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Abstract

Abstract Meaning Representation (AMR)
parsing aims to predict an AMR graph from
textual input. Recently, there has been notable
growth in AMR parsing performance. However,
most existing work focuses on improving
the performance in the specific domain,
ignoring the potential domain dependence of
AMR parsing systems. To address this, we
extensively evaluate five representative AMR
parsers on five domains and analyze challenges
to cross-domain AMR parsing. We observe
that challenges to cross-domain AMR parsing
mainly arise from the distribution shift of words
and AMR concepts. Based on our observation,
we investigate two approaches to reduce the
domain distribution divergence of text and
AMR features, respectively. Experimental
results on two out-of-domain test sets show
the superiority of our method.

1 Introduction

Abstract meaning representation (AMR; Banarescu
et al. 2013) is a broad-coverage semantic structure
formalism that represents the meaning of a text in
a rooted directed graph. As shown in Figure 1, the
nodes in an AMR graph represent concepts such
as entities and predicates, and the edges indicate
their semantic relations. AMR parsing (Flanigan
et al., 2014; Konstas et al., 2017; Lyu and Titov,
2018; Guo and Lu, 2018; Zhang et al., 2019a; Cai
and Lam, 2020a; Bevilacqua et al., 2021; Zhou
et al., 2021b; Bai et al., 2022a) is the task of
transforming natural language into AMR graphs.
This is a fundamental task in semantics, which can
also benefit downstream use.

AMR has been proven to be useful for
many downstream tasks, such as information
extraction (Huang et al., 2016; Martínez-Rodríguez
et al., 2020; Zhang and Ji, 2021; Luo et al.,
2022; Chen et al., 2022b; Wang et al., 2022), text
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Figure 1: An AMR graph for sentence “The police
hummed to the boy as he walked to town.”

summarization (Liu et al., 2015; Liao et al., 2018;
Chen et al., 2021, 2022c; He et al., 2022), machine
translation (Song et al., 2019; Slobodkin et al.,
2022; Chen et al., 2022a), text generation (Konstas
et al., 2017; Song et al., 2018; Zhu et al.,
2019; Bai et al., 2020; Ribeiro et al., 2021),
and dialogue systems (Bonial et al., 2020; Bai
et al., 2021, 2022b). To benefit such a diverse
set of tasks that covers various domains, an
ideal AMR parser should generalize well across
different domains. However, most existing work
only focuses on improving the in-domain parsing
accuracy, ignoring the performances on other
domains. Though state-of-the-art AMR parsers
can obtain a SMATCH score of over 84% on an in-
domain test set, we observe that their cross-domain
performance is still weak (e.g., lower than 65%
on the biomedical domain). It remains an open-
question how well different types of AMR parsers
generalize to out-of-domain (OOD) data.

In this work, we take the first step to study
the cross-domain generalization ability of a range
of typical AMR parsers, investigating three main
research questions: 1) how well do different AMR
parsers perform on out-of-domain test sets? 2)
what are the main challenges to cross-domain AMR
parsing? and 3) how to improve the performance
of cross-domain AMR parsing?

We empirically choose five major AMR parsers
for comparison, including a two-stage statistical
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parser (Flanigan et al., 2014), a graph-based
parser (Cai and Lam, 2020b), a transition-based
parser (Zhou et al., 2021b), a Seq2Seq-based
parser (Bevilacqua et al., 2021), and an AMR-
specific pre-training parser (Bai et al., 2022a). The
test domains cover news, biomedical, novel, and
wiki questions. We conduct experiments under
the zero-shot setting, where a model is trained
on the source domain and evaluated on the target
domain without using any target-domain labeled
data. Our results show that 1) all models give
relatively lower (up to 45.5%) performances on
out-of-domain test sets, with the most dramatic
drop on named entities and wiki links; 2) the graph
pretraining-based parser is stronger in domain
transfer than the other parsers; 3) the transition-
based parser is more robust than the seq2seq-
based parser. We further analyze the impact of a
set of linguistic features, and the results suggest
that the performance degradation is positively
correlated with the distribution shifts of words and
AMR concepts. Compared with the distribution
divergences of the input features, those of the
output features are more challenging to cross-
domain AMR parsing.

Based on our analysis, we investigate two
approaches to bridge the domain gap for improving
cross-domain AMR parsing. We first continually
pre-train a BART model on target domain raw
text to reduce the distribution gap of words.
To further bridge the domain gap of output
features, we adopt a pre-trained AMR parser
to construct silver AMR graphs on the target
domain, which potentially reduces the output
features divergence. Experimental results show
that the proposed methods consistently improve
the parsing performance on out-of-domain test
sets. To our knowledge, this is the first systematic
study on cross-domain AMR parsing. Our code
and results will be available at https://github.com/
goodbai-nlp/AMR-DomainAdaptation.

