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Abstract

Relation extraction has focused on extracting
semantic relationships between entities from
the unstructured written textual data. However,
with the vast and rapidly increasing amounts
of spoken data, relation extraction from speech
is an important but under-explored problem. In
this paper, we propose a new information extrac-
tion task, speech relation extraction (SpeechRE).
To facilitate further research, we construct the
first synthetic training datasets, as well as the
first human-spoken test set with native English
speakers. We establish strong baseline perfor-
mance for SpeechRE via two approaches. The
pipeline approach connects a pretrained ASR
module with a text-based relation extraction
module. The end-to-end approach employs a
cross-modal encoder-decoder architecture. Our
comprehensive experiments reveal the relative
strengths and weaknesses of these approaches,
and shed light on important future directions in
SpeechRE research. We share the source code
and datasets on https://github.com/
wutong8023/SpeechRE.

1 Introduction

Relation extraction (RE) (Han et al., 2020) is an
important information extraction task, which aims
at extracting structured semantic relations between
entities from unstructured data, typically text.
Besides text, there is also a plethora of speech data
that is being continually produced. These include
news reports, interviews, meetings and dialogues,
to name a few. Extracting relations from speech is
an important but under-explored problem.

In this work, we take the first step towards
addressing relation extraction (RE) from speech,
introducing a new information extraction task,
Speech Relation Extraction (SpeechRE). The input
for this task is raw audio and the output is one or
more triplets, each of which representing a relation

∗ denotes the equal contribution.

Figure 1: The comparison among conventional transcript-
based relation extraction, ASR outputs-based relation
extraction, and the end-to-end speech relation extraction.

between a pair of two entities appearing in the
speech, e.g., [entity1, relation, entity2].

SpeechRE and text-based RE (TextRE) both
involve content understanding. The former is more
challenging than the latter, mainly due to the char-
acteristics of speech. (i) Speech carries much richer
information beyond linguistic content (unlike text),
for instance, emotion, speaker style and background
noise; and it is non-trivial to disentangle the content
element (Mohamed et al., 2022), which is needed
for SpeechRE. (ii) Speech is continuous without
sequence/word boundaries, implying the difficulty
of determining the exact audio spans for target
words (entity and relation). (iii) Audio signals are
orders of magnitude longer than the corresponding
transcripts, which makes speech encoding for
long-span extraction more challenging due to more
demanding hardware requirements, especially with
Transformer (Vaswani et al., 2017).

In the absence of SpeechRE training data,
we construct three benchmark datasets for this
task by converting two commonly used TextRE
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datasets (i.e., CoNLL04 (Roth and Yih, 2004a) and
ReTACRED (Stoica et al., 2021a) to speech with
a SOTA text-to-speech (TTS) system. We then pair
the synthetic speech with the corresponding target
relation triplets as instances. To better evaluate
model performance on real speeches, we also
compile a human-read test set.

We approach SpeechRE with a pipeline method,
SpeechREpipe, and an end-to-end (e2e) method,
SpeechREe2e. In SpeechREpipe, we train our
pipeline model with an automatic speech recog-
nition (ASR) module that converts speech to text,
followed by a RE module that extracts triplets. In
SpeechREe2e, we build a single speech-to-text
model that extracts triplets directly from speech.
We use a SOTA pretrained speech encoder,
WAV2VEC2 (W2V2) (Baevski et al., 2020) and
BART (Lewis et al., 2020) decoder. Inspired by Li
et al. (2021), we attach a length adaptor on top of
the encoder to bridge the length mismatch between
speech representation and text representation. The
end-to-end approaches in speech processing tasks
often face more severe data scarcity issues than the
pipeline approaches (Sperber and Paulik, 2020), as
the latter can essentially leverage massive ASR data
and labelled data for the downstream text-based
tasks. To tackle this challenge, we further propose
two data augmentation techniques: upsampling
via generating speech with different voices, and
pseudo-labelling (He et al., 2021) by leveraging
abundant ASR data and a SOTA TextRE system.

Our contributions can be summarized as follows.

• We present a new task, Speech Relation Extrac-
tion (SpeechRE). To support the development
of this task, we create and release a synthetic
SpeechRE dataset, including training/dev/test
sets, as well as a human-read test set.

• We establish strong baseline performance via
a pipeline approach and an e2e approach. Our
extensive experiments identify a performance
gap between TextRE and SpeechRE, and the
gap between the pipeline approach and the e2e
approach, motivating further research.

• Our analysis shows that the performance gap
of the end-to-end approach mainly comes from
the data scarcity problem and the difficulty of
spoken name recognition. We propose two data
augmentation methods to the problem.

