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Abstract

Vision-language pre-training (VLP) has shown
impressive performance on a wide range of
cross-modal tasks, where VLP models with-
out reliance on object detectors are becoming
the mainstream due to their superior compu-
tation efficiency and competitive performance.
However, the removal of object detectors also
deprives the capability of VLP models in ex-
plicit object modeling, which is essential to
various position-sensitive vision-language (VL)
tasks, such as referring expression comprehen-
sion and visual commonsense reasoning. To
address the challenge, we introduce PEVL that
enhances the pre-training and prompt tuning
of VLP models with explicit object position
modeling. Specifically, PEVL reformulates
discretized object positions and language in
a unified language modeling framework, which
facilitates explicit VL alignment during pre-
training, and also enables flexible prompt tun-
ing for various downstream tasks. We show that
PEVL enables state-of-the-art performance of
detector-free VLP models on position-sensitive
tasks such as referring expression comprehen-
sion and phrase grounding, and also improves
the performance on position-insensitive tasks
with grounded inputs. We make the data
and code for this paper publicly available at
https://github.com/thunlp/PEVL.

1 Introduction

Recent progress on self-supervised learning has

led to powerful vision-language pre-training (VLP)

models that achieve state-of-the-art performance on

a wide range of cross-modal tasks (Lu et al., 2019;
* indicates equal contribution
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Li et al., 2020c; Radford et al., 2021; Zhang et al.,
2021; Kamath et al., 2021). Typically, VLP models
are first pre-trained on large-scale image-text data
to learn universal cross-modal representations, and
then fine-tuned to adapt to downstream tasks (Bom-
masani et al., 2021). While most traditional VLP
models heavily rely on external object detectors to
obtain the visual inputs (Lu et al., 2019; Su et al.,
2020; Li et al., 2020c; Zhang et al., 2021), recently
there is a growing interest in VLP models that re-
move the reliance on object detectors due to their
superior computation efficiency and competitive
performance (Li et al., 2021; Kim et al., 2021; Rad-
ford et al., 2021; Kamath et al., 2021).

However, the removal of object detectors also
deprives the capability of VLP models in explicit
object modeling. The drawback hinders successful
handling of vision-language (VL) tasks which are
inherently object-centric, where deep understand-
ing of objects and their interactions plays an essen-
tial role (Antol et al., 2015; Plummer et al., 2015;
Krishna et al., 2017; Hudson and Manning, 2019).
Therefore, it is typically difficult for detector-free!
VLP models to handle various position-sensitive
tasks (i.e., tasks that demand explicit object posi-
tions as input or output), such as visual common-
sense reasoning (Zellers et al., 2019), visual re-
lation detection (Krishna et al., 2017), referring
expression comprehension (Yu et al., 2016) and
phrase grounding (Plummer et al., 2015), which
greatly undermines their generality and practicality
as foundation models (Bommasani et al., 2021).
For tasks that do not require explicit object mod-
eling, such as visual question answering (Antol

'Note that by detector-free, we mean that no external ob-
ject detector tools are required. However, object annotations
may still be needed during pre-training and tuning.
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Figure 1: PEVL formulates positions and language into a unified language modeling framework. (a) During
pre-training, PEVL recovers masked text and position tokens in a generalized masked language modeling (GMLM)
task. (b) During prompt-tuning, PEVL reformulates various VL tasks into a fill-in-the-blank problem, which are

addressed by the reused GMLM head.

et al., 2015), previous works have shown that in-
troducing explicit grounding can also lead to better
performance and robustness (Anderson et al., 2018;
Huang et al., 2019), which can hardly be achieved
in current detector-free VLP models.

In a preliminary exploration, MDETR (Kamath
etal., 2021) proposes to enhance detector-free VLP
models by regressing object positions with Trans-
former decoders, serving position-output tasks such
as referring expression comprehension. However, it
is still unknown how to deal with various position-
input tasks, such as visual commonsense reasoning
and visual relation detection. Moreover, during
fine-tuning, task-specific classification heads are
typically introduced, resulting in a significant gap
between pre-training and fine-tuning, which hin-
ders taking full advantage of pre-trained model
capabilities in downstream tasks.

In this work, we propose PEVL that enhances
the pre-training and prompt tuning of VLP models
with explicit object position modeling. Inspired by
the recent Pix2Seq (Chen et al., 2022) that casts ob-
ject detection as a language modeling task, PEVL
reformulates object positions as discrete tokens,
and learns the joint distribution of object positions
and language in a unified language modeling frame-
work, as shown in Figure 1. Specifically, PEVL
exploits explicit region-text alignments in existing
VL datasets. Discretized position tokens are placed

after object text tokens to indicate the object loca-
tions in both pre-training and prompt tuning:

(1) During pre-training, PEVL learns explicit
VL alignment based on a generalized masked lan-
guage modeling (GMLM) task, where the model
recovers masked text tokens and position tokens
from cross-modal context. We note that although
the discretization of positions enables their uni-
fied modeling with language, it also eliminates
the ordering of positions as compared with tradi-
tional continuous regression methods (i.e., predict-
ing nearby and faraway positions to ground-truth
are equally punished). The problem is exacerbated
by the inevitable small disturbances in the human
annotation of bounding boxes. To address the chal-
lenge, we present a novel ordering-aware objec-
tive for masked position reconstruction, which as-
signs larger probabilistic soft labels for nearby po-
sition tokens, and therefore retains the ordering.
(2) During prompt tuning, PEVL can support var-
ious downstream VL tasks in a flexible prompt
tuning framework, where VL tasks are addressed
by the reused GMLM head in a fill-in-the-blank
paradigm. In this way, PEVL maximally mitigates
the gap between pre-training and tuning, and better
stimulates the pre-trained model capabilities.

We conduct comprehensive experiments on five
VL tasks, including position- output, input and
insensitive tasks. Experimental results show that
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through position enhancement, PEVL enables state-
of-the-art performance of detector-free VLP mod-
els on position-sensitive tasks such as referring
expression comprehension and phrase grounding,
and also improves the performance on position-
insensitive tasks with grounded inputs.

Our contributions are threefold: (1) We unify
the modeling of positions and language in a lan-
guage modeling framework, which enhances both
pre-training and prompt tuning of VLP models. (2)
We present a novel ordering-aware objective that re-
tains the ordering of position tokens and avoids the
influence of position annotation noise. (3) We con-
duct comprehensive experiments on five position-
sensitive and insensitive VL tasks, which demon-
strates the effectiveness of the proposed model.

2 Preliminary

In principle, the PEVL framework is orthogonal
to VLP architectures and can be built on any VLP
models to achieve position enhancement. In this
work, without loss of generality, we adopt AL-
BEF (Li et al., 2021) as the model backbone, which
is a representative detector-free VLP model that
achieves state-of-the-art performance on many VL
tasks. We briefly introduce the pre-training and
fine-tuning procedure of ALBEF, and refer readers
to the original paper for additional details.

Pre-training. The ALBEF architecture is com-
posed of two unimodal encoders followed by a
cross-modal encoder. Images and text are first
encoded using a vision Transformer (Dosovitskiy
et al., 2021) and a text Transformer (Vaswani et al.,
2017) respectively, and then fused with a cross-
modal Transformer. The model is pre-trained with
three tasks, including masked language model-
ing, image-text contrastive learning and image-
text matching. (1) Masked language modeling
aims to recover masked text tokens from the cross-
modal context. (2) Image-text contrastive learning
aligns the intermediate unimodal representations
of image-text pairs by a contrastive loss. (3) Image-
text matching classifies whether an image-text pair
is aligned based on the [CLS] token of the cross-
modal Transformer. To alleviate the noise in the
pre-training text, a momentum model is maintained
based on the moving-average of model parameters
to provide pseudo-targets as additional supervision.