2 Related Work

2.1 AMR Parsing

On a coarse-grained level, the current AMR parsing
systems can be categorized into two main classes.
The first is two-stage parsing system, which first
identifies concepts, and then predicts relations
based on the concept decisions. Two tasks are
modeled either in a pipeline (Flanigan et al.,
2014, 2016) or jointly (Lyu and Titov, 2018;

Zhang et al., 2019a). The other one is one-
stage parsing, which generates a parse graph
incrementally. The one-stage parsing methods
can be further divided into three categories:
graph-based parsing, transition-based parsing, and
seq2seq-based parsing. Transition-based parsing
induces an AMR graph by predicting a sequence
of transition actions. The transition-based AMR
parsers either maintain a stack and a buffer (Wang
et al., 2015; Damonte et al., 2017; Ballesteros and
Al-Onaizan, 2017; Vilares and Gómez-Rodríguez,
2018; Liu et al., 2018; Naseem et al., 2019;
Fernandez Astudillo et al., 2020; Lee et al., 2020)
or make use of a pointer (Zhou et al., 2021a,b).
Graph-based parsing builds a semantic graph
incrementally. At each time step, a new node
along with its connections to existing nodes are
jointly decided. The graph is induced either in top-
down manner (Cai and Lam, 2019) or in specific
traversal order (Zhang et al., 2019b; Cai and Lam,
2020a). Seq2seq-based parsing treats AMR parsing
as a sequence-to-sequence problem by linearizing
AMR graphs so that existing seq2seq models can be
readily utilized. Various seq2seq architectures have
been employed for AMR parsing, such as vanilla
seq2seq (Barzdins and Gosko, 2016; Konstas et al.,
2017), supervised attention (Peng et al., 2017),
character-based (Van Noord and Bos, 2017), and
pre-trained Transformer (Bevilacqua et al., 2021;
Bai et al., 2022a).

Despite great success, most previous work
on AMR parsing focuses on the in-domain
setting, where the training and test data share
the same domain. In contrast, we systematically
evaluate the model performance on 4 out-of-
domain datasets. To our knowledge, we are
the first to systematically study cross-domain
generalization for AMR parsing.

2.2 Related Tasks

We summarize recent research studying other
semantic formalisms as well as the cross-domain
generalization of named entity recognition (NER),
semantic role labeling (SRL) and constituency
parsing.
Semantic parsing on other formalisms. AMR is
strong-correlated with other semantic formalisms
such as semantic dependency parsing (SDP, Oepen
et al., 2016) and universal conceptual cogni-
tive annotation (UCCA, Abend and Rappoport,
2013; Hershcovich et al., 2017), and recent
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Figure 2: Illustration of four AMR parsers given the input “The police could help the boy.”.

researches show that they can be represented in
a unified format and parsed by a generalized
framework (Hershcovich et al., 2018; Zhang et al.,
2019b). However, most of previous work focus on
specific domain, leaving the study of cross-domain
generalization unexplored.

Cross-domain NER. Named entity recognition
(NER) is a subtask of AMR parsing. To build a
robust NER system across domains, Yang et al.
(2017) directly train NER models on the domain-
mixed corpus. Wang et al. (2020) introduce an
auxiliary task to predict the domain label. Recently,
many studies focus on recognizing the unseen
entity types in the target domain. Wiseman
and Stratos (2019) and Yang and Katiyar (2020)
propose distance-based methods, which copy the
entity label of nearest neighbors. Cui et al. (2021)
and Ma et al. (2021) adopt prompt-based methods
by using BART and BERT, respectively.

Cross-domain SRL. SRL can also be seen
as semantic-related subtasks of AMR parsing.
Dahlmeier and Ng (2010) conduct an extensive
study by analyzing various features and techniques
that are used for SRL domain adaptation. Lim
et al. (2014) combine a prior model with a
structural learning model to build a multi-domain
SRL system. Do et al. (2015) exploit the
knowledge from a neural language model and
external linguistic resource for domain adaptation
on biomedical data. Rajagopal et al. (2019) develop

a label mapping strategy and a layer adapting
approach for cross-domain SRL. Compared with
cross-domain NER and SRL, the task of cross-
domain AMR parsing is more challenging since
AMR is a graph formalism, and AMR contains
more types of concepts and relations.
Cross-domain constituency parsing. Yang et al.
(2022) investigated challenges to open-domain
syntactic parsing, introducing datasets on new
domains and analyzing the key factors on to
cross-domain constituency parsing using a set of
linguistic features. Our work is similar to their
work in studying the key challenges on various
parsing systems. However, we focus on AMR and
conducts fine-grained semantic-related evaluation.
In addition, we provide a intuitive solution for
improving cross-domain AMR parsing.