• Based on our findings, we suggest three main

directions for future exploration to advance
speech relation extraction.

2 Related Work
2.1 Relation Extraction

As an essential component of information extrac-
tion, named entity recognition (NER) and relation
extraction (RE) have attracted much attention in
the research community. Relation extraction is
usually studied as a natural language processing
task of textual data (Nasar et al., 2021; Wu et al.,
2021; Zheng et al., 2021c; Chen et al., 2022b).
With the widespread of multimedia data on social
media, some researchers have begun to explore
relation extraction from data in other modalities
such as images (Zheng et al., 2021a; Chen et al.,
2022a; Zheng et al., 2021b). Although some work
has focused on spoken language, such as dialogue
relation extraction (Yu et al., 2020; Zhou et al.,
2021), these studies are all based on transcripts, i.e.
high-quality transcribed text from speech, which
is still within the confines of text-based relation
extraction. Moreover, given the transcribed text, the
side information of voice, e.g., emotion, speaker
identity is ignored from the spoken language.

2.2 Spoken Language Understanding

Spoken Language Understanding (SLU) aims to
extract the meaning from speech utterances. It has
wide applications from voice search to meeting sum-
marization and has received great attention from
industry and academia (Tur and De Mori, 2011). A
typical SLU system involves mainly two tasks, i.e.,
intent detection and slot filling (Tur and De Mori,
2011). Traditionally, SLU systems have a pipeline
structure, in which an ASR module is first used to
convert speech to text and then a NLU system is
deployed to determine semantics from text.

A major drawback of this approach is that
each module is trained and optimized indepen-
dently (Serdyuk et al., 2018). (i) The ASR model is
optimized to minimized Word Error Rate (WER)1,
often equally weighting every word, whereas
not every word has the same impact on SLU. (ii)
The NLU model is trained on clean text without
ASR errors, i.e. transcripts. During evaluation,
however, it receives erroneous ASR outputs and
these errors are propagated to NLU, impairing
its performance. End-to-end (e2e) learning has

1WER is a commonly used metric in measuring the
performance of ASR systems.
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thus attracted interests from the community, for its
potential to addressing SLU in a more principled
way (Serdyuk et al., 2018). Since the first e2e
approach proposed by Serdyuk et al. (2018), the
field has made significant advances (Qin et al.) and
many techniques, such as pretraining (Castellucci
et al., 2019), have been proposed.

Similar to other speech processing tasks (e.g.
speech translation (Sperber and Paulik, 2020)),
SLU also faces the data scarcity issue, as it can be
very expensive to annotate such a dataset, whereas
the pipeline method can benefit from existing and
emerging massive ASR data and NLU datasets.

Speech relation extraction (SpeechRE) is a new
SLU task and thus inherits the merits and demerits
of the pipeline and e2e approaches. We leverage
advances that have been developed in related
disciplines in this work and evaluate their relative
strengths and weaknesses in §4.

3 Speech Relation Extraction

We define SpeechRE as a joint entity and relation
extraction task that takes a speech utterance as the
input and generates a set of relational triplets in the
form of [entity1, relation, entity2] as the output.

In this section, we first describe the data
construction method (§3.1). Next, we present our
two approaches to the task (§3.2). Last, we describe
our two data augmentation techniques (§3.3) to
improve end-to-end SpeechRE performance.

3.1 Dataset Construction

Synthetic Data. As there is no readily available
SpeechRE data, we generate SpeechRE data
from existing TextRE corpora. Given a Tex-
tRE dataset consisting of pairs of <source (i.e.
transcript), triplet> we convert the transcript to
human-like speech with a TTS model. A typical
TTS system comprises a Text-to-Spectrogram
module, which takes discrete text as input and
produces mel-spectrograms, and a vocoder, which
converts the mel-spectrograms into waveforms.
We choose Tacotron2-DCA as the TTS system and
Mulitband-Melgan as the vocoder.2 Once the syn-
thesis process is complete, our data would contain
triples of <synthetic speech, transcripts, triplets>.
Training/dev/test sets are compiled following this
process, while obeying the original TextRE split.
Real Data. To evaluate the performance of our mod-
els on realistic speech, we randomly choose 200 in-

2https://github.com/mozilla/TTS

stances from the ReTACRED10 test set and engage
a native English speaker to read the corresponding
transcripts. This real SpeechRE test set can be used
as a benchmark for future research. Please refer to
§4.8 for demonstration of synthetic and real data.

