 71.11 63.84 67.28
Adapter 81.15 75.60 58.21 48.47

PCLL 90.25 88.82 74.48 68.41

Multi (Upper Bound) 96.25 N/A 80.80 N/A

Table 1: Experiment results on both intent detection and
slot filling tasks. Each result is an average of six random
task orders. The best results among LL models are bold.
Our model PCLL is significantly better than other LL
baselines with p-value < 0.05 under t-test.

finishing learning the task i. We follow previous
studies Lopez-Paz and Ranzato (2017); Chaudhry
et al. (2018a) to use the following two metrics to
evaluate the performance of LL: (1) Average Score
(Score) is defined as the average test score of all T
tasks after the LL process: Score = 1

T

∑T
j=1RT,j .

(2) Learning Curve Area (LCA) is the area un-
der the Zb curve, which captures the model’s per-
formance on all T tasks (Chaudhry et al., 2018b).
Specifically, Zb is the average score for all seen
tasks at the training step b. Here, high Score and
high LCA are preferred for a good LL model.

4.5 Main Results

Table 1 shows the performances of our model
PCLL and all the baselines. Our method PCLL sig-
nificantly outperforms all baselines by a large mar-
gin on both intent detection and slot filling tasks.
To better understand the LL process, we also plot
the curve of the average score for all the models
when trained using the same task order (see Fig. 4).
From those results, we can observe that:
(1) Regularization-based methods (EWC and MAS)
suffer from serious catastrophic forgetting, consis-
tent with the observation of Madotto et al. (2021).
(2) Generative replay methods LAMOL-g,
LAMOL-t, and L2KD alleviate the forgetting issue
to some extent. However, replaying real samples
(i.e., ER) performs much better. This indicates
that the quality of samples used for replaying is
critical to addressing catastrophic forgetting, which
matches our motivation to improve generative
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Figure 4: Learning curves of different methods on intent
detection tasks. The dotted lines mean task switching.

replay by generating high-quality pseudo samples.
Our method PCLL achieves higher performance
than ER, indicating that PCLL can generate
high-quality pseudo samples under the guidance of
task distributions. Our analyses in Sec. 5.3 further
prove this claim.
(3) Architecture-based methods HAT, CTR, and
Adapter achieve good performance. However,
PCLL still outperforms these baselines. This fur-
ther validates the effectiveness of PCLL. Note that
replay-based methods such as PCLL can be used
together with these architecture-based methods to
further improve the LL performance.
(4) From Fig 4, we can notice that when switching
to new tasks, PCLL retains more knowledge about
previous tasks (less performance degradation) com-
pared to the baselines. This suggests that PCLL
has a better ability to consolidate knowledge and
mitigate catastrophic forgetting for LL.

4.6 Ablation Studies

We conduct ablation studies to verify the effective-
ness of each proposed component in PCLL. (1)
w/o Latent means no latent distribution is modeled
for each task, i.e., the CVAE model in Section 3.4
is removed, and pseudo samples are generated by
directly feeding the prompt prefix into the LM fθ
without incorporating task-specific statistics. (2)
w/o Task ID means no task indicators are involved
in the prompts. In other words, we design a task-
independent prompt prefix by replacing the task
ID with a general description “current task” (see
Appendix B.1 for more details). In this way, the
CVAE model degenerates to a VAE model that cap-
tures a global latent space for all tasks. (3) w/o KD
means that the knowledge distillation process in
Section 3.6 is not applied.

From Table 2, we can see that: (1) Capturing
task-specific latent distributions and incorporating

them in the pseudo-sample generation process is
crucial for building better LL models (w/o Latent).
(2) Using task-specific prompts helps to generate
high-quality pseudo samples, thereby improving
the LL performance (w/o Task ID). (3) The pro-
posed knowledge distillation process does mitigate
the effects of noisy pseudo-samples and is bene-
ficial for consolidating previously learned knowl-
edge to prevent forgetting (w/o KD).