3 Compared Models

We choose the representative or top-performing
parser of two-stage, graph-based, transition-based,
seq2seq-based as well as a pre-trained parser for
evaluation. In particular, the following AMR
parsing systems are considered:

JAMR (Flanigan et al., 2014), as shown
in Figure 2(a), is a two-stage parsing model
which predicts concepts and relations in a
pipeline. JAMR identifies concepts and predicts
the relations using two discriminatively-trained
linear structured predictors, which use rich features
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Models Categratory Pre-proc. Post-proc. Ext. Data PLM

JAMR Two-stage ✓ ✓ POS, train align, etc. ✗
AMRGS Graph Recat. concept, polarity, wiki POS, NER, Lemm. BERT
STRUCTBART Transition ✗ wiki train align. BART
SPRING Seq2seq ✗ wiki ✗ BART
AMRBART Pretrain + Seq2seq ✗ wiki 200k silver BART

Table 1: Compared AMR parsing systems. “Recat”–graph re-categorization.

like part-of-speech tagging (POS), named entities
recognition (NER), lemmatization, etc. In addition,
JAMR relies on an external aligner to construct
supervision signals for both stages.

AMRGS (Cai and Lam, 2020a) is a graph-based
parser which builds a semantic graph incrementally.
As shown in Figure 2(b), at every step, the graph-
based parser predicts one node and its connection to
existing graph. AMRGS learns mutual causalities
between text and graph by updating the sentence
and graph representations iteratively. AMRGS
obtains word-level representation from a pre-
trained language model (i.e., BERT (Devlin et al.,
2019)) and uses POS, NER and lemmatization as
external knowledge to make predictions.

STRUCTBART (Zhou et al., 2021b), as shown
in Figure 2(c), is a transition-based parser which
generates an AMR graph through a sequence of
transition actions. In particular, the transition
actions are:

• SHIFT moves token cursor to right.
• <string> creates a node of name <string>.
• COPY creates a node with the name of the
cursor-pointed token.
• LA(j, LBL) creates an arc with label LBL from
the last generated node to the jth generated node.
• RA(j, LBL) is same as LA but with reversed
edge direction.
• ROOT assigns the last generated node as root.
StructBART takes a pre-trained BART model as

the backbone and extends the original vocabulary
with transition actions. Additionally, StructBART
requires an external aligner to obtain oracle
transition actions for training.

SPRING (Bevilacqua et al., 2021), as shown
in Figure 2(d), is a sequence-to-sequence parser
which transforms a text sequence into a linearized
AMR sequence. SPRING adopts a depth-first
algorithm to transform AMR graphs into a
sequence where concepts and relations are treated
equally. To deal with co-referring nodes, SPRING
adds special tokens to the vocabulary. Same with
STRUCTBART, SPRING also initializes model

parameters with BART.
AMRBART (Bai et al., 2022a) is a continually

pre-trained BART model on AMR graphs and
text. It uses three graph-based pre-training tasks to
improve the structure awareness of the encoder and
decoder and another four tasks that jointly learns on
text and AMR graph to capture the correspondence
between AMR and text. AMRBART is pre-trained
on 250k training instances, which lie in the same
domain as AMR2.0.

In addition, JAMR uses complicated rule-
based pre-processing and post-processing steps to
simplify the input and reconstruct the AMR graphs.
AMRGS uses rule-based graph re-categorization
for pre-processing and recovers concept sense tags,
wiki links, and polarities during post-processing.
StructBART, SPRING, and AMRBART do not
require pre-processing steps and use the BLINK
Entity Linker (Wu et al., 2020) to handle wiki links
during post-processing. Table 1 summarizes the
above systems according to their characteristics.

4 Experiments

Experimental configurations and our adopted
datasets are shown in Sections 4.1 and 4.2, respec-
tively. To study the cross-domain generalization
ability of current AMR parsers, we first quantify
the difference between in-domain training data and
out-of-domain test data (Section 4.3), and then
evaluate the cross-domain performance of 5 typical
AMR parsers (Section 4.4).