Fine-tuning. During fine-tuning, ALBEF intro-
duces new classification heads or decoders to han-
dle VL tasks, which leads to significant gap from

pre-training. The gap hinders taking full advantage
of pre-trained capabilities for downstream tasks.
Moreover, since object positions cannot be explic-
itly modeled, detector-free VLP models typically
struggle on position-sensitive tasks, which greatly
undermines their generality and practicality.

3 Methodology

We introduce the PEVL framework, including the
position reformulation for VL models, and position-
enhanced VL pre-training and prompt tuning.

3.1 Reformulating Positions for VL. Models

Cross-modal position modeling that explicitly con-
nects image regions and text units underpins a
broad range of VL tasks. To enable strong cross-
modal position modeling capability of VLP mod-
els, a primary challenge is to find a good position
formulation that can be (1) easily integrated and
unified into mainstream VLP models, and can be
(2) flexibly prompt-tuned in various downstream
tasks with minimal gap from pre-training as well.

To this end, previous works attempt to indi-
cate image regions by introducing region embed-
dings (Cho et al., 2021) or colors (Yao et al., 2021b)
that correspond to pre-defined text tokens, which
require pre-detected image regions from costly ex-
ternal object detectors. In contrast, we note that for
the mainstream VLP models with vision Transform-
ers (Dosovitskiy et al., 2021) as visual encoders,
image patch positions are already well indicated by
positional embeddings (Vaswani et al., 2017), and
therefore no special treatments are in fact needed
for visual position coordination.

To explicitly express visual positions in text, in-
spired by Pix2Seq (Chen et al., 2022) that casts ob-
ject detection as a language modeling task, PEVL
reformulates object bounding box coordinates as
discrete position tokens. The position tokens can be
easily unified with text tokens in a language model-
ing framework, where the vocabulary includes both
text and position tokens, and can also be easily pre-
trained with existing VLP techniques. In addition
to the convenience in pre-training, another impor-
tant advantage is that VLP models can be easily
prompt-tuned to handle various position- sensitive
and insensitive VL tasks with minimal gap from
pre-training, as shown in Figure 1.

Specifically, given an image-text pair for pre-
training (I, 7T"), we exploit the composing object
texts and their bounding boxes O = {(c;, b;)} ¥,
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where ¢; is the object text (e.g., person) in text T,
and b; = (Zmin, Ymin, Tmax, Ymax ) 1 the coordinates
of the corresponding bounding box. The bounding
box coordinates are discretized into position tokens
as |Mx/w] and | My/h|, where w and h are the
width and height of the image, and M is the total
number of the position tokens. Intuitively, a larger
number of position tokens will lead to a coordinate
system with higher resolution, but will be more
compute- and data- expensive to learn. Finally the
position tokens are placed after the corresponding
object text ¢; in T to explicitly indicate the object
position. Note that two special tokens “<” and “>”
are introduced to indicate the start and end of posi-
tion tokens, which are useful in prompting models
to produce position tokens in position-output tasks.

3.2 Position-enhanced VL Pre-training

After unifying positions and text in a language mod-
eling framework, PEVL can be easily integrated
into existing VLP models. To effectively learn
the position and text interactions, in addition to
the image-text contrastive and image-text matching
tasks (see Section 2), we present a novel gener-
alized masked language modeling (GMLM) pre-
training task, which recovers both masked text and
position tokens based on a generalized vocabulary
V that includes both types of tokens. We introduce
two main components of the GMLM task, includ-
ing masking strategy and reconstruction objective.

Masking Strategy. While the text tokens are
usually masked with low ratios (e.g., 15%) in tra-
ditional MLLM tasks (Devlin et al., 2019; Li et al.,
2021), we find that the same masking strategy can-
not well serve position modeling. The reason is that
object positions are relatively low-level signals, and
therefore models can easily reconstruct the masked
position tokens when the masking ratio is low. For
example, reconstructing a single masked position
token (e.g., Tmin) given the other three unmasked
ones will be largely equivalent to enclosing an ob-
ject by moving a corner of the bounding box in a
straight line, which does not require deep under-
standing of the VL semantics. Similar problems
are also discussed in self-supervised learning on
images (He et al., 2022).

To address the issue, we adopt high masking
ratios for position tokens, and encourage mask-
ing a more complete subset of object positions.
Specifically, for each object, we randomly mask
n of its four position tokens with 0.25 probabil-

ity, where n = 1,2, 3,4. For example, for 25%
of the time, the four object positions (i.e., n = 4)
are completely masked for reconstruction. For text
tokens, we follow the 15% masking strategy in pre-
vious works (Li et al., 2021).2 In this way, models
are forced to learn high-level semantic interactions
among image regions, text and position tokens.

Reconstruction Objective. Traditional MLM
tasks typically adopt a one-hot target for token re-
construction. However, we note that the one-hot
target essentially eliminates the ordering of the po-
sitions: If the position prediction is not exactly
correct, predicting nearby and faraway positions
to ground-truth are equally punished. The prob-
lem is exacerbated by the inevitable small distur-
bances in the human annotation process of bound-
ing boxes, which confuses models in discrete posi-
tion learning. To address the problem, we present a
novel ordering-aware objective for position recon-
struction that assigns larger probabilistic soft labels
for nearby position tokens. Specifically, given a
masked position token, the unnormalized proba-
bilistic label y; for each position token p; decreases
exponentially with its distance to the ground-truth:

yi=e M

where |p; — p*| is the distance between p; and the
ground-truth p*, and « is a hyperparameter control-
ling the decay rate. The normalized probabilistic
label y; is then used to compute the ordering-aware
objective for position tokens:

Ly == gilog P([MASK] = p;). @)
Pi
The probability of position tokens is given by
the GMLM head as:

T
exp(h yask) Pi)

P([MASK] =p;) = ,
ij eXp(h—{MASK] pj)

3

where h yasx; is the hidden representation of the
[MASK] token, and p; is the representation of po-
sition token p; in the GMLM head. In this way, the
objective retains the ordering of position tokens and
avoids the influence of position annotation noise.
For the text token reconstruction loss L, we follow
the traditional implementation in ALBEF (Li et al.,
2021). The final GMLM loss is the weighted sum
of the loss for position token reconstruction and

For the chosen text tokens, the replacements are 80%
[MASK] tokens, 10% random tokens, and 10% unchanged.
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text token reconstruction: Lomim = AL, + Ly,
where ) is a weighting hyperparameter.

Pre-training Corpora. PEVL exploits explicit
object position annotation in VL datasets for po-
sition learning. The pre-training corpora consist
of referring expressions (Yu et al., 2016; Mao
et al., 2016), Flickr30k (Plummer et al., 2015),
GQA (Hudson and Manning, 2019), VCR (Zellers
et al., 2019) and Visual Genome (Krishna et al.,
2017), with 4.7M image-text pairs in total. Follow-
ing Chen et al. (2020), we remove the images in
the downstream test and validation sets from the
pre-training corpora.

3.3 Position-enhanced VL Prompt Tuning

To adapt VLP models to downstream tasks, pre-
vious works typically introduce new classification
heads or even Transformer decoders (Kamath et al.,
2021; Li et al., 2021; Chen et al., 2020), lead-
ing to significant gap from pre-training. Recent
works in pre-trained language models have shown
that a consistent tuning approach with pre-training
(i.e., prompt tuning) can better stimulate the pre-
trained capability in downstream tasks (Schick and
Schiitze, 2021; Gao et al., 2021; Liu et al., 2021).
However, it is still unknown whether and how
VLP models can be prompt tuned to support both
position- sensitive and insensitive VL tasks.

