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Abstract

Recently there has been an emerging interest in
unsupervised vision-and-language pre-training
(VLP) that learns multimodal representations
without parallel image-caption data. These pio-
neering works significantly reduce the cost of
VLP on data collection and achieve promising
results compared to supervised VLP. However,
existing unsupervised VLP methods take as in-
put pre-extracted region-based visual features
from external object detectors, which both lim-
its flexibility and reduces computational effi-
ciency. In this paper, we explore end-to-end
unsupervised VLP with a vision encoder to di-
rectly encode images. The vision encoder is
pre-trained on image-only data and jointly opti-
mized during multimodal pre-training. To fur-
ther enhance the learned cross-modal features,
we propose a novel pre-training task that pre-
dicts which patches contain an object referred
to in natural language from the encoded visual
features. Extensive experiments on four vision-
and-language tasks show that our approach out-
performs previous unsupervised VLP methods
and obtains new state-of-the-art results'.

1 Introduction

Vision-and-language pre-training (VLP) (Lu et al.,
2019; Li et al., 2019; Chen et al., 2020; Kim et al.,
2021; Li et al., 2021c; Zhang et al., 2021; Radford
etal., 2021; Ramesh et al., 2021) has achieved great
success on a wide range of vision-and-language
tasks, e.g., visual question answering (Zhang et al.,
2021), image-text retrieval (Radford et al., 2021)
and text-to-image generation (Ramesh et al., 2021).
The major challenge for VLP is how to bridge
the gap between the representations of vision
and language modalities, which is typically ad-

*Corresponding authors: Peng Li (lipeng @air.tsinghua.
edu.cn) and Yang Liu (liuyang2011 @tsinghua.edu.cn)
Code is available at https://github.com/THUNLP-MT/
E2E-UVLP

dressed by training on large-scale parallel image-
text datasets (Lin et al., 2014; Krishna et al., 2017;
Sharma et al., 2018; Ordonez et al., 2011) with spe-
cially designed pre-training tasks. However, these
datasets require either extensive human annotations
or massive data cleaning efforts, making them dif-
ficult to collect, especially when compared to the
large amount of unimodal data.

To alleviate this problem, there has recently
emerged some works exploring unsupervised
vision-and-language pre-training (UVLP), where
only non-parallel image and text data is lever-
aged (Li et al., 2021b; Zhou et al., 2022). Specif-
ically, Li et al. (2021b) propose to use image re-
gion features and their detected object tags pro-
duced by an object detector as pesudo-parallel
pairs to bridge the gap between the two modali-
ties. Zhou et al. (2022) further enrich the training
data with retrieved text pieces based on object tags
and pre-train their model with multi-granular align-
ment tasks. These works achieve competitive re-
sults compared to several supervised VLP models,
demonstrating the potential of UVLP.

However, current research on UVLP adopts a
two-step training strategy that first extracts region-
based image features with an external object de-
tector and then builds a multimodal model based
on the region features. This is considered to have
several limitations for VLP. First, region features
may be sub-optimal for VLP because they are de-
signed for object detection tasks rather than gen-
eral cross-modal understanding and are fixed in
the pre-training process (Xu et al., 2021; Huang
et al., 2021). Second, the process of extracting
region features is time-consuming, which signifi-
cantly reduces the inference efficiency (Kim et al.,
2021). Finally, this two-step training strategy hin-
ders the use of vision pre-trained models (V-PTMs)
such as ViT (Dosovitskiy et al., 2020) and Swin
Transformer (Liu et al., 2021c¢), which are not off-
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the-shelf object detectors but achieve promising
performance on general vision tasks. Therefore,
how to perform UVLP in an end-to-end manner,
i.e., using raw images instead of region features, is
still a valuable open question.

To explore the question, we propose an end-
to-end UVLP framework named E2E-UVLP. The
framework consists of a vision encoder and a pre-
trained language model (PLM), both of which are
pre-trained on unimodal data and they are con-
nected by a linear projection layer. Taking image
patches as input, our framework is capable of lever-
aging a wide range of V-PTMs. Without using
object tags in inference, the computational cost in-
troduced by external object detectors is eliminated.
Inspired by previous works (Li et al., 2021b; Zhou
et al., 2022; Liu et al., 2021b; Li et al., 2020), we
derive a masked tag prediction (MTP) pre-training
task which predicts the masked object tags given a
raw image and the other object tags detected from it.
Combining MTP with the widely used masked lan-
guage modeling (MLM) task (Devlin et al., 2018),
we successfully make E2E-UVLP achieve compa-
rable or better results than existing UVLP methods,
justifying end-to-end UVLP is feasible.