3.2 SpeechRE Approaches

We describe our pipeline (SpeechREpipe) and
end-to-end (SpeechREe2e) approaches in this
section. As depicted in Figure 2, SpeechREpipe

consists of an ASR module for turning speech into
text and a TextRE module for extracting triplets
from the text, whereas SpeechREe2e has a simple
architecture with a speech encoder, a length adaptor
and a text decoder, which outputs triplets directly.
The Pipeline Approach. We use W2V2-large as
our ASR module. It is a speech encoder, pretrained
in a self-supervised manner. Its architecture starts
with a feature encoder composed of several 1D con-
volutional neural networks that process raw wave-
forms and emits latent speech representations. Fol-
lowing that, a quantization module is attached to
extract discrete latent vectors. Next, a context en-
coder made of 24 Transformer (Vaswani et al., 2017)
layers is used to learn contextualized representa-
tions from masked outputs of the feature encoder.
The whole model is optimized to discriminate a true
masked vector from the ones produced by the model.
After pre-training, only the feature and context en-
coders are retained and used for downstream tasks.
Compared with other ASR models, W2V2 obtains
superior performance by fine-tuning it with a small
amount of labelled speech. Additionally, it works on
raw audio signals directly, avoiding the risk of infor-
mation loss using hand-crafted features (Latif et al.,
2020). The W2V2 model we use is already fine-
tuned on ASR data and we do not further fine-tune it.

We utilize REBEL (Cabot and Navigli, 2021)
as our TextRE module. It uses a pretrained
language model BART (Lewis et al., 2020) as the
backbone and treats TextRE as a text generation
task. Concretely, the input is text (the output from
ASR in our case), and the output is linearized
triplets, in the form of “<triplet> entity1 <subj>
entity2 <obj> relation”. The generative model may
not restrict the output entities exactly the same with
a mention in input text, which is an advantage for
SpeechRE with ASR outputs, such a task extracting
from the text containing noisy entity mentions.

An alternative to REBEL is to employ a
classification-based model as our TextRE module.
We experiment with Spert (Eberts and Ulges, 2020)
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Figure 2: Overview of SpeechREpipe (left) and SpeechREe2e (right).

and TPlinker (Wang et al., 2020) in this work. Given
that the ground-truth entity may not appear in the
transcribed text computed by ASR, we modify the
ground-truth entity in the training set by referring
to the fuzzy-matched longest substring mentioned
in transcribed text, such a fuzzy-matched longest
substring is measured by Levinstein distance.3

The end-to-end Approach We formulate
SpeechREe2e as a speech-to-text task that requires
a speech encoder and a text decoder. We employ
the aforementioned W2V2 as our encoder, for
its capabilities of encoding general-purpose
knowledge. We take the decoder component of
BART-large (Lewis et al., 2020) as the text decoder.
Naïvely jointing them may lead to optimization
issues, as they are pretrained on different modalities
which differ significantly in length. To address this
issue, inspired by Li et al. (2021), we introduce a
length adaptor made of n number of 1-d convolu-
tional layers, each of which is parametrized with
kernel p, stride s and padding p. This adaptor has
an sequence reduction effect of ∼sn.

We follow the partial training strategy used by
Gállego et al. (2021). We train the length adaptor
together with part of the encoder and decoder
(including encoder self-attention, encoder-decoder
cross-attention and layer normalization), while
freezing the rest of the parameters. The trained
parameters account for ∼20% of the entire model.
This training strategy has shown to be efficient,
while retaining performance in speech translation
tasks (Zhao et al., 2022).

3https://pypi.org/project/fuzzywuzzy/

3.3 Data Augmentation
for Speech Relation Extraction

To address the data scarcity issue facing
SpeechREe2e, we propose two data augmentation
techniques: upsampling and pseudo-labelling. For
upsampling, given a SpeechRE corpus, we use a
multi-speaker TTS system (Kim et al., 2021) and
generate synthetic speeches with 4 different voices.
This yields 4 more synthetic SpeechRE datasets.
Pseudo-labelling has been widely used in NLP (He
et al., 2021) due to its effectiveness in improving
task performance. Specifically, given a SpeechRE
dataset D, we fine-tune the pretrained REBEL
model on <transcript, triplet> training instances to
adapt it to the current domain. Next, we run the fine-
tuned REBEL over the large-scale English dataset
of CommonVoice (V9)4 where audios are recorded
by volunteers of different demographic character-
istics. Together with the original speech, this gives
a total of 922k instances containing <real_speech,
transcript, pseudo_triplet>. Then, we filter out
noisy data if a pseudo_triplet meets any of the
following criteria: i) relation is “no_relation”; 2)
no subject/object entity is generated; and 3) subject
and object entities are both pronouns. We thus
obtain 380k clean instances. Depending on the type
of relations available in D, further filtering may be
applied to remove spurious relation triplets.