In this context, a crucial advantage of unifying
positions with language is that, VLP models can
be easily prompt-tuned to handle various VL tasks
based on the reused GMLM head with minimal gap
from pre-training. We divide VL tasks according
to the role of positions, including position-output
tasks, position-input tasks, and position-insensitive
tasks. Here we introduce the main prompt tuning
procedure for position-sensitive tasks. In our exper-
iments, we show that position-insensitive tasks can
also benefit from well-grounded inputs in PEVL
framework (see Section 4.1).

Position-output Tasks demand positions as task
outputs (e.g., predicting the positions of objects
described by text), such as referring expression
comprehension and phrase grounding. To handle
position-output tasks, we simply place four con-
secutive [MASK] tokens wrapped by “<” and “>”
after object texts to be grounded for position pre-
diction. (1) Referring Expression Comprehension.
Since the task requires locating the head noun, we
place the mask tokens after the first object text for
position prediction. (2) Phrase Grounding. Since

the task requires locating all objects, mask tokens
are placed after each object text. After placing
mask tokens, the model is prompt-tuned to produce
position tokens with reused GMLM head based on
the ordering-aware objective as in Equation 2.

Position-input Tasks require a mixture of po-
sition and text (i.e., grounded text) as task inputs,
such as visual commonsense reasoning and visual
relation detection. To handle position-input tasks,
PEVL first explicitly indicates the object positions
in input text (see Section 3.1)3, and then produces
answers in a fill-in-the-blank paradigm based on
the reused GMLM head.

Visual Commonsense Reasoning. Given a ques-
tion, models are asked to choose the answer sen-
tence (and rationale) from multiple candidates.
For answer selection, the question ¢ and answer
candidate a; are put in a prompt template as:
“q a; answer: [MASK]”. Then the model can be
prompted to decide which token ¢ € {yes,no} is
more proper to reconstruct the [MASK] token. An-
other plausible alternative is to reuse the image-text
matching head to discriminate whether the image is
aligned with the concatenated question and answer.
The intuition is that a question concatenated with
the correct answer can better match the image con-
tent than concatenated with a wrong answer. In our
experiments, we find that the latter approach yields
better performance on VCR. Despite the essential
equivalence of the two prompting approaches (i.e.,
classifying special tokens in the last layer into bi-
nary labels with reused pre-trained heads), image-
text matching task focuses more on the holistic
matching between cross-modal signals during pre-
training, which better fits the VCR task containing
typically long text answers.

Visual Relation Detection. Given an object pair
(s,0) (e.g., woman, horse) in the image, models are
required to classify their semantic relation r (e.g.,
watching, riding). We design the prompt template
as: “The s is [MASK] the 0”. Then the model is
prompted to produce the relational tokens from the
relation set with reused GMLM head. To deal with
relations that consist of different numbers of tokens,
we pad relational tokens to a maximum length [,
and place [ consecutive masks in the template for
relation prediction. We also include a special re-
lation no relation with in the relation set, which
indicates no relation between the object pair. Dur-

3We omit the position tokens in the task input in the fol-
lowing for simplicity.
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Model Object RefCOCO RefCOCO+ RefCOCOg Flickr30k
Detector val  testA testB val testA  testB val test val test
MALttNet (Yu et al., 2018a) w/ 76.7  81.1 70.0 65.3 71.6 56.0 66.6 673 - -
DDPN (Yu et al., 2018b) w/ 76.8  80.1 72.4 64.8 70.5 54.1 - - 72.8 735
VL-T5 (Cho et al., 2021) w/ - - - - - - 712 713 - -
VILBERT (Lu et al., 2019) w/ - - - 72.3 78.5 62.6 - - - -
VL-BERT_L (Su et al., 2020) w/ - - - 72.6 78.6 62.3 - - - -
UNITER_L (Chen et al., 2020) w/ 814 87.0 742 75.9 81.5 66.7 749 758 - -
VinVL_L (Zhang et al., 2021) w/ 81.8 872 743 74.5 80.8 643 746 757 - -
VILLA_L (Gan et al., 2020) w/ 824 875 749 76.2 81.5 66.8 762 76.7 - -
ERNIE-ViIiL_L (Yu et al., 2021) w/ - - - 80.0 82.1 66.9 - - - -
UniTAB (Yang et al., 2022) w/o 88.6 91.1 83.8 81.0 85.4 71.6 846 84.7 - 79.6
MDETR (Kamath et al., 2021) w/o 875 904 827 81.1 85.5 730 834 833 823 838
OFA (Wang et al., 2022a) w/o 88.5 90.7 833 81.4 87.2 743 823 823 - -
ALBEFT (Li et al., 2021) w/o - - - 58.5 65.9 46.3 - - - -
PEVL w/o 89.6 925 85.0 83.0 88.4 745 871 863 84.1 844
A - - - - +24.5 +22.5 +28.2 - - - -

Table 1: Experimental results on referring expression comprehension and phrase grounding. L: large size model. f:
weakly supervised results, where only image-expression pairs are used due to the lack of explicit position modeling
capability. A: improvements of PEVL over the ALBEF backbone.

Model Q—A QA —R Q — AR Model R@50 R@100 mR@50 mR@100
R2C 63.8(65.1) 67.2(67.3) 43.1(44.0) MSDN 64.6 66.6 15.9 17.5
TAB-VCR 69.9 (70.4) 722 (71.7)  50.6 (50.5) VCTree 65.5 674 154 16.6
VisualBERT  70.8 (71.6) 73.2(73.2) 52.2(52.4) GPS-Net 65.2 67.1 15.2 16.6
VIiLBERT 724 (73.3) 74.5(74.6) 54.0(54.8) Motif 66.0 67.9 14.6 15.8
Unicoder-VL ~ 72.6 (73.4) 74.5(74.4) 54.4(54.9) VisualDS 64.4 66.4 16.1 17.5
B2T2 73.2(74.0) 77.1(77.1) 56.6 (57.1) Unbiased 472 51.6 25.4 28.7
UNITER 74.6 (75.0) 77.0(77.2) 57.8(58.2) IETrans 48.6 50.5 35.8 39.1
VL-BERT 73.8(75.8) 74.4(78.4) 55.2(59.7) DT2-ACBS 233 25.6 359 39.7
ALBEF 71.9(72.9) 74.5(74.5) 54.1(54.7) ALBEF 57.6 63.5 12.2 154
PEVL 75.1(76.0) 76.4(76.7) 57.8(58.6) PEVL 64.4 66.3 21.7 23.5
A +3.2(+3.1) +1.9(+2.2) +3.7 (+3.9) A +6.8 +2.8 +9.5 +8.1

Table 2: Experimental results of visual commonsense
reasoning on VCR validation (and test) sets.

ing inference, the score of relation 7 is given by
the average log probability of non-padding tokens:
Sy = ﬁ Zy:'llog P([Mask] @ = (), where
[MASK] () is the i-th mask token, and 7(?) is the
t-th token of r. An important advantage of prompt
tuning for the task is that, the large number of long-
tail relations can be better learned thanks to the rich
knowledge in VLP models.

4 Experiments

We evaluate PEVL on five popular VL tasks. The
models are in base size unless otherwise specified.

4.1 Main Results

Referring Expression Comprehension. We adopt
three popular datasets for the task, including Re-
fCOCO, RefCOCO+ (Yu et al., 2016) and Ref-
COCOg (Mao et al., 2016). We use accuracy @0.5

Table 3: Experimental results of visual relation detection
on Visual Genome dataset.

as the evaluation metric (Kamath et al., 2021). For
baselines, we compare with state-of-the-art models
for the task, and VLP models with large-size back-
bones. We report the weakly supervised results
from ALBEF (Li et al., 2021), which uses GRAD-
CAM (Selvaraju et al., 2017) heat map to rank the
object candidates from external detectors.