Although the MTP task is effective, further in-
vestigation reveals that the obtained model is less
effective when dealing with complex attributes of
objects, e.g., locating objects or determining the re-
lationship between objects in an image. We argue it
is due to two pitfalls of the MTP objective: (1) Dis-
crepancy between training and inference: An object
is referred to by its tag and numerically encoded po-
sition in training, while referred to only in natural
language in inference. Similar discrepancies have
been shown to hurt performance significantly in
PLM studies (Brown et al., 2020; Liu et al., 2021a).
(2) Natural language expression insensitivity: As
both the tag and the position of an object have
been given in training, the model does not need to
locate or distinguish objects by itself, not to say
grounding natural language expressions on visual
concepts. To alleviate the problems, we propose a
novel pre-training task named referring expression
matching (REM). Given an image split into patches
and an object tag, we convert the tag into a referring
expression heuristically (e.g., “man on the right”)
and predict which patches contain the referred ob-
ject. By using the synthetic referring expressions in
training, the discrepancy has been reduced. More-
over, thanks to the promising language processing

ability of PLMs, the obtained model generalizes
well from the limited heuristically selected expres-
sions to unseen ones in training, resulting in better
downstream task performance.

In summary, our contributions are three-fold:

* A novel framework E2E-UVLP is proposed to
perform end-to-end unsupervised vision-and-
language pre-training without using costly and
sub-optimal region features relied heavily by
previous works.

* A referring expression matching pre-training
task is proposed to reduce training-inference
discrepancy and improve generalization to
richer natural language expressions.

» Extensive experiments on four representative
vision-and-language tasks show the superior-
ity of our proposed framework over strong
unsupervised baselines.

2 Method

2.1 Model Architecture

As shown in Figure 1, our proposed E2E-UVLP
consists of a vision encoder and a pre-trained lan-
guage model acting as a multimodal encoder. The
vision encoder can be a vision pre-trained model
such as ViT (Dosovitskiy et al., 2020) and Swin
Transformer (Liu et al., 2021c). Each image I
is encoded by the vision encoder into a sequence
of patch features. These patch features are then
linearly projected and added with corresponding
modal-type embeddings to form the vision repre-
sentations V' = {v1,..., vy} where N is the num-
ber of patches. For text input L, it is tokenized into
a sequence of word tokens. Each token’s represen-
tation t; is the sum of its word embeddings, its posi-
tion or location embeddings (depending on the type
of text input), and its modal-type embeddings. The
resulting text representations 7' = {t1,...,ty}
are then concatenated with V' and fed into the mul-
timodal encoder to get multimodal representations.
We use BERT (Devlin et al., 2018) to initialize the
multimodal encoder and word embeddings. Finally,
the multimodal representations are used for differ-
ent kinds of pre-training and fine-tuning tasks.

2.2 Pesudo-Parallel Data Synthesis

Since there is no parallel image-text data avail-
able in unsupervised vision-and-language pre-
training (UVLP), it is important to find other ways
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Figure 1: Overview of our proposed E2ZE-UVLP framework. The model learns cross-modal representations from
non-parallel text and image data in an end-to-end fashion (Section 2.1). To bridge the gap between the two
modalities, we generate pesudo-parallel text Ly, and Lex, for each image I (Section 2.2). On the right side, we
illustrate how to conduct pre-training tasks using different types of data (Section 2.3).

to bridge the gap between the two modalities. In-
spired by Li et al. (2021b), we use detected object
tags of each image to synthesize pesudo-parallel
image-text data, which are used in the pre-training
tasks for E2E-UVLP. Specifically, for each image
I, we use an external object detector to generate
its object proposals {(0;, b;)} XX, where o, is the
object tag and b; € R* denotes the bounding box
location. We derive two kinds of pesudo-parallel
image-text data for each image and its correspond-
ing object proposals.