5 Analyses

5.1 Soft Prompts vs. Manual Prompts
We conduct analyses on soft prompts by replac-
ing manually designed prompts with soft tokens in
PCLL. Specifically, the prompt prefix gpret and post-
fix gpostt in Eq. 1 are replaced by several randomly
initialized task-specific soft (learnable) tokens (Liu
et al., 2021a). We also vary the lengths of these
soft prompts to analyze their behaviors.

Results in Table 3 show that: (1) Longer prefix
prompts (i.e. more parameters guiding the pseudo-
sample generation) generally lead to better LL per-
formance; (2) Longer postfix prompts may not al-
ways lead to better LL performance. This may be
because the postfix prompts are less important than
prefix prompts since they do not participate in the
pseudo-sample generation. Longer postfix prompts
may bring in more noise, degenerating the perfor-
mance; (3) Using manual prompts in PCLL outper-
forms all its soft-prompt variants even though some
soft prompts are much longer than manual prompts.
This justifies our claim that manual prompts carry-
ing rich semantic information help to alleviate the
mismatch between fine-tuning and pre-training of
PLM and capture tasks’ distributions, and thus mit-
igate catastrophic forgetting in lifelong learning.

5.2 Manual Prompts
Different Designs. We validate different designs
of manual prompts in PCLL. Specifically, we im-
plement five different prompt templates with dif-

Intent Detection Slot Filling
Score LCA Score LCA

PCLL 90.25 88.82 74.48 68.41

w/o Latent 86.09 54.59 74.11 66.62
w/o Task ID 72.37 87.17 66.40 65.76
w/o KD 81.63 87.46 32.90 47.91

Table 2: Ablation studies on two NLU tasks. Each result
is an average of 6 random task orders.
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Different Lengths Score LCA

PCLL-Soft

#prefix=1 51.30 57.77
#prefix=25 83.41 75.99#postfix=1
#prefix=100 89.47 82.66

#postfix=1 83.41 75.99
#postfix=25 74.04 75.29#prefix=25
#postfix=50 79.76 79.79

PCLL #prefix=15 #postfix=1 90.25 88.82

Table 3: Applying soft prompts on lifelong intent detec-
tion tasks. #prefix and #postfix indicate the lengths of
prefix and postfix prompts, respectively. Each result is
an average of 6 random task orders.

ferent lengths (Appendix B.4). We observe that
different manual prompts yield almost the same
performance. This indicates that our method is ro-
bust to the design of manual prompts. (See Table 8
in the Appendix).

Visualization of Attentions. We provide the vi-
sualization of the attention scores over several man-
ual prompts employed by PCLL. High attention
scores of task names in Fig. 6 indicate that the task
indicators play an important role in our manually
designed prompts (see Appendix B.5).

5.3 Qualities of Pseudo Samples

We validate the quality of pseudo samples gener-
ated by PCLL and all our generative replay base-
lines on intent detection tasks. We use the distinct
score Dist-n (Li et al., 2016) to measure the propor-
tion of unique n-grams in the generated pseudo
samples’ inputs (n=1,2,3,4). Higher Dist-n in-
dicates more diverse generated pseudo samples,
which is usually preferred because diverse samples
help to approximate task distributions. As shown in
Table 4, PCLL can generate more diverse pseudo
samples compared to other generative replay meth-
ods. This demonstrates that pseudo samples con-
structed by our method are closer to real samples.

Further, we measure whether the generated
pseudo samples can restore the distribution of real
samples by visualizing samples’ feature space with
t-SNE (Van der Maaten and Hinton, 2008). As
shown in Fig. 7, pseudo samples generated by
PCLL are clustered in a similar pattern compared
to real samples, while those of LAMOL-t are scat-
tered in the feature space. It shows that the pseudo
samples generated by PCLL share closer distribu-
tion with the real samples compared to our base-
lines (see Appendix B.6 for more details).