4.1 Experimental Settings

Model Configuration. We adopt the officially
released code of each system and use their default
configuration to re-train and evaluate the model
performance. The best model is selected according
to the performance on the in-domain validation set.
All models are trained and evaluated on a single
Nvidia Tesla V100 GPU.
Metrics. We assess the performance of parsing
models with SMATCH (Cai and Knight, 2013)
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Dataset Category Sents Tokens

ID AMRs

AMR2.0 train 36,521 653K
dev 1,371 30K
test 1,368 29K

OOD AMRs

New3 train 4,441 83K
dev 354 64K
test 527 8K

TLP test 1,562 21K

Bio train 5,452 138K
test 500 13K

QALD-9 test 558 5K

External Data

Raw text (TLP) - 109k 2M
Raw text (Bio) - 200k 4.4M
Silver AMR (TLP) - 109k 2M
Silver AMR (Bio) - 200k 4.4M

Table 2: Dataset statistics.

scores computed with the amrlib1 tools, which
also report fine-grained scores including unlabeled,
NoWSD, concept identification, NER, negations,
reentrancy and wiki links.2

4.2 Datasets

In-Domain Dataset. We train and evaluate AMR
parsers on standard benchmarks, which we refer to
as the In-Domain (ID) setting. We use AMR2.0
(LDC2017T10)3 as ID dataset which consists
AMRs from newswire, discussion forum and other
web logs, web collections.
Out-of-Domain Datasets. We consider the follow-
ing datasets for out-of-domain (OOD) evaluation:
New3, a subset of AMR3.04, whose original source
was the DARPA LORELEI program (Christianson
et al., 2018). The domain of New3 is close to
AMR2.0; TLP5 is an annotation of the novel The
Little Prince that contains 1,562 sentences. Bio6,
which consists of annotations of biomedical texts,
including PubMed articles and sentences from
other biological corpus. QALD-97 (Lee et al.,
2022), a recent released dataset whose original

1https://github.com/bjascob/amrlib
2Please refer to appendix A.1 for detailed definitions.
3https://catalog.ldc.upenn.edu/LDC2017T10
4https://catalog.ldc.upenn.edu/LDC2020T02
5https://amr.isi.edu/download/

amr-bank-struct-v1.6.txt
6https://amr.isi.edu/download/2016-03-14/

amr-release-test-bio.txt
7https://github.com/IBM/AMR-annotations

source the questions of SQuAD2.0 (Rajpurkar
et al., 2016). Since QALD-9 comprises only 150
test sentences, we concatenate the train and test set
for evaluation, leading to 558 instances in total.

In addition, we collect raw text from two
domains: biomedical data (like Bio) and fairy
tales data (like TLP). The former is sampled from
PubMedQA (Jin et al., 2019) dataset, while the
latter is a collection of fairy tales between the 19th
century and early 20th. We also construct silver
data for TLP and Bio by employing a state-of-
the-art AMR parser (Bai et al., 2022a) to parse
collected raw sentences into AMR graphs. Table 2
shows more details of above datasets.

4.3 Distributional Variance Across Datasets
To better understand the cross-domain parsing
performance, we quantify the difference between
the ID training set and 5 test sets according to
the following list of linguistic features: input
text features, including input length, uni-gram,
bi-gram, tri-gram; output AMR features, which
consists of AMR concepts, AMR relations, and
⟨concept, relation, concept⟩ triplets. We report the
average score for input length. For other features,
we follow Yang et al. (2022) to consider both
the out-of-vocabulary (OOV) rate and the Jensen-
Shannon divergence (Fuglede and Topsoe, 2004) to
measure the difference. The former calculates the
vocabulary difference between two domains, while
the latter records the distributional divergence.
Given a specific feature, denoting the feature
distribution in the source domain as P and the
distribution in the target domain as Q, the Jensen-
Shannon divergence (JS) is calculated as:

JS(P ||Q) =
1

2
(KL(P ||M) + KL(Q||M)),

M =
1

2
(P +Q),

(1)

where KL represents the Kullback-Leibler diver-
gence (Csiszár, 1975). A lower JS divergence value
means that the test set is more similar to AMR2.0
training set on that specific feature.