Image-Tag Pair Because {0;}X | are essentially
a bag of text words that describe the objects de-
tected in the image, they can be viewed as text data
weakly aligned with the image. We concatenate the
object tags to form a text input Lz = 01,. .., 0k,
and compute the location embeddings for o; as a
linear projection of b;. Each token in the tokenized
Lyyg is embedded as the sum of its word embed-
dings and location embeddings. The reason for us-
ing location embeddings instead of position embed-
dings as for natural text is to distinguish between
objects of the same category in the same image. We

name this kind of synthetic data (I, Lag) € Diag as
image-tag paired data.

Image-Expression Pair The text input in image-
tag paired data differs from natural text in two ways.
First, it is composed of only noun words and does
not conform to the grammar of natural language.
Second, the location annotations do not exist in
real text. We will discuss later the limitations of
models trained on such data in Section 2.3. Here we
describe another kind of synthetic pesudo-parallel
data called image-expression paired data, which is
more similar to real text. The idea is to generate a
referring expression for one object in the image that
can distinguish it from other objects (e.g., “smaller
white sheep on the right” in Figure 2).

Specifically, for an image I and its detected
object proposals {(o;,b;)}X,, we first use non-
maximum suppression (NMS) to remove the re-
dundant proposals with high overlap and filter out
proposals with low prediction confidence. Then
we randomly select one object (o, bx,) and find all
proposals of the same category {(0;,b;)}o ;%
Based on these object proposals, we identify a

10801



Object Detection

NMS& [
random select [

size: “smaller”
position: “on the right”
A

|

I=

size: “null”
position: “on the left”

young man on the left

Figure 2: An illustration of the process of synthesizing referring expressions. We randomly select one target object
and heuristically generate discriminative descriptions based on the bounding boxes of all objects of the same class.

group of cues that can discriminate the target ob-
ject (og, b) from other objects and heuristically
convert them into a referring expression. Inspired
by Kazakos et al. (2021), we consider attributes
generated from the object detectors for these ob-
jects, as well as the the relative size and position
between the target object and other objects of the
same object class. For the first example in Figure 2,
as the area of the bounding box of the right object
is smaller than that of the left one, we add a size
description “smaller” to the expression. The final
referring expression Leyp is the combination of size,
attribute, object and position descriptions, guaran-
teed to refer to the target object in the image. Lexp
and I together form the image-expression paired
data (I, Lexp) € Dexp-

2.3 Pre-training Tasks

In this section, we introduce the pre-training tasks
that enable our proposed E2E-UVLP to learn ef-
fective multimodal representations using only non-
parallel image and text data without region features.

Masked Tag Prediction (MTP) This task aims
to learn the alignment of the object concepts in
two modalities using the image-tag paired data.
Inspired by Li et al. (2021b), we randomly mask
out the tags in L, and predict the masked tags
conditioned on the raw image and other tags. Note
that region features are conditioned on instead of
the raw image in (Li et al., 2021b).

Specifically, the objective for MTP is computed

as follows:

Larp = B 1) D 108 P (T | Tim, V),

ey
where T, and T3, denote the masked tags and
observed tags, respectively. For the masked tags,
we keep the original bounding box locations and re-
place only the object tags with the special mask
tokens. Different from previous works, we do
not apply masked vision modeling (MVM) for the
image-tag paired data, as it has been shown to cause
performance degradation for end-to-end VLP (Dou
et al., 2022). We also study object-guided masked
vision modeling (Liu et al., 2021b), which aims to
predict region features from grid image features,
and observe no improvement compared to using
MTP alone. We assume this is because Li,g already
carries the object information, thus making such a
task trivial.

Although MTP is effective, we find that the mod-
els trained with it are less effective in dealing with
complex attributes of objects. For example in Fig-
ure 3, the model pre-trained with MTP provides
an incorrect answer probably because it fails to fo-
cus on the correct patches of the object required
in the question. We assume that this is due to two
pitfalls of the MTP objective: (1) Discrepancy be-
tween training and inference. During pre-training,
the text input Ly, is composed of objects with
their tags and bounding box locations, unlike nat-
ural language sentences used in inference, which
use positional encoding. In PLM studies, similar
discrepancies have been shown to significantly im-
pair performance (Brown et al., 2020; Liu et al.,
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Figure 3: Comparison between VQA models fine-tuned
from pre-trained models with different pre-training
tasks. We visualize the most relevant patches for the
keyword “food” in the given question. The model pre-
trained with only MTP fails to identify the correspond-
ing patches, which leads to a wrong answer.