Dist-1 Dist-2 Dist-3 Dist-4

LAMOL-g 0.0602 0.2466 0.4489 0.6178
LAMOL-t 0.1758 0.4733 0.6837 0.8090
PCLL 0.2836 0.6566 0.8369 0.9221

Real Sample 0.4000 0.7972 0.9255 0.9717

Table 4: Distinct scores for generated pseudo samples.

z dimension Score LCA

32 90.00 88.27
128 90.25 88.82
256 90.10 88.30
512 90.04 88.26

Table 5: Analysis of different dimensions of the latent
variable z of PCLL on lifelong intent detection tasks.
Each result is an average of six random task orders.

5.4 Analyses of Latent Variables

To further analyze the behavior of the pseudo sam-
ple generator, we visualize the latent space captured
by the recognition network on slot filling tasks.
Specifically, for each sample in the test dataset, we
extract a latent variable z from its posterior distribu-
tion and use the t-SNE algorithm (Van der Maaten
and Hinton, 2008) to visualize these variables in
2D space. It can be seen from Figure 5 that the la-
tent spaces of different tasks are well clustered and
clearly separated. This indicates that the latent vari-
able z is able to capture task-specific knowledge
among learned tasks.

We also analyze the influence of dimensions for
latent variable z. The results are listed in Table 5.
We can notice that when we select the dimension
of z as 128, it can reach the best performance. This
phenomenon is reasonable, when the dimension of
z is small, it may not catch enough information to
model the task distribution; when the dimension
is large, it may contain some noisy information,
leading to poorer performance.

5.5 Influence of Sampling Ratio γ

We analyze the influence of the sampling ratio γ
(ranging from 0.01 to 1.0) on the performance of
PCLL. The results in Table 11 indicate that PCLL
is more effective in improving the LL performance
when considering a small number of pseudo sam-
ples (See more details in Appendix B.7).
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Figure 5: t-SNE visualization of latent variables.

5.6 Case Study

We present several pseudo samples generated by
PCLL and LAMOL in Table 6 on the BANKING
task for intent detection (see more cases in Ap-
pendix C). We can observe that: (1) Compared to
LAMOL, pseudo samples produced by PCLL are
closer to real samples from the BANKING dataset;
(2) Some samples generated by LAMOL are incon-
sistent with the task: LAMOL generates samples
for the weather domain, which is not related to the
BANKING task; (3) LAMOL may also generate
unmatched inputs and outputs in pseudo samples
(last line in Table 6). These observations verify our
claim that a single task-specific token is too weak
to constrain the PLM, and our method PCLL helps
to generate high-quality pseudo samples that are
consistent with each task.

Input x Output y

Real
What exchange rate is it? exchange rate
My card never arrived. card arrival
I would like to reactivate my card. card linking

PCLL
What is my exchange rate? exchange rate
My card hasn’t come in yet. card arrival
How do I activate my card? card linking

LAMOL
the weather forecast GetWeather
is it going to be on my card card arrival
I bought a used car card linking

Table 6: Real samples and generated pseudo samples
for the BANKING task.

5.7 Analyses of Forgetting for PCLL

We provide more fine-grained analyses for the for-
getting issue based on findings when learning with
our proposed method PCLL. In Appendix D, we
carry out the analyses from the following four as-
pects: (1) unbalanced classes in some tasks, (2)
conflicted label spaces for different tasks, (3) noisy
pseudo labels for generated samples and (4) the

diversity of pseudo samples created by PCLL.

6 Conclusion

In this paper, we propose PCLL to enhance genera-
tive replay for addressing catastrophic forgetting of
lifelong learning in building NLU modules of ToD
systems. To construct high-quality pseudo samples,
PCLL captures task-specific distributions with a
prompt conditioned VAE to guide the generation
of pseudo samples. Empirical results on two NLU
tasks and extensive analyses demonstrate the su-
perior performance of PCLL and the high quality
of its generated pseudo samples. Currently, we do
not consider lifelong learning in the low-resource
setting where only limited labeled data are avail-
able. In the future, we will extend our framework
to lifelong few-shot learning.