From the experimental results in Table 1, we
have the following observations: (1) PEVL outper-
forms all baseline models, achieving a new state-
of-the-art on all three datasets for the task. Specifi-
cally, the base-size PEVL outperforms the state-of-
the-art regression-based MDETR by 2.9 absolute
points on the RefCOCO+ testA set, and large-size
VLP models that use external detector feature in-
puts, such as ERNIE-ViL and VILLA. (2) PEVL
significantly improves the ALBEF backbone by
explicit object position modeling, effectively ad-
dressing the shortcoming in position-output tasks.
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Models

‘LXMERT BAN CTI

CFR ‘ ALBEF PEVLfY A

Accuracy | 59.8 615 61.7

736 | 64.8 77.0 +12.2

Table 4: Visual question answering results on GQA validation set. {: grounded inputs.

Question Type | Relation  Attribute  Object Category  Global | Overall
Percentage (%) |  46.7 32.0 11.8 6.5 3.1 | 100.0
ALBEF 56.9 67.9 87.9 62.5 68.1 64.8
PEVLY} 68.4 84.2 98.1 68.8 68.5 77.0
A +11.5 +16.3 +10.2 +6.3 +0.4 +12.2

Table 5: Visual question answering results of different question types on GQA validation set. §: grounded inputs.

Model RefCOCO+ Flickr30k VCR VG GQA
val  testA testB  val test Q—A QA—R Q—AR R@50 mR@50 val

PEVL 831 884 745 84.1 844 75.1 76.4 57.8 64.4 21.7 77.0
w/o PT - - - - - 75.1 76.2 57.6 61.7 14.2 77.0
w/oOAO 799 863 694 822 829 75.6 76.3 57.8 64.1 21.5 76.4
w/o Pos - - - - - 71.9 74.5 54.1 61.5 18.9 66.6

Table 6: Ablation results. PT: prompt tuning, OAO: ordering-aware objective, Pos: position tokens.

Phrase Grounding. We perform experiments
on the Flickr30k entities dataset (Plummer et al.,
2015). Following MDETR, we adopt merged-box
accuracy @0.5 as the evaluation metric, and com-
pare our model with the state-of-the-art baselines
for the task (Kamath et al., 2021; Yang et al., 2022).
From Table 1 we observe that PEVL achieves a
new state-of-the-art on the phrase grounding task
in grounding multiple objects in text. The results
show that PEVL can effectively integrate positions
with language to achieve competitive performance
for various position-output tasks.

Visual Commonsense Reasoning. We adopt
the popular VCR benchmark (Zellers et al., 2019),
which provides human-annotated positions for ob-
jects. We report the accuracy of predicting the an-
swer (Q — A), rationale (QA — R) and both (Q —
AR). We compare with task-specific baselines and
strong VLP models. For fair comparisons, we fur-
ther pre-train ALBEF baseline on the same corpora
as PEVL in all experiments. From the results in Ta-
ble 2, we observe that PEVL significantly improves
the ALBEF backbone (e.g., by 3.9 absolute points
in Q — AR), achieving comparable performance
to strong UNITER equipped with external object
detectors. While the results are not state-of-the-art
on the VCR benchmark, they are quite reasonable
considering the current literature. The results show
that PEVL can effectively provide clues for com-
plex reasoning through grounded inputs.

Visual Relation Detection. We evaluate PEVL
on the widely used Visual Genome dataset (Krishna
et al., 2017), which contains 50 visual relation
types. Given the human-annotated positions and
labels of an object pair, models are required to pre-
dict the relations. Following previous works (Tang
et al., 2020; Lin et al., 2020), we report the re-
call@K (R@K) and mean recall @K (mR @K) as
evaluation metrics. We compare PEVL with state-
of-the-art baselines with detector feature inputs.
From Table 3, we observe that: (1) Without task-
specific designs or heuristics, PEVL achieves com-
petitive performance in both R@K and mR@K.
The results show that PEVL can effectively stimu-
late the knowledge in VLP models for both frequent
and long-tail relations through prompt tuning. (2)
ALBEEF struggles on the visual relation detection
task, since the positions of the target object pair can-
not be informed. In contrast, PEVL can effectively
integrate the object position information through
simple position tokens for relation prediction.

Visual Question Answering. For position-
insensitive tasks such as visual question answering,
object positions are not required to be explicitly
modeled. However, we argue that explicit object
position modeling can provide fine-grained clues
for complex question reasoning. Specifically, we
are interested in the question: Can VLP models
benefit from grounded text for answering complex
questions in PEVL framework?
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ram that is eating off the ground

brown horse with grey saddle blanket

IR
silver in a blue sky, ready to
land with its wheels down, while
spectators watch behind a high fence

Figure 2: Case study on referring expression comprehension and phrase grounding tasks.

In principle, to achieve explicit position augmen-
tation, VQA can be decomposed into two position-
sensitive stages, including an object grounding
(position-output) stage and a question answering
(position-input) stage. However, in our experi-
ments, we find that the unneglectable errors in
current visual grounding models constitute a bot-
tleneck for such a two-stage model. Therefore,
we turn to an ideal experiment, where the ground-
truth object positions are available. Specifically,
we adopt the object position annotation provided
by the GQA dataset (Hudson and Manning, 2019).
We explicitly indicate the position of each object
in a similar approach as in position-input tasks (see
Section 3.3). Then the position-enhanced ques-
tion is put into the prompt template: “q answer:

[MASK]”. Finally models are asked to generate
answer tokens from answer candidate set. We use
the same approach as in visual relation detection to
cope with multi-token answers.

From Table 4 we observe that with grounded in-
puts, PEVL significantly improves the performance
of ALBEF backbone in compositional question an-
swering. The results show that object grounding is
still one of the key obstacles in VQA, and PEVL
can effectively utilize grounded questions for VQA
in a simple prompt tuning framework. To investi-
gate which type of questions benefit from grounded
inputs, we divide GQA validation set according to
the question types from MDETR. From Table 5,
we can see that high-quality grounding signals im-
prove the performance on all question types. In-
terestingly, relation and attribute-based questions
benefit more from grounded text than object-based
questions, indicating the fundamental role of object
modeling in reasoning over complex questions.

4.2 Experimental Analysis

Ablation Study. We ablate key components of
PEVL, including prompt tuning, ordering-aware

Mask | val  testA

20% 893 923 843 5
40% 80.0 922 847 5
60% 89.4 924 834 7
Ours | 89.6 925 85.0 3

testB | Epochs

Table 7: Performance and epochs of different masking
strategies on the RefCOCO dataset.

objective, and position tokens to investigate their
contribution. From the results in Table 6, we can
see that all components contribute to the final per-
formance. Specifically, position enhancement and
prompt tuning are essential for PEVL to perform
position-output tasks. Prompt tuning can also be
helpful in learning long-tail relations for visual
relation detection, which is consistent with the
results from previous works (Yao et al., 2021Db).
The ordering-aware objective contributes more to
position-output tasks than position-input tasks.

Influence of Masking Strategies. We investi-
gate the influence of different masking strategies
for position tokens during pre-training. Specifi-
cally, for baselines, the position tokens are inde-
pendently chosen with a certain probability during
pre-training, where the ratios of masked, replaced
and unchanged tokens for the chosen token are kept
identical to BERT (Devlin et al., 2019). We report
the performance and the number of epochs required
in the intermediate pre-training on the RefCOCO
dataset. From the results in Table 7, we observe
that our masking strategy achieves both better per-
formance and faster convergence. The results show
that a high masking ratio and a more complete sub-
set of masked positions are both important for good
position learning results.