2021a). (2) Natural language expression insensi-
tivity. When trained with MTP, the model only
needs to predict the tags of masked objects at given
locations, rather than identifying target objects cor-
responding to natural language expressions from
raw images. This problem is more pronounced in
end-to-end UVLP because the images are encoded
without using any object information.

Referring Expression Matching (REM) To alle-
viate the deficiencies of MTP, we design this novel
pre-training task based on the image-expression
paired data described in Section 2.2. The task of
REM is to predict the position of the object re-
ferred to by the synthetic referring expression Lexp.
We use the bounding box of the referred object
as ground truth and convert it to a binary mask
R € {0,1}" of the same size as the patch fea-
tures, where the values corresponding to the inside
of the bounding box are set to 1 and the others
are set to 0. Then, given the model’s prediction
R = f(I,Lexp) € [0,1]Y , we define the REM
objective as

Lrem = E(r1.,,)~D..,DL(R, R)+BCE(R, R),
)

where DL is the soft dice loss

R 2SN i pi
DL(R,R)=1- _22i=" 7 )
i T i

and BCE is the binary cross entropy loss

BCE(R, R) = Z ((1 =) log(1 — ) @

=1
+r' log(r )) .

We use these two losses because they have
been proven to be effective in image segmenta-
tion (Isensee et al., 2018), which aims to classify
each pixel in an image into a certain object class.

We assume that using REM as a pre-training task
can complement MTP in two ways. First, it will
alleviate the discrepancy between training and in-
ference as the model observes the text input in the
form of natural language. Second, it explicitly en-
forces the model to localize the referred object from
patch features, which strengthens the alignment be-
tween the learned visual concepts and the related
linguistic expressions. As shown in Figure 3, the
model pre-trained with MTP and REM successfully
locates the corresponding image patches and gives
the correct answer.

Masked Language Modeling (MLM) We also
apply MLM on the text-only input to predict the
masked tokens based on the surrounding text con-
text. Given text input L from the text-only corpus
Dy, we formulate the MLM objective as

Lyt = —Epop, 10g P (T | ) - (5)

Note that no aligned images are observed in the
computation of the MLM.

3 Experiments

3.1 Datasets

Following previous UVLP works (Li et al., 2021b;
Zhou et al., 2022), we take images and captions
from Conceptual Captions (CC) (Sharma et al.,
2018) without the alignment information to con-
struct the unsupervised image and text datasets.
We also try a more realistic setting to use images
from CC and sentences from BookCorpus (Zhu
et al., 2015) where images and text are collected
seperately from different domains. Similar to (Li
et al., 2021b), we downsample the BookCorpus
dataset to ensure the number of sentences in each
training epoch is the same as the number of images.

3.2 Baselines

We compare our E2E-UVLP with both supervised
and unsupervised vision-language pre-trained mod-
els. For supervised vision-language pre-trained
models, we compare with models using different
kinds of image features including region features
(VisualBERT (Li et al., 2019), UNITER (Chen
et al., 2020) and VinVL (Zhang et al., 2021)),
grid features (E2E-VLP (Xu et al., 2021) and
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Model Visual VQA2 NLVR2 | VE Flickr30k
Embed | Test-Dev | Test-P | Test | R@1 R®@5 R@10
Supervised (w/ Paired Image-Text Data)
VisualBERT (Li et al., 2019) Region 70.9 73.9 - 612  86.3 91.9
UNITER (Chen et al., 2020) Region 72.7 77.9 783 | 725 92.4 96.1
VinVL (Zhang et al., 2021) Region 76.0 83.1 - - - -
E2E-VLP (Xu et al., 2021) Grid 72.4 75.2 - - - -
SOHO (Huang et al., 2021) Grid 73.3 717.3 - 72.5 927 96.1
ViLT (Kim et al., 2021) Patch 71.3 76.1 - 66.4  88.7 93.8
Visual Parsing (Xue et al., 2021) Patch 74.0 78.1 - 73.5 93.1 96.4
ALBEEF (Li et al., 2021a) Patch 74.5 80.5 80.3 | 82.8 96.7 98.4
METER-CLIP-ViTgase (Dou et al., 2022) Patch 71.7 83.0 81.2 | 822 963 98.3
Unsupervised (w/o Paired Image-Text Data)

U-VisualBERT (Li et al., 2021b) Region 70.7 71.0 - 554 829 89.8
U-VisualBERTviyvr (Zhou et al., 2022) Region 71.8 53.2 76.8 - - -
u-VLA (Zhou et al., 2022) Region 72.1 73.4 71.3 - - -
E2E-UVLP Patch 73.3 74.6 782 | 664  89.7 94.1

Table 1: Evaluation results on four V+L downstream tasks. All unsupervised models are pre-trained on non-parallel
images and text from CC. Our proposed E2E-UVLP outperforms previous UVLP methods, and achieves comparable

performance to some supervised VLP models.