As shown in Table 3, the main difference
between the test sets and the training set comes
from the input length, the unigram/bigram/trigram,
the concept, and the triplet, while the relation
difference is relatively small. The vocabulary
differences (e.g., unigram OOV rate and concept
OOV rate) are relatively small compared with
feature distribution divergence. Among all the test
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Datasets Input Features Output Features

Avg. Len Unigram Bigram Trigram Concept Relation Triplet

AMR2.0 (ID) 19.76 0.14 (0.05) 0.46 (0.39) 0.64 (0.78) 0.14 (0.04) 0.07 (0.00) 0.43 (0.32)

New3 14.69 0.24 (0.10) 0.57 (0.50) 0.68 (0.85) 0.26 (0.10) 0.03 (0.00) 0.53 (0.44)
TLP 13.69 0.22 (0.04) 0.51 (0.34) 0.66 (0.78) 0.30 (0.05) 0.06 (1e-3) 0.60 (0.57)
Bio 25.20 0.39 (0.29) 0.63 (0.78) 0.69 (0.95) 0.44 (0.21) 0.06 (1e-3) 0.66 (0.71)
QALD-9 7.52 0.38 (0.08) 0.64 (0.48) 0.69 (0.84) 0.38 (0.08) 0.07 (0.00) 0.58 (0.40)

Table 3: Feature difference between AMR2.0 training set and 5 test sets. We report the Jensen-Shannon divergence
(and OOV rate) for features except input length. A lower JS divergence (and OOV) value means that the test set is
more similar to AMR2.0 training set on that specific feature.

Model ID OOD

AMR2.0 New3 TLP Bio QALD-9 Avg

JAMR 67.0 57.2 (14.6%) 59.9 (11.9%) 38.7 (42.2%) 60.8 (9.3%) 54.2 (19.2%)
AMRGS 80.6 61.8 (23.3%) 73.7 ( 9.4%) 43.9 (45.5%) 70.0 (13.1%) 62.4 (22.6%)
STRUCTBART 84.1 74.0 (12.0%) 80.2 (4.9%) 60.4 (28.2%) 83.7 (0.5%) 74.6 (11.3%)
SPRING 84.7 74.2 (12.2%) 79.9 (6.0%) 59.7 (29.5%) 80.4 (4.9%) 73.6 (13.2%)
AMRBART 85.5 77.3 (9.6%) 81.6 (4.8%) 63.2 (26.1%) 85.1 (0.5%) 76.8 (10.2%)

Table 4: SMATCH scores on in-domain (ID) and out-of-domain (OOD) test sets and the relative performance
reduction rate for OOD test sets. The best results within each column are shown in bold.

sets, AMR2.0 is the closest to the training set. In
contrast, Bio has the longest average input length
and the largest overall feature difference from the
AMR2.0 training data. In particular, the unigram
OOV rate of Bio is 0.29, which is much bigger
than that of other test sets. New3 and TLP have
medium input length, and the feature differences
are smaller than Bio. QALD-9 has an average
input length of 7.5, which is 2.5 times smaller than
that of AMR2.0. Overall, we can observe that
individual statistics vary across domains, which
reflects large domain differences.

4.4 Cross-Domain AMR Parsing Performance

Table 4 lists the performances of 5 parsers on 5
domains. All models achieve their best results on
the in-domain AMR2.0 test set. By contrast, the
performance drops on OOD test sets, ranging from
0.5% to 45.5%, showing that cross-domain AMR
parsing is still a challenge.

Among all domains, Bio is the hardest one,
which is in line with our observation in feature
differences (i.e., Table 3). The SMATCH scores of
all parsers on Bio fall to a range between 38.7 and
63.2, which is much lower than those on ID test sets
(from 67.0 to 85.5). The reason can be two-fold:
First, Bio contains many biomedical terminologies,
resulting in significant feature differences. For
example, the unigram OOV rate is 29%, and the
JS divergence of concept is 0.44 on Bio, according

to Table 3. Second, the average input text length
of Bio is larger than those of other test sets. In
comparison, QALD-9 is the easiest, with a relative
performance reduction rate ranging from 0.5% to
13.1%. The main reason could be that the input
text length of QALD-9 is small, which significantly
reduces the difficulty of AMR parsing. We give
further analysis on these features in Section 5.