4https://commonvoice.mozilla.org/en/
datasets
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4 Experiment

4.1 Dataset

We conduct experiments on our proposed
SpeechRE datasets, i.e., Speech-CoNLL04 and
Speech-ReTACRED, aligning with their original
dataset CoNLL04 (Roth and Yih, 2004b) and
ReTACRED (Stoica et al., 2021b). Furthermore,
we pick 10 relations with the largest number of
instances from the ReTACRED dataset, and remove
the instances with none of relation or containing
the other 30 relations. We named the sub-dataset
of ReTACRED as ReTACRED10, and utilize it as
the test-bed for sufficient supervised learning. We
detail data statistics in Table 1.

Moreover, we use ReTACRED10 to fine-tune
REBEL for pseudo-labelling. The fine-tuned
model generates pseudo labels of 137 relations. We
remove pseudo instances whose labels fall out of Re-
TACRED10. We then have 363k instances remained
and each instance has one triple. Furthermore, we
sample from pseudo set to 1.8× for each relation
in ReTACRED10. At this point, the total number
of data sampled is 2.5× to ReTACRED10, as a tran-
script in ReTACRED10 often has multiple relations.

4.2 Baselines

We select three joint entity and relation extraction
methods as baselines: TP-Linker (Wang et al.,
2020) formulates joint extraction as a token pair
linking problem and introduces a handshaking
tagging scheme that aligns the boundary tokens of
entity pairs under each relation type. Spert (Eberts
and Ulges, 2020) formulates the task as a two-stage
classification task, with classifying each candidate
continuous span for entity detection and then clas-
sifying the inter-context for relation classification.
REBEL (Cabot and Navigli, 2021) treats joint
entity and relation extraction as a text generation
task. We also attempt these three methods as the
pluggable TextRE modules in SpeechREpipe.

4.3 Evaluation metrics

Evaluating SpeechRE is difficulty because of the
strict matching of entities. The error of a letter
or the difference in case lead to failure in entity
matching, which lowers the results of triplets.
For this reason, we evaluate the baseline models
and SpeechRE models based on the metrics (i.e.,
Recall, Precision and micro-F1) commonly used
in TextRE, with modifications. Specific to entities,

we ignore the span of entities due to the lack of span
information in audio, and TextRE applies the same
method. Additionally, we do not consider entity
when evaluating relations, which is equivalent to
the task of relation classification of sentences. The
reason is that spoken entity recognition is a very
difficult tasks as most entities have low frequency
in a dataset; when predicted entities were taken
into account, the results would cover the true per-
formance of relation generation. When evaluating
triplets, we make sure that the head entity and tail
entity and the relation between them are all correct.

4.4 Implementation Details
We use a pretrained W2V2 model5 to convert speech
to text, without fine-tuning it. Since the ASR out-
puts the model produces are all lower-cased without
punctuation, we perform post-processing on the
outputs for punctuation restoring and casing with
another pretrained model.6 For TextRE model, we
mostly follow the instructions in Cabot and Navigli
(2021) and start from the REBEL7 that using Bart8

as the pretrained model. The original REBEL labels
the entities in the input text using punctuation marks
to indicate entities’ position in the input. Since
SpeechREpipe does not use labels to bias the model
with entity information from plain audio or text,
we remove the entity labels when preprocessing
ReTACRED (source sentences) and ReTACRED10.

To train our SpeechREe2e model, we use the
pretrained W2V2 large9 and the pretrained Bart10.
We keep the W2V2 feature extractor frozen. We
set kernel size, stride and padding to 3, 2, 1 for all
3 CNN layers for the length adaptor. We apply data
augmentation (Potapczyk et al., 2019) on the audio
data on the fly by applying the effects of "tempo"
and "pitch" to change the speech speed, and "echo"
to simulate echoing in large rooms. We train our
SpeechRE models for 23k updates and set early
stopping of 20 updates. We use Adam (Kingma and
Ba, 2015) optimizer with parameters (0.99, 0.98),
while setting clip norm to 20. We use the learning
rate to 1e-4, monitored by a tri-stage scheduler.