Case Study. We visualize the position predic-
tions on the validation sets of RefCOCO+, Ref-
COCOg and Flicker30k. Previous visual local-
ization models are either based on continuous re-
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gression (Kamath et al., 2021), or limited to non-
language tasks (Chen et al., 2022). From Fig-
ure 2, we can see that discretized positions can be
closely integrated with language in Transformers
to achieve strong visual reasoning and localization
results. Similar to regression-based models, the
localization of small objects (e.g., wheels in the
right figure) can also be challenging.

5 Related Work

Position Enhancement for VLP. Object position
modeling underpins a wide range of VL tasks. To
deal with position-output tasks, some works (Ka-
math et al., 2021; Gupta et al., 2022; Yang et al.,
2022) propose to perform object position predic-
tion using Transformer decoders, but are unable to
handle various position-input tasks. To explicitly
indicate position inputs for VLP models, previous
works explored learning region embeddings (Cho
et al., 2021), or color-based cross-modal corefer-
ential markers (Yao et al., 2021b), but rely on ex-
ternal object detectors. MERLOT (Zellers et al.,
2021) also proposes to highlight objects in images
with colors for position-input tasks. X-VLM (Zeng
et al., 2022) aligns multi-grained concepts in text
and image for VLP models. In comparison, PEVL
supports both position- input and output VL tasks
in a unified prompt tuning framework.

Prompt Tuning. Prompt tuning for pre-trained
language models is in rapid growth in natural lan-
guage processing (Petroni et al., 2019; Raffel et al.,
2020; Brown et al., 2020; Schick and Schiitze,
2021; Gao et al., 2021; Qin and Eisner, 2021; Liu
et al., 2021; Yao et al., 2022). Recently there is
also growing interest in prompt tuning VLP models.
Most existing works prompt tune contrastively pre-
trained image-text matching models (Radford et al.,
2021; Jia et al., 2021) for recognition tasks (Zhou
etal., 2022; Rao et al., 2022; Wang et al., 2021; Gu
et al., 2022; Xie and Zheng, 2021; Ju et al., 2022).
CPT (Yao et al., 2021b) prompt tunes VLP models
with color-based prompts, and achieves promising
results for zero- and few-shot tasks. Some works
perform pre-training and VL tasks using identical
Transformer decoders in an auto-regressive fash-
ion (Wang et al., 2022b; Cho et al., 2021; Yang
et al., 2022; Tsimpoukelli et al., 2021), which
avoids the gap between pre-training and tuning,
but are typically limited in performance due to the
unidirectional architecture.

6 Conclusion and Future Work

In this work, we present PEVL that enhances
the pre-training and prompt-tuning of detector-
free VLP models with unified position and lan-
guage modeling. Comprehensive experimental re-
sults demonstrate the effectiveness of the proposed
model. Future works include exploring weakly su-
pervised signals for position and language learning
without human annotation.
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8 Limitations

We identify several key limitations of PEVL that
are promising for future explorations.

Computation Cost. To explicitly model object
positions and text in a unified framework, we intro-
duce four additional position tokens for each target
object, which requires more computation cost. Im-
proving the computation efficiency of additional
position tokens is an important direction for future
improvements.

Object Annotation. Similar to other explicit ob-
ject position modeling VLP models, PEVL requires
manual object annotation in multi-modal datasets.
It will be promising to explore pre-training tasks
that can learn position tokens with less supervi-
sion. For example, VLP models can be boot-
strapped from small-scale human annotations and
large-scale predicted annotations.

References

Chris Alberti, Jeffrey Ling, Michael Collins, and David
Reitter. 2019. Fusion of detected objects in text for vi-
sual question answering. In Proceedings of EMNLP-
IJCNLP.

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
2018. Bottom-up and top-down attention for image

11112


https://arxiv.org/abs/1908.05054
https://arxiv.org/abs/1908.05054
https://openaccess.thecvf.com/content_cvpr_2018/papers/Anderson_Bottom-Up_and_Top-Down_CVPR_2018_paper.pdf

captioning and visual question answering. In Pro-
ceedings of CVPR.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and
Devi Parikh. 2015. VQA: Visual question answering.
In Proceedings of ICCV.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
Iut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In Proceddings of NeurIPS.

Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and
Geoffrey Hinton. 2022. Pix2Seq: A language model-
ing framework for object detection. In Proceedings
of ICLR.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed
El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020. UNITER: Universal image-text
representation learning. In Proceedings of ECCV.

Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. 2021.
Unifying vision-and-language tasks via text genera-
tion. In Proceedings of ICML.

Alakh Desai, Tz-Ying Wu, Subarna Tripathi, and Nuno
Vasconcelos. 2021. Learning of visual relations: The
devil is in the tails. In Proceedings of ICCV.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT.

Tuong Do, Thanh-Toan Do, Huy Tran, Erman Tjiputra,
and Quang D Tran. 2019. Compact trilinear interac-

tion for visual question answering. In Proceedings
of ICCV.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2021.
An image is worth 16x16 words: Transformers for
image recognition at scale. In Proceedings of ICLR.

Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu,
Yu Cheng, and Jingjing Liu. 2020. Large-scale adver-
sarial training for vision-and-language representation
learning. In Proceedings of NeurIPS.

Tianyu Gao, Adam Fisch, and Dangi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of ACL.

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui.
2022. Open-vocabulary object detection via vision
and language knowledge distillation. In Proceedings
of ICLR.

Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi,
and Derek Hoiem. 2022. Towards general purpose
vision systems: An end-to-end task-agnostic vision-
language architecture. In Proceedings of CVPR.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Pi-
otr Dollar, and Ross Girshick. 2022. Masked autoen-
coders are scalable vision learners. In Proceedings
of CVPR.

Pingping Huang, Jianhui Huang, Yuqing Guo, Min Qiao,
and Yong Zhu. 2019. Multi-grained attention with
object-level grounding for visual question answering.
In Proceedings of ACL.

Drew A Hudson and Christopher D Manning. 2019.
GQA: A new dataset for real-world visual reasoning
and compositional question answering. In Proceed-
ings of CVPR.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana
Parekh, Hieu Pham, Quoc V. Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. 2021. Scaling up vi-
sual and vision-language representation learning with
noisy text supervision. In Proceedings of ICML.

Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, and
Weidi Xie. 2022. Prompting visual-language models
for efficient video understanding. In Proceedings of
ECCV.

Aishwarya Kamath, Mannat Singh, Yann LeCun, Ishan
Misra, Gabriel Synnaeve, and Nicolas Carion. 2021.
MDETR: Modulated detection for end-to-end multi-
modal understanding. In Proceedings of ICCV.

Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang.
2018. Bilinear attention networks. In Proceedings of
NeurIPS.

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021. ViLT:
Vision-and-language transformer without convolu-
tion or region supervision. In Proceedings of ICML.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual Genome: Connecting language and
vision using crowdsourced dense image annotations.
International Journal of Computer Vision.

Gen Li, Nan Duan, Yuejian Fang, Ming Gong, and
Daxin Jiang. 2020a. Unicoder-VL: A universal en-
coder for vision and language by cross-modal pre-
training. In Proceedings of AAAI

Junnan Li, Ramprasaath R Selvaraju, Akhilesh Deepak
Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Hoi. 2021. Align before fuse: Vision and language
representation learning with momentum distillation.
In Proceedings of NeurlPS.