Among all the systems, AMRBART gives
the best SMATCH scores on all test sets and
has the lowest relative performance reduction
rates, indicating that large-scale graph pre-training,
which has been shown to boost ID performance,
is also helpful for improving OOD generalization.
SPRING gives better results than STRUCTBART
on the ID test set and a bigger relative performance
reduction rate on OOD test sets, which may
result from the fact that the transition-based model
implicitly learns the local correspondence between
AMR and text, which is helpful for generalization.
In contrast, the seq2seq-based model focus on
sequence-level transduction. Comparing AMRGS
with other models, though all four neural parsers
achieve SMATCH scores of over 80.0, AMRGS
shows much lower OOD performances than the
other three neural parsers, and some of its OOD
relative performance reduction rates are even
bigger than those of the non-neural JAMR parser.
This might be caused by the difference on rule-
based processing methods for AMR graphs: as
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Figure 3: Relative performance reduction rate in
terms of different evaluation metrics. “Unlab.”–
unlabeled, “Con.”–Concept, “Neg”–Negation, “Reent.”–
Reentrancy.

shown in Table 1, AMRGS utilizes much more
rule-based methods to pre- (and post-) process
AMR graphs than the other three neural methods do.
Since these rules are derived from the training data,
such domain-specific rules would not generalize
well to new domains. We also give the full
evaluation results, please refer Appendix A.2.

5 Key Challenges to OOD AMR Parsing

Based on the results above, we further study
two important questions: which AMR components
are the most challenging for cross-domain AMR
parsing (in Section 5.1); and what contributes most
to the performance degradation on OOD test sets
(in Section 5.2)?

5.1 Error Analysis

Figure 3 gives the relative performance reduction
of each model regarding SMATCH and 8 fine-
grained evaluation metrics (measured by F1 scores).
We report the average score of four OOD test
sets. Among all evaluation metrics, wiki links
and named entities are the hardest objectives to
handle. This is intuitive because a large proportion
of wiki links and named entities contain out-of-
vocabulary (OOV) tokens. Also, there are OOV
named entity types in the OOD test sets. For
example, 3.7% of named entity types of Bio
are never seen during training, which further
increases the difficulty level for AMR parsers to
predict the correct labels. The performance of
negative polarity and reentrancy detection also
drops significantly, with average scores of 22%
and 20%, respectively. For unlabeled8, concept,
NoWSD9 and semantic role labeling (SRL), we
observe relatively lower performance degradation.

8SMATCH while ignoring relation labels.
9SMATCH while ignoring Propbank senses.
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Figure 4: Pearson correlation coefficient between
performance (SMATCH) degradation rate and difference
of feature distribution measured by (a) OOV rate; (b)
Jensen-Shannon divergence. We do not include relation
in sub-figure (a) because the relation OOV rate of most
test sets are zeros.

5.2 Feature Analysis

To study the key factors that impact cross-domain
AMR parsing performance, we measure the
Pearson correlation coefficient between a set of
linguistic features (as introduced in Section 4.3)
and the relative performance degradation rate.
To eliminate the influences of domain-specific
features10, we concatenate all OOD test sets
and apply bootstrapping procedure (Efron and
Tibshirani, 1994; Koehn, 2004) to obtain a number
of simulated test sets, which are taken as samples
for calculating the correlation scores. Specifically,
we create 100 homologous test sets, each with
2,000 examples (out of 3,147) sampled from
the concatenated set. We consider both Jensen-
Shannon divergence and OOV rate to measure
feature differences. In Figure 4, each group of
columns shows the linear correlation coefficient

10For example, QALD-9 has the smallest averaged input
length among all domains, so the relatively high OOD
performance on QALD-9 does not imply that its concept /
relation gives smaller domain shift than other domains do.
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between the domain divergences of a specific
feature (i.e., Table 3) and the cross-domain
performance degradation rates of a specific parser
(i.e., Table 4). We have the following observations:

• It can be observed that all parsers are more
influenced by domain shift of uni-gram token
features while less by those of more complex
token features such as bi-gram and tri-gram.
The reason might be that AMR parsers rely
more on the particular token itself rather than
its context for concept identification.

• Concepts have larger influences on parsers’
performances than relations, indicating that
concept identification is the main bottleneck
for cross-domain AMR parsing.

• Compared with input textual features, all
parsers are more influenced by output AMR
structural features, which is consistent with
findings of Yang et al. (2022) and Cui
et al. (2022) in constituency parsing. .
This suggest that future cross-domain AMR
parsing systems should pay more attention on
AMR structures.