5https://huggingface.co/facebook/
wav2vec2-large-960h-lv60-self

6https://huggingface.co/flexudy/
t5-small-wav2vec2-grammar-fixer

7https://github.com/Babelscape/rebel
8https://huggingface.co/facebook/

bart-large
9https://dl.fbaipublicfiles.com/

fairseq/wav2vec/wav2vec_vox_960h_pl.pt
10https://dl.fbaipublicfiles.com/

fairseq/models/bart.large.tar.gz
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Datasets # Relations
# Instances # Triplets # Avg. tokens # Avg. audio length

(train || dev || test) (train || dev || test) (in transcripts) (in seconds)
CoNLL04 5 922 || 231 || 288 1,283 || 343 || 422 29.1 11.3

ReTACRED 40 33,477 || 9,350 || 5,805 58,465 || 19,584 || 13,418 36.3 12.9
ReTACRED10 10 11,116 || 3,892 || 2,513 15,665 || 5,970 || 4,204 34.7 12.6

Table 1: Dataset statistics.

Method
CONLL04 ReTACRED ReTACRED10

Entity Relation Triplet Entity Relation Triplet Entity Relation Triplet

TextRE
TP-Linker 78.63 83.49 58.56 50.46 51.83 20.39 65.51 65.17 37.01

Spert 76.38 81.83 63.45 60.26 63.48 21.46 64.88 64.72 34.61
REBEL 85.36 89.86 71.46 60.09 65.15 25.15 64.91 69.80 39.68

SpeechREpipe

TP-Linkerpipe 32.41 77.54 8.70 28.60 51.43 6.77 38.19 61.85 13.79
Spertpipe 28.95 75.44 10.47 33.20 58.36 7.10 55.23 57.42 27.43

REBELpipe 35.78 82.86 12.53 30.21 53.20 6.93 51.08 67.46 28.06

SpeechREe2e 24.89 59.57 12.50 27.70 52.10 6.59 29.87 51.32 14.79

Table 2: Main results. Upper rows: TextRE models for which inputs are transcripts. Middle rows: SpeechREpipe

where inputs are ASR outputs. Bottom row: SpeechREe2e where inputs are speech.

All experiments are conducted with fairseq.11. All
our models are evaluated on the best performing
checkpoint on the validation set. All experiments
are conducted in a V100 GPU. Full training details
can be found in Appendix A.1.

4.5 Results of TextRE and SpeechRE

We first compare and contrast among the text
relation extraction method and two speech ex-
traction methods, to understand the performance
gap. We train various models, including three
TextRE models, the pipeline version of them12 and
the e2e model, over CoNLL04, ReTACRED and
ReTACRED10. Results are summarized in Table 2.

Despite of the good performance of REBEL
with transcripts being inputs (up to 71.46 on
CoNLL04), its performance drops hugely when the
input becomes ASR outputs, which are erroneous.
Notably, the performance gap on entity prediction
is huge. These highlight the challenge with
the pipeline approach. SpeechREe2e does not
outperform SpeechREpipe across the three datasets.

All SpeechRE methods have achieved low
accuracy of entity recognition. Particularly, the gap
between TextRE and SpeechRE on entity detection
is far larger than the gap on relation classification.
It suggests that speech entity recognition may be
the core bottleneck of the performance degradation
of triplet extraction.

11https://github.com/facebookresearch/
fairseq

12Where the input is changed to ASR outputs, instead of
transcripts in TextRE.

4.6 SpeechRE in Low-resource Scenarios

To evaluate and compare the performance of our
SpeechRE models in resource-constrained condi-
tions, we simulate different training conditions by
sampling 20%, 40%, 60%, 80% (and 100%) from
the ReTACRED10 training set. We use REBEL
as the TextRE model, since both REBEL and our
SpeechRE models are generative models. For
evaluation, we randomly sample 20 instances for
each relation (10 relations) from the ReTACRED10
test set, totally 200 instances (the same subset
corresponding to our human-read test set, described
in §3.1). We present F1 scores on entity prediction
in the left plot of Figure 3, and F1 scores on relation
prediction in the right plot, in both of which the lines
left to the red dashed vertical line refer to the setting
discussed in this subsection. To measure the extent
of error propagation in SpeechREpipe, we also
evaluate its performance when the TextRE modules
are trained on noisy ASR output as their input
(instead of ground-truth transcripts). We summarize
our observations from different perspectives below.