11113


https://openaccess.thecvf.com/content_cvpr_2018/papers/Anderson_Bottom-Up_and_Top-Down_CVPR_2018_paper.pdf
http://arxiv.org/pdf/1505.00468.pdf
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/pdf?id=e42KbIw6Wb
https://openreview.net/pdf?id=e42KbIw6Wb
https://arxiv.org/abs/1909.11740
https://arxiv.org/abs/1909.11740
http://proceedings.mlr.press/v139/cho21a/cho21a.pdf
http://proceedings.mlr.press/v139/cho21a/cho21a.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Desai_Learning_of_Visual_Relations_The_Devil_Is_in_the_Tails_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Desai_Learning_of_Visual_Relations_The_Devil_Is_in_the_Tails_ICCV_2021_paper.pdf
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf
https://aclanthology.org/N19-1423.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Do_Compact_Trilinear_Interaction_for_Visual_Question_Answering_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Do_Compact_Trilinear_Interaction_for_Visual_Question_Answering_ICCV_2019_paper.pdf
https://openreview.net/pdf?id=YicbFdNTTy
https://openreview.net/pdf?id=YicbFdNTTy
https://proceedings.neurips.cc/paper/2020/file/49562478de4c54fafd4ec46fdb297de5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/49562478de4c54fafd4ec46fdb297de5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/49562478de4c54fafd4ec46fdb297de5-Paper.pdf
https://aclanthology.org/2021.acl-long.295.pdf
https://aclanthology.org/2021.acl-long.295.pdf
https://arxiv.org/abs/2104.13921
https://arxiv.org/abs/2104.13921
https://openaccess.thecvf.com/content/CVPR2022/papers/Gupta_Towards_General_Purpose_Vision_Systems_An_End-to-End_Task-Agnostic_Vision-Language_Architecture_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Gupta_Towards_General_Purpose_Vision_Systems_An_End-to-End_Task-Agnostic_Vision-Language_Architecture_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/Gupta_Towards_General_Purpose_Vision_Systems_An_End-to-End_Task-Agnostic_Vision-Language_Architecture_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/He_Masked_Autoencoders_Are_Scalable_Vision_Learners_CVPR_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022/papers/He_Masked_Autoencoders_Are_Scalable_Vision_Learners_CVPR_2022_paper.pdf
https://aclanthology.org/P19-1349.pdf
https://aclanthology.org/P19-1349.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Hudson_GQA_A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Hudson_GQA_A_New_Dataset_for_Real-World_Visual_Reasoning_and_Compositional_CVPR_2019_paper.pdf
http://proceedings.mlr.press/v139/jia21b/jia21b.pdf
http://proceedings.mlr.press/v139/jia21b/jia21b.pdf
http://proceedings.mlr.press/v139/jia21b/jia21b.pdf
https://arxiv.org/pdf/2112.04478v2.pdf
https://arxiv.org/pdf/2112.04478v2.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Kamath_MDETR_-_Modulated_Detection_for_End-to-End_Multi-Modal_Understanding_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Kamath_MDETR_-_Modulated_Detection_for_End-to-End_Multi-Modal_Understanding_ICCV_2021_paper.pdf
http://papers.neurips.cc/paper/7429-bilinear-attention-networks.pdf
http://proceedings.mlr.press/v139/kim21k/kim21k.pdf
http://proceedings.mlr.press/v139/kim21k/kim21k.pdf
http://proceedings.mlr.press/v139/kim21k/kim21k.pdf
https://link.springer.com/content/pdf/10.1007/s11263-016-0981-7.pdf
https://link.springer.com/content/pdf/10.1007/s11263-016-0981-7.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/6795/6649
https://ojs.aaai.org/index.php/AAAI/article/view/6795/6649
https://ojs.aaai.org/index.php/AAAI/article/view/6795/6649
https://openreview.net/pdf?id=OJLaKwiXSbx
https://openreview.net/pdf?id=OJLaKwiXSbx

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2020b. VisualBERT:
A simple and performant baseline for vision and lan-
guage. In Proceedings of ACL.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang,
Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu,
Li Dong, Furu Wei, et al. 2020c. Oscar: Object-
semantics aligned pre-training for vision-language
tasks. In Proceedings of ECCV.

J. Lin, U. Jain, and A. G. Schwing. 2019. TAB-VCR:
Tags and attributes based vcr baselines. In Proceed-
ings of NeurlPS.

Xin Lin, Changxing Ding, Jinquan Zeng, and Dacheng
Tao. 2020. GPS-Net: Graph property sensing net-
work for scene graph generation. In Proceedings of
CVPR.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. VILBERT: Pretraining task-agnostic visiolin-
guistic representations for vision-and-language tasks.
In Proceedings of NeurlPS.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan L Yuille, and Kevin Murphy. 2016.
Generation and comprehension of unambiguous ob-
ject descriptions. In Proceedings of CVPR.

Binh X Nguyen, Tuong Do, Huy Tran, Erman Tjiputra,
Quang D Tran, and Anh Nguyen. 2022. Coarse-
to-fine reasoning for visual question answering. In
Proceedings of CVPR Workshops.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of EMNLP-IJCNLP.

Bryan A Plummer, Liwei Wang, Chris M Cervantes,
Juan C Caicedo, Julia Hockenmaier, and Svetlana
Lazebnik. 2015. Flickr30k entities: Collecting
region-to-phrase correspondences for richer image-
to-sentence models. In Proceedings of ICCV.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of NAACL.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models

from natural language supervision. In Proceedings
of ICML.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits

of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research.

Yongming Rao, Wenliang Zhao, Guangyi Chen, Yan-
song Tang, Zheng Zhu, Guan Huang, Jie Zhou, and Ji-
wen Lu. 2022. DenseCLIP: Language-guided dense
prediction with context-aware prompting. In Pro-
ceedings of CVPR.

Timo Schick and Hinrich Schiitze. 2021. It’s not just
size that matters: Small language models are also
few-shot learners. In Proceedings of NAACL.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. 2017. GRAD-CAM: Visual explana-
tions from deep networks via gradient-based localiza-
tion. In Proceedings of ICCV.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu,
Furu Wei, and Jifeng Dai. 2020. VL-BERT: Pre-
training of generic visual-linguistic representations.
In Proceedings of ICLR.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of EMUNLP-1IJCNLP.

Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi,
and Hanwang Zhang. 2020. Unbiased scene graph
generation from biased training. In Proceedings of
CVPR.

Kaihua Tang, Hanwang Zhang, Baoyuan Wu, Wenhan
Luo, and Wei Liu. 2019. Learning to compose dy-
namic tree structures for visual contexts. In Proceed-
ings of CVPR.

Maria Tsimpoukelli, Jacob Menick, Serkan Cabi,
SM Eslami, Oriol Vinyals, and Felix Hill. 2021. Mul-
timodal few-shot learning with frozen language mod-
els. In Proceedings of NeurIPS.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of NeurlPS.

Mengmeng Wang, Jiazheng Xing, and Yong Liu. 2021.
ActionCLIP: A new paradigm for video action recog-
nition. In Proceedings of CVPR.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. 2022a. OFA: Unifying
architectures, tasks, and modalities through a sim-
ple sequence-to-sequence learning framework. In
Proceedings of ICML.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai,
Yulia Tsvetkov, and Yuan Cao. 2022b. SimVLM:
Simple visual language model pretraining with weak
supervision. In Proceedings of ICLR.