Limitations

Here are some limitations of our work:

• We have not investigated lifelong learning in the
low-resource setting where only limited labeled
data are available. In future works, we will con-
sider combining PCLL with meta-learning (Zhao
et al., 2022a) to extend our framework to a life-
long few-shot learning setting. We will also ex-
tend previous studies by using unlabeled data
(Zhang et al., 2020a; Zhao et al., 2022b) to build
lifelong learning dialogue models.

• We have not considered architecture-based meth-
ods for lifelong learning. However, our
method PCLL can be readily combined with
the architecture-based approach by leverag-
ing parameter-efficient modules (e.g., Adapter
(Houlsby et al., 2019; Zhang et al., 2021), LoRA
(Hu et al., 2021)) into the model architecture to
further mitigate the catastrophic forgetting issue.
We will explore this direction in the future.

Ethical Considerations

All our experiments are conducted on public avail-
able datasets. All metrics used in our paper are
automatic and do not need manual labor. There are
no direct ethical concerns in our study.
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A Details of Datasets

We list the statistics of datasets for the intent de-
tection and slot filling in Table 7 and give detailed
descriptions as follows.

• ATIS consists of audio recordings and cor-
responding manual transcripts about humans
asking for flight information on automated air-
line travel inquiry systems. The data consists
of 17 unique intent categories.

• BANKING contains 13,083 utterances re-
lated to banking domain with 77 different fine-
grained intents.

• CLINC contains 10 domains (e.g., travel,
kitchen, utility, etc.) and 150 different intent
classes.

• DSTC consists of slot annotations spanning 4
domains (buses, events, homes, rental cars).

• HWU includes 64 intents spanning 21 do-
mains (e.g., alarm, music, IoT, news, calendar,
etc.)

• MIT_RESTAURANT is a semantically
tagged training and test corpus in BIO format.

• MIT_MOVIE is a semantically tagged train-
ing and test corpus in BIO format. We choose
“eng” corpus for implementation which con-
sists of simple queries.

• TOP is a dataset of 44K utterances where
each utterance is annotated with a hierarchical
semantic representation.

• SNIPS contains crowdsourced queries dis-
tributed among 7 user intents of various com-
plexity.

B Experiment Details

B.1 Prompt Examples of NLU Tasks

We provide some detailed examples for inputs and
outputs of the model with the designed prompts
in PCLL. For intent detection, when we train on
“BANKING” task, an input utterance x of the lan-
guage model (LM) for a sample is modified as
“For an utterance from the BANKING task,
“I already have one of your cards, how do
I link them?” has the following intent ”,
the output of LM y is its corresponding intent an-
notation: “Card linking”. For the ablation study
of w/o Task ID, the prompt of the above sample
becomes “For an utterance from the current
task, “I already have one of your cards,
how do I link them?””.

Intent Detection Tasks

Task Train Valid Test # Intent

ATIS 4.5K 0.5K 0.9K 17
BANKING 8.6K 1.5K 3.1K 77
SNIPS 11.0K 1.3K 1.3K 7
CLINC 15.0K 3.0K 4.5K 150
HWU 8.9K 1.1K 1.1K 64
TOP-S1 11.9K 1.7K 3.4K 6
TOP-S2 11.9K 1.7K 3.4K 6
TOP-S3 7.4K 1.0K 2.2K 7

Slot Filling Tasks

Task Train Valid Test # Slot

ATIS 4.5K 0.5K 0.8K 79
SNIPS 11.0K 1.3K 1.3K 39
DSTC 3.7K 1.8K 1.8K 13
MIT-MOVIE 8.5K 1.2K 2.4K 12
MIT-RESTAURANT 6.1K 1.5K 1.5K 8

Table 7: Statistics of datasets for intent detection and
slot filling.