6 Bridging the Domain Gap

According to our analysis in Section 5.2, we
investigate two approaches to improve the model
performance on OOD datasets by bridging the
distribution gap between the training and test
domains without modifying model structures.
Alleviating Input Feature Divergence. We
employ raw text from target domain to enrich
the model with domain-specific input features.
Specifically, we collect raw text from the
biomedical and fairy tales domain, which are then
used as extra knowledge for training. Inspired
by previous work (Gururangan et al., 2020), we
add an intermediate pre-training step to adapt the
pre-trained model to the target domain, which
refers to domain-adaptive pre-training. We take
BART (Lewis et al., 2020) as the backbone and
continually pre-train BART on the collected dataset
using the standard self-supervised learning training
objective. We randomly mask text spans, replacing
15% tokens. The adaptively trained model is used
for initialization during fine-tuning.
Alleviating Output Feature Divergence. We
investigate silver data as pseudo target domain
training data to fine-tune the AMR parsers. In

Model Bio TLP

With OOD raw data
Unigram/Concept diver. 0.28/0.44 0.18/0.30
STRUCTBART 61.2 (+0.8) 80.7 (+0.5)
SPRING 61.0 (+1.3) 80.4 (+0.5)

With OOD silver data
Unigram (Concept) diver. 0.28 (0.30) 0.18 (0.22)
STRUCTBART 62.8 (+2.4) 81.3 (+1.1)
SPRING 63.0 (+3.3) 81.1 (+1.2)

Table 5: SMATCH score (and improvements) on Bio and
TLP when training with out-of-domain data. “diver.”–
Jensen-Shannon divergence.

this way, we expect the cross-domain distribution
divergence of both text and AMR features can be
reduced. We construct the silver data by applying a
pre-trained AMR parser to parse collected domain-
specific data into AMR graphs. We use a mixture
of gold and silver data to train the models.
Results. Table 5 shows the results of two BART-
based systems11 on Bio and TLP. First, with
domain-specific raw data, the Jensen-Shannon
divergence of unigram reduces significantly
(p<0.01) compared with Table 3, reaching 0.28
and 0.18 on Bio and TLP, respectively. Both
parsers give better results when initialized with
the adaptively pre-trained model. This confirms
our assumption that reducing the input distribution
gap can benefit cross-domain AMR parsing. In
addition, the distribution divergence of both
unigram and concept decrease when using domain-
specific silver data, and both models obtain
significant improvements, with a large margin of
2.4 and 3.3 points on Bio. This suggests that
reducing distribution divergence of AMR features
can also lead to better results. Finally, compared
with input textual features, AMR features give
larger improvements. This is consistent with our
observations in Section 5.2.
Fine-grained Evaluation. Figure 5 shows the
fine-grained evaluation results on Bio. We
take the original SPRING model (Original) as a
baseline and compare the performance with the
model augmented by domain adaptive pre-training
(DAPT) and silver data (Silver). It can be observed
that both methods improve the NER score over
the baseline by a large margin (up to 6 points).
Also, both methods give better results on concept
identification, reentrancy detection, and semantic

11We do not consider AMRBART, because AMRBART has
been trained using large-scale silver data.
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Figure 5: Performance improvements regarding fine-
grained evaluation metrics. “Con.”–Concept, “Neg.”–
Negation, “Reent.”–Reentrancy.

role labeling. Compared with DAPT, Silver obtains
significantly better results on graph-aware metrics
(i.e., concept, reentrancy and SRL), showing that
silver data can improve the model performance
on predicting structures. The results of Silver is
weaker than DAPT on text-related metrics (i.e.,
NER and negation). A possible reason is that silver
data might contain noise, which hinders the model
to make predictions from textual features.

7 Conclusion

We investigated the cross-domain generalization
challenges for AMR parsing by analyzing the
performance of five representative models. Em-
pirically, we found that all AMR parsers give
lower performance on OOD test sets, and the
difficulty lies more in output features divergences,
including concept and relation, compared with
input features. Based on our analysis, we
investigated two approaches to bridge the domain
gap of input and output features, respectively,
which achieve higher scores on out-of-domain
test sets than previous work. In the future, we
would like to investigate more methods, such as
vocabulary adaptation (Sato et al., 2020) and k-
nearest-neighbor (KNN, Khandelwal et al. 2020,
2021), to improve cross-domain AMR parsing.

Limitations

The limitation of our work can be stated from
three perspectives. First, the proposed methods do
not improve the in-domain parsing performance.
Second, we only analyze the cross-domain
performance of five representative AMR parsers.
Third, we focus on cross-domain AMR parsing in
one major language. The performance of other

languages remains unknown.
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A Appendix

A.1 Fine-grained Evaluation Metric for AMR
Parsing

The Smatch score (Cai and Knight, 2013) measures
the degree of overlap between the gold and the
prediction AMR graphs. It can be further broken
into different sub-metrics, including:

• Unlabeled (Unlab.): Smatch score after
removing edge-labels

• NoWSD: Smatch score after ignoring Prop-
bank senses (e.g., go-01 vs go-02)

• Concepts (Con.): F -score on the concept
identification task

• Wikification (Wiki.): F -score on the wikifica-
tion (:wiki roles)

• Named Entity Recognition (NER): F -score
on the named entities (:name roles).