Training with transcripts v.s. ASR outputs. To
investigate the impact of the quality of the text
input to REBEL, we compare the performance
of REBEL and SpeechREpipe models, referring
to TextRE (Transcript, TTS) and SpeechREe2e

(Single speaker, TTS) in Figure 3, whose inputs
are transcripts and ASR outputs, respectively.
Overall, the SpeechREpipe model, compared
to REBEL, produces comparable, yet slightly
lower results on relation prediction, whereas
performing significantly worse on entity prediction.
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On the one hand, this indicates the reliability of
transcribed texts on relation words. On the other
hand, the significant ASR errors on entity words are
propagated to the downstream extraction module,
greatly degrading its performance.
Pipeline v.s. end-to-end SpeechRE. Comparing
the two approaches, SpeechREe2e performs worse
than SpeechREpipe, referring to SpeechREpipe

(ASR, TTS) and SpeechREe2e (Single speaker,TTS)
in Figure 3. However, with the increase in training
data, its performance starts to catch up with
SpeechREpipe. This is expected13, because not
only does SpeechREpipe have a bigger model size,
its two components also excel in their own tasks
by leveraging abundant ASR and TextRE data. In
comparison, SpeechREe2e has a smaller model
size and is trained with a much smaller training set.
Despite the large gap, the rising trend is promising,
indicating the potential of SpeechREe2e reaching
parity with, and even surpassing SpeechREpipe.
Training SpeechREe2e with multi-speaker
v.s. single-speaker. We examine the impacts of
single-speaker and multiple-speaker data. In most
cases, when a model is trained with multi-speaker
data, it has better performance on relational
classification than the one trained on single-speaker
data. Their performance on entity recognition is
roughly the same.
Evaluation on synthetic and human-read data.
When comparing the performance of our models
on the synthetic test set and the human-read test
set, it is surprising to obverse that most of the time,
both SpeechREpipe and SpeechREe2e models have
higher accuracy on relation prediction on the human-
read data than on the synthetic one. This demon-
strates the effectiveness of the use of synthetic
speech. Please see Appendix A.2 for full results.

4.7 SpeechRE with Data Augmentation

Based on the trend observed previously, we expect
the SpeechREe2e model to improve with more train-
ing data. We leverage the two data augmentation
methods introduced in §3.3, namely, up-sampling
and pseudo-labelling. For each method, we build
larger training corpora by adding augmented
SpeechRE data to ReTACRED10, with sizes 100%,
200%, 250%, 300% and 350% that of ReTA-
CRED10. This gives us 10 new training sets. The
evaluation protocol is identical to the one in §3.3.

13The trend has long been observed in other speech
processing tasks (Sperber and Paulik, 2020).

Results of these data augmentation can be found
in Figure 3, to the right of the vertical dashed line
in each subfigure. We outline our findings below.
Training with transcripts v.s. ASR Outputs.
With more training data, REBEL trained on
ground-truth transcripts plus augmented pairs,
<transcript, pseudo_triplet>, has roughly the same
accuracy on relation prediction in all conditions.
We can observe a slightly decreasing trend on entity
prediction. The performance of SpeechREpipe has
a moderately rising trend before leveling out.
Pipeline v.s. end-to-end SpeechRE. Both data
augmentation techniques bring significant im-
provements to SpeechREe2e with pseudo-labelling
being superior. Pseudo-labelling reaches the same
performance both on entity and relation predictions
as TextRE on synthetic speech at 350%. The results
are surprising, especially with entity generation,
considering the difficulty of the task in the speech
domain in general. In contrast, augmented data
do not help much with SpeechREpipe due to the
error prorogation issue discussed above. Please see
Appendix A.3 and A.4 for full results.

4.8 Case Study

We perform a qualitative error analysis of SpeechRE
through a case study. Table 3 shows typical errors
in this task.
Error accumulation in the pipeline method. The
two rows “TTS ASR” and “Human ASR” illustrate
that it is challenging for the SOTA ASR model to
spell entity names correctly, especially the names
of people and institutions. Being a deep learn-
ing model, it may tend to generate high-frequency
words (Razeghi et al., 2022). This presents
both a great challenge and opportunity for entity-
sensitive tasks such as relation extraction, since low-
frequency entities often contain more information
and are more likely to be useful knowledge.
Hallucination in the end-to-end method. As
shown in the two rows “SpeechREe2e”, the e2e
model may generate entities and relation types that
are not present in speech, creating hallucinations.
TextRE, in contrast, can restrict generated words via
controllable text generation techniques. This is less
surprising: being a cross-modal task, it is difficult
for a SpeechRE model to effectively restrict the gen-
erated content, especially when the size of training
data is limited. We also detail the impact of data aug-
mentation on the accuracy of entity prediction by
entity type. Appendix A.4 contains further results.
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Figure 3: F1 scores of entity (left) and relation (right) predictions on 200 synthetic and human-read instances in various
training resource conditions. Left to vertical dashed lines: low-resource scenarios. Right to vertical dashed lines:
data augmentation. MODEL (Train, Test): MODEL (i.e. SpeechRE and TextRE) is trained on Train and tested on Test.