Method Visual VQA2 NLVR2 | VE Flickr30k
Embed | Test-Dev | Test-P | Test | R@1 R@5 R@10
U-VisualBERT | Region 70.5 71.2 - 54.4 82.2 89.2
u-VLA Region 71.2 67.1 77.1 - - -
E2E-UVLP Patch 73.5 73.7 779 | 656  90.3 94.7

Table 2: Experimental results of pre-training with images from CC and text from BookCorpus.

SOHO (Huang et al., 2021)) and patch features
(ViLT (Kim et al., 2021), Visual Parsing (Xue et al.,
2021), ALBEF (Li et al., 2021a) and METER-CLIP-
ViTgase(Dou et al., 2022)). Note that in addition to
the CC dataset we use for pre-training, these mod-
els typically use other parallel data sources such as
MSCOCO (Lin et al., 2014), VG (Krishna et al.,
2017) and SBU (Ordonez et al., 2011).

For unsupervised vision-language pre-trained
models, we compare with U-VisualBERT (Li et al.,
2021b), U-VisualBERTy;,vi, which is a version
of U-VisualBERT with VinVL object features
re-implemented by Zhou et al. (2022), and u-
VLA (Zhou et al., 2022). All of these models use
region-based image features.

3.3 Implementation Details

For the model architecture of E2E-UVLP, we use
a 12-layer Swin-Transformer as the image encoder
and a 12-layer Transformer acting as the mul-
timodal encoder, which are initialized with pre-
trained weights of Swin-B/32 and BERT-base, re-
spectively. We utilize the widely-used object detec-
tor BUTD (Anderson et al., 2018) to extract object
proposals for the images as in other region-based

VLP methods. We resize each image to the size
of of 384 x 384 with center-cropping for both pre-
training and fine-tuning.

For the pre-training of E2E-UVLP, we set the
total training iterations to 100k with a batch size
of 512. We use AdamW with a peak learning rate
of 3 x 107°. The learning rate is warmed-up to
the peak value in the first 10% of the iterations,
and then linearly decayed to 0. All the pre-training
experiments are conducted on 16 NVIDIA V100s
with 32GB memory per GPU.

We evaluate our model on four typical
downstream tasks: Visual Question Answering
(VQA) (Goyal et al., 2017), Natural Language for
Visual Reasoning (NLVR2) (Suhr et al., 2018), Vi-
sual Entailment (VE) (Xie et al., 2019) and Image
Retrieval on Flickr30k (Flickr30k) (Plummer et al.,
2015). For details of the downstream tasks, please
refer to the appendix.

3.4 Results

Table 1 shows the main results of E2E-UVLP on
four downstream tasks. For each model, we list
the type of image features used for pre-training.
From the table we can see that E2E-UVLP con-
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the biggest walking man
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Figure 4: Examples of the synthetic image-expression paired data. We mark the objects referred to with red
bounding boxes. The generated expressions are able to distinguish the target object from other objects in the image
by heuristically adding size and position descriptions to the detected object tags and attributes.

sistently outperforms previous UVLP methods on
all downstream tasks, which demonstrates that our
end-to-end approach can learn a better cross-modal
representation than the approaches using region fea-
tures. When compared to supervised VLP models,
our model achieves competitive results. Specifi-
cally, our model achieves a VQA score of 73.3%
on the test-dev split, which is even higher than the
performance of some supervised models. Finally,
note that in the supervised VLP, the best model
using region features (VinVL) performs better than
the models using other types of image features,
while in the unsupervised setting our approach us-
ing patch features outperforms the methods based
on the same region features of VinVL. We attribute
this to the use of the pre-training task that is more
suitable for patch features in unsupervised VLP,
i.e., REM (Section 2.3).