For slot filling, when we train on the “MIT-
RESTAURANT” task, an input utterance x is
“Does the Casanova restaurant at Kendall
Square offer a fixed price menu?” of LM is
modified as “In the MIT-RESTAURANT task, if
there are any slots and values, what are
they in this sentence: “Does the Casanova
restaurant at Kendall Square offer a fixed
price menu?”? Answer: ”, the output y lo-
cating the contained slot-value pairs is modified
as “Restaurant name: Casanova; Location:
Kendall Square.”. Here, different slot-value
pairs are formatted as “slot: value” separated
with “;”. If the input x does not contain any slot-
value pairs, we use the sentence “No slot in this
sentence.” as the output y.

B.2 Different Task Orders
We list the six random permutations of tasks that
we use to implement all competing methods in
Table 10.

B.3 Model Implementation Details
We use a pre-trained GPT2 model (Radford et al.,
2019) as the initialization for the encoder and de-
coder of CVAE in PCLL. We set the maximum
context length as 256. Our model contains a total
number of 240M parameters. We train all compet-
ing methods on 1 Tesla-V100 GPU and it takes
around 6 to 10 hours to train all the tasks. More-
over, the training and testing batch sizes are set
to 64. The maximum learning rate is 5e − 5, the
Adam optimizer is used with parameters β1 = 0.9,
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β2 = 0.98 and ϵ = 1e − 8. The number of cy-
cles for the cyclic annealing schedule is set to 4
in each epoch. When generating pseudo samples,
the maximum decoded sequence length is set to 96.
For baselines implementations, we use BERT to
implement HAT and CTR, and choose GPT-2 as
the backbone model for other baselines (LAMOL,
L2KD, ER, Adapter, EWC, MAS, Finetune).

Score LCA

Prompt1 (12 tokens) 90.25 88.82
Prompt2 (13 tokens) 89.94 88.78
Prompt3 (4 tokens) 90.34 88.75
Prompt4 (11 tokens) 90.05 88.50
Prompt5 (28 tokens) 89.20 88.22

Table 8: Applying different manual prompts on lifelong
intent detection tasks. Each result is an average of 6
random task orders.

B.4 Analysis of Manual Prompts Designs

We list five different manual templates as the de-
signed prompts of intent detection in Table 9, where
Prompt1 is the one we use in Table 1. Let ID refers
the task name, x refers the input utterance and y
means the intent of x.

B.5 Analysis of Prompt Attention

We provide the visualization of the attention scores
over several samples employed with our designed
prompts for intent detection tasks. Specifically, the
attention score on each prompt token is calculated
using the averaged attention it receives when gen-
erating the output prediction. From the following
Fig 6, we can notice that the task names do con-
tain meaningful information to be attended to when
generating predictions.

B.6 Analysis of Pseudo-sample Quality

We analyze the quality of generated pseudo sam-
ples with PCLL and other generative replay-based
baselines. Specifically, we first fine-tune a pre-
trained BERT (Devlin et al., 2019) model using
these observed real samples to construct a task clas-
sifier. This classifier can determine the task identity
of a given sample, and it reaches an accuracy of
98.67% on a hold-out test set. The fine-tuned BERT
is used to extract the representation vector of each
sample, and the t-SNE algorithm (Van der Maaten
and Hinton, 2008) is used to map these vectors into

2-dimensions. For a specific task order 3 in LL,
we gather pseudo samples generated when learning
the last task and visualize the feature space of these
samples. Note that the last task, ATIS, is not shown
in Fig. 7 since there is no need to replay the last
task.

Ratio γ Score LCA

0.01 73.61 84.35
0.05 84.09 89.54
0.20 90.25 88.82
0.50 91.02 91.44
1.00 91.31 91.77

Table 11: The LL performance on various sampling
ratio γ. Each result is an average of 6 random task
orders.