Text
When bin Laden fled the US invasion in 2001 , he took refuge with Haqqani in a safe house

Golden <triplet> Ahmed Rashid <subj> Pakistani <obj> person origin
between the Afghan city of Khost and Miran Shah, according to Pakistani author Ahmed Rashid.

TTS ASR
When bin-laden fled the U-S invasion in 2001, he took refuge with Hakone in a safe house

SpeechREpipe <triplet> Akmed Rashid <subj> Pakistani <obj> person origin
between the Afghan City of Coast and Muran Shaw, according to Pakistani author Akmed Rashid.

Human ASR
When bin Laden fled the U-S invasion in 2001, he took refuge with Hakwani in a safe house

SpeechREpipe <triplet> Ahmed Rashid <subj> author <obj> person title
between the Afghan City of Cost and Mirishah, according to Pakistani author Ahmed Rashid.

TTS Audio Synthetic Audio C SpeechREe2e <triplet>Bernama<subj>U.S.<obj>organization country of branch

Human Audio Human Audio C SpeechREe2e <triplet>Mohamed ElBaradei<subj>Sultan<obj>person title

Table 3: A qualitative error analysis for both the pipeline and end-to-end approaches. Models are trained with 100%
ReTACRED10 data.

5 Discussion

Based on our analysis, we discuss the following
question: For a new SpeechRE task, should we
choose a pipeline or an end-to-end approach?
While raw performance is largely attributed to
data resources, to answer this question, other
factors need to be taken into account in addition
to the availability of data resources. These include
compute power and latency.

Pipeline method is suitable in the low-resource
scenarios. As shown in Figure 3, prior to 100%,
SpeechREpipe requires less training data to train
than SpeechREe2e, while exhibiting reasonably
good performance. Therefore, the general ASR
method based on pre-training provides a reasonable
performance lower bound for low-resource speech
extraction. The major concern is errors contained in
entities, as shown in §4.8. As a future direction, we
conjecture that this issue could be potentially allevi-
ated by the mixed extraction method from both tran-
script and speech. Yet, the pipeline approach may
be limited by fundamental issues (e.g. error propaga-
tion and high latency) that cannot be solved easily.

The end-to-end method is preferred when la-
belled training data size is sufficient or external

data is accessible. According to Figure 3, with the
increasing volumes in training set, the performance
of SpeechREe2e on extracting correct entities and re-
lations steadily improves. Extracting meaning from
speech directly avoids the risk of information loss
and error propagation, unlike in the pipeline setting.
Because of this, the e2e approach can potentially
solve the extraction task in a principled manner.
The data scarcity issue that it faces can be eased
through data augmentation, for its effectiveness on
both machine-generated speech and realistic speech.
Exploring more sophisticated augmentation
and filtering techniques is thus a fruitful future
direction. Further, it is of importance to improve
data efficiency and enhance entity prediction
performance. Particularly, enforcing constraints on
entities in the decoding process and the inclusion
of memory banks are promising directions.

6 Conclusion

We propose a new spoken language understanding
task, Speech Relation Extraction (SpeechRE), and
present two synthetic datasets and a human-read
test set. We approach SpeechRE with two methods,
the pipeline and e2e approaches. Through extensive
experiments, quantitative and qualitative analyses,
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we identify data scarcity and spoken entity recog-
nition as two main challenges for this task. We
then present two augmentation techniques that are
effective in addressing these challenges. Lastly,
being the first working on the task, we outline key
directions for future research.

7 Limitations

This paper discusses the utterance-level speech
relation extraction task where the average length
of audio inputs is less than 15s. Constrained by
computing resources, processing long audio signals
is challenging, a known issue in the speech domain.
For this reason, while speech relations can be
useful in other scenarios such as summarization
of dialogues, news and meetings, we were not
in the position to carry out our study in these
scenes. Another limitation is that we did not fully
utilize the information contained in speech signals
(e.g. speaker style and emotion), which could
be beneficial to the task. Addressing these two
limitations is part of our plan for future research.
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A Appendix

A.1 Training Details

A.1.1 Implementation Details

For all the experiments, we train our REBEL for 30
epochs with Adam optimizer (0.9, 0.999) of a linear
scheduler with a warmup rate of 0.1, a learning
rate of 5e-5, a weight decay of 0.01, and a gradient
clip value of 10. For other settings, our REBEL is
consistent with the original ones.