11114


https://arxiv.org/abs/1908.03557
https://arxiv.org/abs/1908.03557
https://arxiv.org/abs/1908.03557
https://arxiv.org/abs/2004.06165
https://arxiv.org/abs/2004.06165
https://arxiv.org/abs/2004.06165
https://papers.nips.cc/paper/2019/file/1fa6269f58898f0e809575c9a48747ef-Paper.pdf
https://papers.nips.cc/paper/2019/file/1fa6269f58898f0e809575c9a48747ef-Paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Lin_GPS-Net_Graph_Property_Sensing_Network_for_Scene_Graph_Generation_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Lin_GPS-Net_Graph_Property_Sensing_Network_for_Scene_Graph_Generation_CVPR_2020_paper.pdf
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://papers.nips.cc/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://papers.nips.cc/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://arxiv.org/abs/1511.02283
https://arxiv.org/abs/1511.02283
https://openaccess.thecvf.com/content/CVPR2022W/MULA/papers/Nguyen_Coarse-To-Fine_Reasoning_for_Visual_Question_Answering_CVPRW_2022_paper.pdf
https://openaccess.thecvf.com/content/CVPR2022W/MULA/papers/Nguyen_Coarse-To-Fine_Reasoning_for_Visual_Question_Answering_CVPRW_2022_paper.pdf
https://aclanthology.org/D19-1250.pdf
https://aclanthology.org/D19-1250.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/Plummer_Flickr30k_Entities_Collecting_ICCV_2015_paper.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/Plummer_Flickr30k_Entities_Collecting_ICCV_2015_paper.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/Plummer_Flickr30k_Entities_Collecting_ICCV_2015_paper.pdf
https://aclanthology.org/2021.naacl-main.410.pdf
https://aclanthology.org/2021.naacl-main.410.pdf
http://proceedings.mlr.press/v139/radford21a/radford21a.pdf
http://proceedings.mlr.press/v139/radford21a/radford21a.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2112.01518
https://arxiv.org/abs/2112.01518
https://aclanthology.org/2021.naacl-main.185.pdf
https://aclanthology.org/2021.naacl-main.185.pdf
https://aclanthology.org/2021.naacl-main.185.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.pdf
https://openreview.net/attachment?id=SygXPaEYvH&name=original_pdf
https://openreview.net/attachment?id=SygXPaEYvH&name=original_pdf
https://aclanthology.org/D19-1514.pdf
https://aclanthology.org/D19-1514.pdf
https://aclanthology.org/D19-1514.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Tang_Unbiased_Scene_Graph_Generation_From_Biased_Training_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Tang_Unbiased_Scene_Graph_Generation_From_Biased_Training_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Tang_Learning_to_Compose_Dynamic_Tree_Structures_for_Visual_Contexts_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Tang_Learning_to_Compose_Dynamic_Tree_Structures_for_Visual_Contexts_CVPR_2019_paper.pdf
https://openreview.net/pdf?id=WtmMyno9Tq2
https://openreview.net/pdf?id=WtmMyno9Tq2
https://openreview.net/pdf?id=WtmMyno9Tq2
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2109.08472
https://arxiv.org/abs/2109.08472
https://proceedings.mlr.press/v162/wang22al/wang22al.pdf
https://proceedings.mlr.press/v162/wang22al/wang22al.pdf
https://proceedings.mlr.press/v162/wang22al/wang22al.pdf
https://openreview.net/pdf?id=GUrhfTuf_3
https://openreview.net/pdf?id=GUrhfTuf_3
https://openreview.net/pdf?id=GUrhfTuf_3

Johnathan Xie and Shuai Zheng. 2021. ZSD-
YOLO: Zero-shot YOLO detection using vision-
language knowledge distillation. arXiv preprint
arXiv:2109.12066.

Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-
Fei. 2017. Scene graph generation by iterative mes-
sage passing. In Proceedings of CVPR.

Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei
Hu, Faisal Ahmed, Zicheng Liu, Yumao Lu, and
Lijuan Wang. 2022. UniTAB: Unifying text and box
outputs for grounded vision-language modeling. In
Proceedings of ECCV.

Yuan Yao, Bowen Dong, Ao Zhang, Zhengyan Zhang,
Ruobing Xie, Zhiyuan Liu, Leyu Lin, Maosong Sun,
and Jianyong Wang. 2022. Prompt tuning for discrim-
inative pre-trained language models. In Findings of
ACL.

Yuan Yao, Ao Zhang, Xu Han, Mengdi Li, Cornelius
Weber, Zhiyuan Liu, Stefan Wermter, and Maosong
Sun. 2021a. Visual distant supervision for scene
graph generation. In Proceedings of ICCV.

Yuan Yao, Ao Zhang, Zhengyan Zhang, Zhiyuan Liu,
Tat-Seng Chua, and Maosong Sun. 2021b. CPT: Col-
orful prompt tuning for pre-trained vision-language
models. arXiv preprint arXiv:2109.11797.

Fei Yu, Jiji Tang, Weichong Yin, Yu Sun, Hao Tian,
Hua Wu, and Haifeng Wang. 2021. ERNIE-ViL:
Knowledge enhanced vision-language representa-
tions through scene graphs. In Proceedings of AAAL

Licheng Yu, Zhe Lin, Xiaohui Shen, Jimei Yang, Xin Lu,
Mohit Bansal, and Tamara L Berg. 2018a. MAttNet:
Modular attention network for referring expression
comprehension. In Proceedings of CVPR.

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C
Berg, and Tamara L Berg. 2016. Modeling context
in referring expressions. In Proceedings of ECCV.

Zhou Yu, Jun Yu, Chenchao Xiang, Zhou Zhao, Qi Tian,
and Dacheng Tao. 2018b. Rethinking diversified and
discriminative proposal generation for visual ground-
ing. In Proceedings of 1JCAI.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin
Choi. 2019. From recognition to cognition: Visual
commonsense reasoning. In Proceedings of CVPR.

Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu,
Jae Sung Park, Jize Cao, Ali Farhadi, and Yejin Choi.
2021. MERLOT: Multimodal neural script knowl-
edge models. In Proceedings of NeurIPS.

Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin
Choi. 2018. Neural motifs: Scene graph parsing with
global context. In Proceedings of CVPR.

Yan Zeng, Xinsong Zhang, and Hang Li. 2022. Multi-
grained vision language pre-training: Aligning texts
with visual concepts. In Proceedings of ICML.

Ao Zhang, Yuan Yao, Qianyu Chen, Wei Ji, Zhiyuan
Liu, Maosong Sun, and Tat-Seng Chua. 2022. Fine-
grained scene graph generation with data transfer. In
Proceedings of ECCV.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian-
feng Gao. 2021. VinVL: Revisiting visual represen-
tations in vision-language models. In Proceedings of
CVPR.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and
Ziwei Liu. 2022. Learning to prompt for vision-
language models. International Journal of Computer
Vision.

A Pre-training Details

We provide pre-training details and statistics of the
pre-training corpora.

Implementation details. Our backbone consists
of a 6-layer text Transformer encoder, a ViT-B/16
visual encoder, and a 6-layer cross-modal Trans-
former encoder (commonly referred to as base size
in the literature), with 209.5M parameters in to-
tal. The backbone is open-sourced for research
usage. In pre-training, we initialize PEVL with pre-
trained parameters from ALBEF for computation
efficiency. PEVL is pre-trained with learning rate
8e-5, batchsize 512 on 32 NVIDIA V100 GPUs for
5 epochs. The number of position tokens is 512,
with decay rate @ = 0.25, and weighting hyperpa-
rameter A = 2 in ordering-aware reconstruction.
The hyperparameters are selected by grid search on
the validation sets. For data augmentation, follow-
ing MDETR (Kamath et al., 2021), we augment
images with random size crop. We also follow
Pix2Seq (Chen et al., 2022) to adopt horizontal flip
to augment images, where “left” and “right” in text
are swapped after flip to ensure the semantic cor-
rectness. Previous works suggest that an interme-
diate in-domain pre-training can better adapt VLP
models to downstream tasks (Chen et al., 2020).
We therefore conduct an intermediate pre-training
before tuning on each downstream task.