We also investigate pre-training using images
from CC and text from BookCorpus, and the re-
sults are shown in Table 2. Previous works suggest
that experimental results in this setting decline no-
tably compared to pre-training with the in-domain
CC captions (Li et al., 2021b; Zhou et al., 2022). In
our experiments, however, we observe comparable
or only slightly degraded performance on three of
the four downstream tasks. On the VQA task, the
model trained on BookCorpus is even slightly bet-
ter than the model trained on CC by 0.2%. These

- VQA2 NLVR2
Pre-training Tasks Test-Dev | Test-P
None 70.1 51.2
MLM 69.9 50.3
MTP 71.7 67.4
REM 70.7 70.4
MTP + REM 72.8 72.8
MLM + MTP 72.6 74.1
MLM + REM 73.2 74.5
MTP + MLM + REM 73.6 74.6

Table 3: Ablation study of different pre-training tasks.
All models are pre-trained with non-parallel images and
text from MSCOCO.

results demonstrate that our model is robust to the
sources of text and image data, which makes it
more practical in realistic scenarios.

3.5 Ablation Study

In this section, we conduct an ablation study on
the pre-training tasks. To save experimental cost,
we pre-train the models with non-parallel images
and text from MSCOCO and only report results
on the VQA and NLVR2 tasks. Table 3 shows the
results. We use “None” to represent the results of
training directly on the downstream tasks without
pre-training. From the table, we can see that: (1)
Cross-modal inputs (MTP/REM) and MLM are
two key factors for the success of E2E-UVLP, as
removing either of them will bring a significant
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performance degradation. Specifically, the combi-
nation of MTP and MLM can achieve decent results
for E2E-UVLP, which illustrates the feasibility of
end-to-end pre-training. (2) It is better to use both
MTP and REM for pre-training than to use only one
of them.. This verifies our assumption in Section
2.3 that REM can complement MTP and facilitate
the model to learn better cross-modal representa-
tions. (3) Replacing MTP with REM can improve
the performance on both of the downstream tasks,
indicating that REM is possibly a more effective
pre-training task for UVLP.

3.6 Visualization

In Figure 4, we provide some examples of the gen-
erated image-expression pairs as described in Sec-
tion 2.2. As we can see, the generated referrinng
expressions are able to distinguish the target object
from other objects in the image by heuristically
adding discriminative size and position descrip-
tions. For example, in the second image, there are
two umbrellas both with the attribute of the color
blue. Since the target object has a larger bounding
box, a size description “larger” is added. Similarly,
by taking into account the relative positions of the
two bounding boxes, a position description of “at
the bottom left” is added. The resulting expression
will be able to distinguish between the two objects.

4 Related Work

Vision-and-Language Pre-training Current re-
search on visual-and-language pre-training (VLP)
can be generally divided into two categories: the
two-step training strategy and the end-to-end train-
ing strategy. Most works (Lu et al., 2019; Li et al.,
2019; Chen et al., 2020; Zhang et al., 2021) fall
into the first category where they first use external
object detectors such as BUTD (Anderson et al.,
2018) to extract region features for the images and
then use them together with text embeddings to
generate multimodal representations. However, the
region features may be sub-optimal for VLP be-
cause they are designed for object detection tasks
and are fixed during the pre-training process (Xu
et al., 2021; Huang et al., 2021). Recently, some
works integrate the encoding of images into the pre-
training process, taking the raw images as input to
learn the vision-and-language representations in
an end-to-end fashion. These approach can be fur-
ther categorized into the ones using grid features
encoded with CNNs such as E2E-VLP (Xu et al.,

2021) and SOHO (Huang et al., 2021), and the
ones using patch features encoded with ViTs such
as ViLT (Kim et al., 2021), Visual Parsing (Xue
et al., 2021) and ALBEF (Li et al., 2021a). In
this work, we apply a similar end-to-end approach
to unsupervised visual-and-language pre-training
with image patch features.

All of these works on VLP require access to
large-scale parallel image-text datasets (Lin et al.,
2014; Krishna et al., 2017; Sharma et al., 2018;
Ordonez et al., 2011), which are difficult to col-
lect due to the large amount of annotations or data
cleaning efforts required. To alleviate this problem,
some recent works explore unsupervised vision-
and-language pre-training has emerged, in which
only non-parallel image and text data are utilized.
Our work also belongs to this category.