B.7 Analysis of Sampling Ratio

Table 11 shows the results on intent detection tasks.
It can be seen that generating more pseudo samples
helps to improve the LL performance. Besides,
the performance gain slows down as the sampling
ratio γ exceeds 0.2, i.e., generating 5 times more
pseudo samples from γ = 0.01 to γ = 0.05 yields
10.48 absolute improvement on the Score metric,
while increasing γ from 0.2 to 1.0 only yields 1.63
absolute improvement.

C Case Study

We present more generated pseudo samples from
PCLL and LAMOL along with real samples in
Table 12. For intent detection, we list real and
pseudo samples from HWU tasks; for slot filling,
we list those samples from MIT-RESTAURANT
and DSTC tasks in Table 12.

D Analyses of Forgetting

We provide more fine-grained analyses for the for-
getting issue.

• Classes with fewer samples are easier to be
forgotten. Some tasks (e.g., ATIS, TOP, MIT-
MOVIE) have unbalanced classes. These minor
classes that only occupy a small portion of train-
ing samples are less likely to appear in pseudo
samples used for replay. For example, the in-
tent “meal” only takes 0.13% of the training sam-
ples for ATIS, and there are barely any pseudo
samples generated for this intent when replaying.

3“TOP-S1, HWU, SNIPS, BANKDING, CLINC, TOP-S2,
TOP-S3, ATIS”
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Different Manual Prompts for Intent Detection

Prompt1 For an utterance from the ID task, x has the following intent y
Prompt2 In the ID task, what intent best describes: x? Answer: y
Prompt3 Task ID utterance x intent y
Prompt4 In the task ID, this utterance x has the intent of y
Prompt5 If we consider the intent detection task, for a sample in the ID task,

what’s the intent of the utterance x? The intent is: y

Table 9: Different manual prompts are designed for intent detection module of a ToD system.

Utterance: Play satire music
Intent: Play music

Utterance: Can you track my card for me?
Intent: Card arrival

Utterance: Find me something to do in Boston this weekend
Intent: Get event

Figure 6: Visualization of attention scores for the natural language prompts of PCLL.

Without these pseudo samples, the model is more
likely to forget these minor classes.

• Different tasks may have partially overlapping
data distributions and conflicted label spaces,
i.e., some tasks may assign different labels to
the same set of utterances. For example, in the
CLINC dataset, the utterance “transfer funds to
the other account” is assigned with a label of
“transfer”; however, in the BANKING dataset,
the same utterance is assigned with a label of
“transfer into account”. These conflicted label
spaces may confuse the model, resulting in incor-
rectly labeled pseudo samples.

• Noisy pseudo labels created by generative replay
may lead to error accumulation, which will down-
grade the performances of previously learned
tasks.

• The diversity of generated pseudo samples for
previous tasks tends to decrease as more replay
times are performed, and these less diversified
pseudo samples lead to more forgetting.
Specifically, we conduct analyses on lifelong in-
tent detection tasks with the following task order
(CLINC, SNIPS, TOP_S3, BANKING, TOP_S2,
HWU, TOP_S1, ATIS). We compare the diversity

of pseudo-samples for the first task (i.e., CLINC)
generated at different replay moments: (1) af-
ter learning the first task, (2) after learning three
subsequent tasks, and (3) after learning eight sub-
sequent tasks (i.e., after the last task’s learning).
In Table 13, we use the distinct scores (Li et al.,
2016) to measure the diversity of pseudo samples.
We can notice that as we learn more tasks, the
diversity of pseudo samples for the first learned
task decreases. Therefore, replaying less diverse
pseudo samples leads to performance degrada-
tion on previous tasks (i.e., forgetting of previous
tasks).

After N Tasks Dist-1 Dist-2 Dist-3 Dist-4

1 0.3593 0.7985 0.9439 0.9838
4 0.3193 0.7308 0.8951 0.9526
8 0.3091 0.6927 0.8593 0.9301

Table 13: Diversity scores of generated pseudo samples
after learning N tasks.
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Figure 7: t-SNE visualization of the feature spaces associated with the generated pseudo samples.