• Reentrancy (Reen.): Smatch score on reen-
trant edges.

• Negation (Neg.): F -score on the negation
detection (:polarity roles).

• Semantic Role Labeling (SRL): Smatch score
computed on :ARG-i roles.

A.2 Full Cross-domain Performance
Table 6 shows the detailed results of AMR parsing
on different test sets in terms of 9 evaluation
metrics.
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Model Smatch Unlab. NoWSD Con. Wiki. NER Reent. Neg. SRL

AMR2.0 (ID)
JAMR 67.0 71.6 67.7 83.0 75.9 80.3 61.0 43.9 59.7
AMRGS 80.6 83.9 81.0 88.1 86.5 81.1 64.7 78.5 74.3
StructBART 84.1 87.6 84.4 90.4 79.6 92.2 74.3 71.2 83.0
SPRING 84.7 87.6 84.9 90.2 87.3 83.7 72.3 79.9 79.7
AMRBART 85.5 88.4 85.9 91.2 84.4 91.5 73.5 73.5 81.5

New3 (OOD)
JAMR 57.2 62.5 57.8 73.1 49.8 52.7 38.9 28.3 53.2
AMRGS 61.8 66.8 62.2 75.9 49.6 45.4 54.8 59.6 65.0
StructBART 74.0 78.1 74.5 83.1 53.6 71.1 63.2 63.3 72.1
SPRING 74.2 78.4 74.6 82.3 60.1 66.4 62.9 64.2 71.7
AMRBART 77.3 81.2 77.8 84.6 73.5 72.0 65.6 66.7 73.7

TLP v1.6 (OOD)
JAMR 59.9 66.7 60.9 88 25.5 53.0 32.4 55.4 54.6
AMRGS 73.7 78.4 74.6 82.4 33.1 24.1 58.7 63.5 70.8
StructBART 80.2 84.3 81.0 87.1 69.5 75.2 67.9 77.3 77.4
SPRING 79.9 83.9 80.7 86.4 65.7 63.2 67.0 80.9 77.0
AMRBART 81.6 85.3 82.3 87.8 87.4 73.5 69.3 77.8 78.7

TLP v3.0 (OOD)
JAMR 58.8 66.0 59.7 75.9 25.5 53.0 31.7 49.1 52.9
AMRGS 72.0 77.0 72.9 81.3 33.1 24.1 57.2 57.5 68.5
StructBART 78.5 83.0 79.2 85.9 69.5 75.2 66.1 70.1 75.0
SPRING 78.2 82.6 79.0 85.3 65.7 63.2 65.0 72.9 74.7
AMRBART 79.8 84.0 80.5 86.7 84.7 73.5 67.6 70.7 76.4

Bio v0.8 (OOD)
JAMR 38.7 44.1 39.6 56.9 7.6 15.6 26.0 50.3 37.3
AMRGS 43.9 49.8 44.4 55.6 9.0 6.4 34.1 60.4 47.0
StructBART 60.4 64.9 60.9 70.1 1.9 31.9 43.6 76.0 56.7
SPRING 59.7 63.7 60.2 71.1 3.2 33.7 43.5 75.7 57.5
AMRBART 63.2 67.2 63.9 73.4 2.0 39.7 47.1 75.4 60.6

Bio v3.0 (OOD)
JAMR 38.4 43.9 39.3 56.7 7.5 15.6 25.8 44.9 36.7
AMRGS 43.2 49.1 43.7 55.0 8.6 6.4 33.8 55.6 45.9
StructBART 57.6 62.0 58.2 69.2 1.9 31.9 42.9 70.1 55.2
SPRING 59.2 63.5 59.6 70.2 3.2 33.7 43.2 72.4 56.2
AMRBART 62.1 66.3 62.9 72.7 2.0 39.7 46.7 70.5 59.2

QALD-9 (OOD)
JAMR 60.8 66.6 61.3 69.9 0 61.2 34.2 5.0 56.4
AMRGS 70.0 74.5 70.2 80.1 0 48.7 57.0 9.5 72.0
StructBART 83.7 86.9 83.9 89.7 0 81.9 61.3 14.0 76.3
SPRING 80.4 83.2 80.6 88.9 0 80.4 56.5 9.3 75.4
AMRBART 85.1 87.3 85.2 91.8 0 83.8 71.9 69.1 83.6

Table 6: AMR parsing results on in-domain and out-of-domain test sets. The best results within each row block are
shown in bold.
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