Unsupervised Vision-and-Language Pre-
training Li et al. (2021b) first propose the idea
of unsupervised vision-and-language pre-training
(UVLP) without using paired image-text data.
Their model, U-VisualBERT, is alternately
pre-trained on both image-only and text-only data.
In addition, they utilize object tags as anchor
points for cross-modal alignment to compensate
for the absence of aligned data and achieve
similar performance to supervised models. Zhou
et al. (2022) suggest that using tags alone is
not sufficient and propose pre-training tasks for
multi-granular alignment learning with a retrieved
weakly aligned image-text corpus for UVLP.

The most important difference between our work
and previous UVLP works is that we use an end-to-
end training approach to implement UVLP, which
is the first to the best of our knowledge. Besides,
we identify the limitations of models trained with
tags and propose a novel pre-training task, REM,
to address these deficiencies. As a result, our ap-
proach significantly outperforms previous region-
based UVLP works on all downstream tasks.

Referring Expression Comprehension and Gen-
eration The task of REM is inspired by the
research lines of referring expression generation
(REG) and comprehension (REC). REG is gener-
ally treat as a special case of image captioning to
generate referring expressions from visual features
with RNNs (Liu et al., 2017; ZarrieB and Schlangen,
2018), while Kazakos et al. (2021) generate syn-
thetic referring expressions heuristically from ob-
ject annotations. We apply a similar generation
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strategy but on the detected object proposals. The
task of REC is to localize an object from candidate
objects given a referring expression (Mao et al.,
2016; Liu et al., 2019), while our proposed REM
directly predicts the referred object from patch fea-
tures without object candidates.

5 Conclusion

We propose a novel framework that performs
end-to-end unsupervised vision-and-language pre-
training without using costly and sub-optimal re-
gion features. To reduce the training-inference dis-
crepancy, we propose a new pre-training task that
predicts the locations of objects with synthetic re-
ferring expressions that are more similar to real
text. Experiments show that our approach consis-
tently outperforms existing unsupervised vision-
and-language pre-training methods, and achieves
competitive results compared to supervised vision-
and-language pre-trained models.

Limitations

Although our approach eliminates the dependence
on object detection during inference, it still requires
object proposals for pre-training, which would dam-
age the efficiency of pre-training. In addition, our
method is limited by the finite number of object
tags and the lack of diversity of heuristically gen-
erated referring expressions. We hope to address
this limitation by jointly training a generator with
unsupervised vision-language pre-training that au-
tomatically generates referring expressions or other
type of psudo-parallel text for the images.
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A Details of Downstream Tasks

Most of our settings on downstream tasks follow
the setup of ViLT (Kim et al., 2021) with small
adjustments, as detailed below.

VQA The VQA task involves answering the ques-
tion according to the given image, which requires
an understanding of both vision and language. Fol-
lowing Kim et al. (2021), we fine-tune the model on
the train and validation sets, and 1, 000 validation
image-question pairs are reserved for internal vali-
dation. We use the 3, 129 most frequent answers as
answer candidates following Yu et al. (2019). We
set the batch size to 256 and the peak learning rate
to 5 x 10~°. The model is fine-tuned for 10 epochs.

NLVR2 The task of NLVR2 is to determine
whether a natural language description is true given
a pair of images. Following Kim et al. (2021), we
reformulate the input to two image-caption pairs,
concatenating the two representations as the in-
put of a classification head. Following Li et al.
(2021b), we perform task-specific pre-training be-
fore fine-tuning using mask-and-predict objective
for 10 epochs. The batch size is 256 and the peak
learning rate is 1 x 10~°. During fine-tuning, we
use a batch size of 128 and set the peak learning
rate to 1 x 1075, The model is fine-tuned for 10
epochs.

VE The VE task is derived from Flickr30K
(Plummer et al., 2015) images and Stanford Nat-
ural Language Inference (SNLI) (Bowman et al.,
2015) dataset. Given an image premise P and text
hypothesis H, the task aims to determine whether P
implies H. This task is a 3-way classification prob-
lem to output entailment, neutral, or contradiction
based on the relation inferred from the input image-
text pair. The batch size is set as 256 and we set
the peak learning rate as 7 x 10~° to train for 5
epochs.

Image Retrieval Given a caption, the image re-
trieval task is to find the corresponding image from
a collection of images. Following UNITER (Chen
et al., 2020), we sample 31 negative image-text
pairs along with a positive sample to construct a
mini-batch for each GPU. The model is fine-tuned
for 10 epochs with a peak learning rate of 5 x 1072,
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