Intent Detection Tasks

Order 1 TOP_S1, HWU, SNIPS, BANKING, CLINC, TOP_S2, TOP_S3, ATIS
Order 2 BANKING, HWU, TOP_S1, TOP_S3, CLINC, TOP_S2, SNIPS, ATIS
Order 3 SNIPS, ATIS, TOP_S2, TOP_S3, CLINC, BANKING, HWU, TOP_S1
Order 4 CLINC, SNIPS, TOP_S3, BANKING, TOP_S2, HWU, TOP_S1, ATIS
Order 5 BANKING, TOP_S2, TOP_S1, ATIS, TOP_S3, HWU, CLINC, SNIPS
Order 6 CLINC, TOP_S1, TOP_S2, ATIS, SNIPS, HWU, BANKING, TOP_S3

Slot Filling Tasks

Order 1 MIT_MOVIE, DSTC, MIT_RESTAURANT, SNIPS, ATIS
Order 2 MIT_MOVIE, SNIPS, DSTC, MIT_RESTAURANT, ATIS
Order 3 ATIS, MIT_MOVIE, DSTC, MIT_RESTAURANT, SNIPS
Order 4 DSTC, MIT_RESTAURANT, MIT_MOVIE, ATIS, SNIPS
Order 5 MIT_MOVIE, ATIS, SNIPS, MIT_RESTAURANT, DSTC
Order 6 SNIPS, ATIS, MIT_RESTAURANT, MIT_MOVIE, DSTC

Table 10: Six random permutations of tasks for intent detection and slot filling.

Utterance Labels

Intent Detection (HWU)

REAL
What is the most current exchange rate in china. qa_currency
Book a train ticket to Canada this evening. transport_ticket
Set up each day an alarm at ten time for my meal. alarm set

PCLL
How many currencies can I exchange for a one pound dollar? qa_currency
Book a train ticket to make it home by five pm. transport_ticket
Please set a new alarm for nine am on Friday. alarm set

LAMOL
How much money is going on for the election. qa_currency
I want to stay in the next week and get a decent. GET_EVENT
I am home from work tomorrow evening. alarm set

Slot Filling (MIT-RESTAURANT)

REAL
Does the caranova restaurant at kendall square offer a fixed price menu. Restaurant name: caranova; Location: kendall square
Could you find me a place that’s open every day. Hours: open every day
I’m in the mood for chinese food. Cuisine: Chinese

PCLL
What pizza place that serves pizza in Manhattan has a great prices and is open at 2 am. Cuisine: pizza; Location: manhattan
What restaurant has good beer that is open before 9 am. Hours: open before 9 am
Find me a vegetarian restaurant with outdoor seating. Cuisine: vegetarian; Amenity: outdoor seating

LAMOL
I would like to rent a room in this area. area: this area
Does this place offer an open menu. Hours: open menu
The reason: It has been a while. No slot in this sentence.

Slot Filling (DSTC)

REAL
Would I would be able to get another car for the 10th of this month? dropoff_date: 10th of the month
I plan to go to Hayward. area: Hayward
I need to pick it up from SD next Thursday. Pickup_city: SD; Pickup_data: next Thursday

PCLL
I need the car until 11th of March, can you find me the available one. dropoff_date: 11th of March
The one in San Mateo is not fully furnished. area: San Mateo
Thanks for not leaving on 2nd of March and I would be in Long Beach, CA. pickup_city: Long Beach, CA

LAMOL
I am looking for an apartment in San Francisco, CA. area: San Francisco, CA
I want to purchase the car, and it’s parked on the street. dropoff_date: on the street
I need to get to the city. pickup_city: Seattle

Table 12: Real samples and generated pseudo samples by PCLL and LAMOL-t.
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