Pre-training Corpora. The pre-training corpora
consist of referring expressions (Yu et al., 2016;
Mao et al., 2016), Flickr30k (Plummer et al., 2015),
GQA (Hudson and Manning, 2019), VCR (Zellers
etal., 2019) and Visual Genome dense captions (Kr-
ishna et al., 2017), with 4.7M image-text pairs and
210K images in total. We provide the detailed
statistics of the datasets in Table 8.
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RefCOCO RefCOCO+ RefCOCOg Flickr GQA VCR Visual Genome

Dataset
# Image-text pairs 107K 107K
# Images 15K 15K

72K
20k

148K 762K 1.7M
30K 63K 80K

1.8M
46K

Table 8: Statistics of pre-training corpora. Numbers of image-text pairs and images are reported.

B Downstream Tasks

We provide details of dataset, prompt tuning and
baseline models for each downstream task.

B.1 Referring Expression Comprehension

Datasets. RefCOCO (Yuetal., 2016) is collected
from a referential game between two players. The
dataset is split into train, validation, testA and
testB sets, containing 120,624, 10,834, 5,657 and
5,095 expression-object pairs respectively. Ref-
COCO+ (Yu et al., 2016) is also constructed in an
interactive fashion, and contains 120,191, 10,758,
5,726 and 4,889 expression-object pairs in train,
validation, testA and testB sets respectively. Re-
fCOCOg (Mao et al., 2016) is built in a non-
interactive way, and contains 80,512, 4,896 and
9,602 expression-object pairs in train, validation
and test sets respectively.

Prompt Tuning. We tune the model with learn-
ing rate le-5, weight decay 0.02, and batchsize 32
for 10 epochs. Following previous works (Dosovit-
skiy et al., 2021; Li et al., 2021), we use a higher
image resolution of 512 in downstream tuning. The
hyperparameters are selected by grid search on the
validation set for all experiments. During infer-
ence, we select the position token with the largest
reconstruction score for each of the four masked
tokens.

Baselines. We compare with state-of-the-art base-
lines, including MAttNet (Yu et al., 2018a),
DDPN (Yu et al., 2018b), VL-TS5 (Cho et al., 2021),
VIiLBERT (Lu et al., 2019), UNITER (Chen et al.,
2020), VL-BERT (Su et al., 2020), VinVL (Zhang
et al., 2021), VILLA (Gan et al., 2020), ERNIE-
ViL (Yu et al., 2021), MDETR (Kamath et al.,
2021), and ALBEF (Li et al., 2021). We also
compare with two concurrent works that achieve
competitive performance on visual grounding
tasks, including UniTAB (Yang et al., 2022) and
OFA (Wang et al., 2022a). We adopt accuracy @0.5
as the evaluation metrics, where an expression is
considered correctly grounded if the intersection
over union between the top prediction and ground
truth is greater than 0.5

B.2 Phrase Grounding

Datasets. Flickr30k entities dataset (Plummer
et al., 2015) is collected through annotating 276K
entities in the 158K captions from Flickr30k with
object bounding boxes. The dataset is split into
train, validation and test sets, with 148,915, 14,433,
14,481 noun phrases respectively.

Prompt Tuning. We tune the model with learn-
ing rate le-5, weight decay 0.02, and batchsize 128
for 10 epochs. Following previous works (Kamath
et al., 2021; Yang et al., 2022), we evaluate our
model under the merged-boxes protocol, where the
boxes of a phrase (e.g., crowd) referring to multiple
objects are merged by their union. We use resolu-
tion 512 during downstream tuning. During tuning
and inference, our model predicts the bounding box
of each object separately.

Baselines. We compare with state-of-the-art
baselines, including DDPN (Yu et al., 2018b),
UniTAB (Yang et al., 2022) and MDETR (Ka-
math et al., 2021). UniTAB (Yang et al., 2022)
performs multi-task fine-tuning with several down-
stream task datasets. We adopt accuracy @0.5 as
the evaluation metrics.

B.3 Visual Relation Detection

Datasets. We use Visual Genome (Krishna et al.,
2017) dataset for the evaluation of this task. The
dataset is split into train, validation and test sets,
with 65,651, 5,000, 32,422 images respectively.
The of object categories and relation categories in
the dataset are 150 and 50 respectively.

Prompt Tuning. We tune the model with learn-
ing rate 2e-5, weight decay 0.02, and batchsize 256
for 5 epochs. The resolution of images is 512. The
ratio of negative samples (i.e., no relations between
the object pair) and positive samples is 3:1.

Baselines. We compare with strong baselines,
including MotifNet (Zellers et al., 2018), Unbi-
ased (Tang et al., 2020), GPS-Net (Lin et al.,
2020), MSDN (Xu et al., 2017), VCTree (Tang
et al., 2019), DT2-ACBS (Desai et al., 2021), Vi-
sualDS (Yao et al., 2021a), and IETrans (Zhang
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et al., 2022). For evaluation metrics, we adopt
Recall@K(R @K), which is the ratio of correct re-
lationship in the top K confident relationship pre-
dictions, and mean Recall @ K(mR @K), which is
the average recall upon all predicate classes.

B.4 Visual Commonsense Reasoning

Datasets. VCR dataset (Zellers et al., 2019) is
collected through creating questions requiring com-
monsense reasoning by workers for given images
from 110K movie scenes. The dataset is split into
train, validation, test sets with 212,923, 26,534,
25,263 questions respectively.

Prompt Tuning. We tune the model with learn-
ing rate le-5, weight decay 0.02, and batchsize
4,096 for 5 epochs. We use resolution 512 in down-
stream tuning. PEVL predicts binary labels indicat-
ing the whether candidate is correct, given the text
of question concatenated with answer, or question,
answer concatenated with rationale. In Q — AR,
we first predict an answer from four answer candi-
dates, and then pick a rationale from four rationale
candidates based on the predicted answer.

Baselines. We compare with strong baselines, in-
cluding R2C (Zellers et al., 2019), TAB-VCR (Lin
et al., 2019) and strong VLP models including
Visual BERT (Li et al., 2020b), VILBERT (Lu
et al., 2019), Unicoder-VL (Li et al., 2020a), VL-
BERT (Su et al., 2020), B2T2 (Alberti et al., 2019)
and UNITER (Chen et al., 2020). We report the ac-
curacy of predicting the answer (Q — A), rationale
(QA — R) and both (Q — AR).

B.5 Visual Question Answering

Datasets. GQA dataset (Hudson and Manning,
2019) is collected through automatically generating
questions and answers with functional programs
based on the scene graphs in Visual Genome. The
dataset is split into train, validation, test-dev,and
test sets, with 14,305,356, 2,011,853, 172,174 and
1,340,048 questions respectively.

Prompt Tuning. We tune the model with learn-
ing rate le-5, weight decay 0.02, batchsize 256
for 5 epochs. Following MDETR (Kamath et al.,
2021), the intermediate pre-training is conducted
on the unbalanced train set, and prompt tuning on
the balanced train set. The resolution of image
is 384. We infer the answers based on the 1,853
candidates from Kamath et al. (2021).

Baselines. We compare with existing methods re-
ported on the GQA balanced validation dataset,
including LXMERT (Tan and Bansal, 2019),
BAN (Kim et al., 2018), CTI (Do et al., 2019)
and CFR (Nguyen et al., 2022).

C Ethical Considerations

Potential risks of this work lie in (1) privacy is-
sues of the pre-training images and text from the
Web, (2) misuse of the model (e.g., visual relation
detection for monitoring human activity), and (3)
toxic model outputs. The initial version of this pa-
peris released at https://arxiv.org/abs/
2205.11169. The picture in Figure 1 is obtained
from the RefCOCO dataset.
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