A.1.2 More details about pseudo-labelling

The Common Voice Corpus 9.0 dataset consists of
2,224 validated hours in English and 81,085 voices.
Each entry in the dataset consists of a unique MP3
and corresponding text file. Many of the recorded
hours in the dataset also include demographic
metadata like age, sex, and accent that can help train
speech recognition engines. Here we use the script
from speechbrain14 to help us process text files in
the dataset, but we made two changes to the process-
ing script. Firstly, this processing script will make
all text uppercase, which we do not do, but retain the
original case of the text. Secondly, we add full stops
to all sentences, whereas the original text has no full
stops. We have made these two changes to make
the processed text more realistic and to harmonise
it with other datasets (e.g. CoNLL04, ReTACRED,
etc.). We fine-tune REBEL (using rebel-large15 as
the pretrained model) on the ReTACRED10 dataset
and conduct pseudo-labelling on the processed text
to extract sentences and corresponding audio that
contains target relations. A total of 922k instances
were extracted from the Common Voice Corpus
9.0 dataset, of which 380k clean instances were
retained after filtering.

A.2 Low-Resource Analysis

We report the exact values of low resource analysis
in Table 4, which corresponds to the left half of
each sub-figure of Figure 3.

A.3 Data Augmentation Analysis

We report the exact values of low resource analysis
in Table 4, which corresponds to the right half of
each sub-figure of Figure 3.

14https://github.com/speechbrain/
speechbrain/blob/develop/recipes/
CommonVoice/common_voice_prepare.py

15https://huggingface.co/Babelscape/
rebel-large

A.4 Entity Analysis
To further understand why the pseudo labelling can
perform better than the multi-speaker up-sampling,
we conduct the following analysis experiments.
Firstly, we selected high-frequency entities with
frequency greater than three from the test set of
ReTACRED10. Moreover, we count the frequency
of these entities in the training set constructed by
two augmentation manners, i.e., pseudo labelling
and multi-speaker up-sampling (as shown in
Table 6). Then, we counted the classification
accuracy of these entities in the test set (in Table 7).
Comparing the two tables by location, we can
observe that the method of pseudo labelling can
effectively improve the recognition accuracy of the
model for unseen entities.
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Method Input Metrics
20% 40% 60% 80% 100%

w/TTS w/Human w/TTS w/Human w/TTS w/Human w/TTS w/Human w/TTS w/Human

TextRE Transcript
Entity 27.91 30.56 29.04 29.11 26.89 30.05 27.85 28.86 25.19 26.95

Relation 43.32 50.50 43.27 51.19 46.35 54.64 45.61 51.26 45.73 51.50

Triplet 6.55 9.50 6.86 8.45 5.54 8.52 8.02 8.54 4.02 7.50

SpeechRE-pipe ASR
Entity 23.80 24.90 23.94 24.68 22.67 21.45 22.34 24.06 23.98 21.32

Relation 44.84 50.75 45.53 48.11 49.48 47.40 48.50 52.00 53.50 55.00

Triplet 4.53 4.02 7.05 5.41 4.64 3.65 4.50 4.50 6.00 4.50

SpeechRE-e2e Single Speaker
Entity 7.31 7.2 8.76 8.55 8.72 8.26 9.74 9.15 12.42 12.81

Relation 22.65 21.74 24.15 21.73 22.98 22.72 24.26 23.53 28.83 31.09

Triplet 0.45 0.45 1.87 0.96 1.9 1.44 2.78 2.34 2.95 2.16

SpeechRE-e2e Multi Speaker
Entity 4.26 4.69 8.39 9.08 8.12 10.01 9.61 10.8 10.47 12.16

Relation 16.06 20.77 27.16 24.88 23.21 29.21 27.95 28.57 28.85 28.71

Triplet 0.95 0.95 2.35 1.42 1.45 1.91 2.27 2.67 2.27 1.83

Table 4: The low resource analysis.

Method Input Metrics
100% 100% + 50% 100% + 100% 100% + 150% 100% + 200% 100% + 250%

w/TTS w/Human w/TTS w/Human w/TTS w/Human w/TTS w/Human w/TTS w/Human w/TTS w/Human

TextRE Text + Pseudo Labeling
Entity 25.19 26.95 28.03 27.81 26.50 28.93 26.55 27.78 26.46 28.69 26.44 25.24

Relation 45.73 51.50 47.86 49.75 51.00 54.50 46.00 50.00 46.99 47.34 49.23 49.73

Triplet 4.02 7.50 1.40 8.04 6.50 8.50 5.00 7.50 7.18 8.51 7.42 7.41

SpeechRE-pipe Transcript + Pseudo Labeling
Entity 23.98 21.32 24.60 28.35 23.12 24.43 22.99 22.19 24.37 23.70 26.06 28.04

Relation 53.50 55.00 48.98 49.44 49.79 50.12 46.73 50.75 51.52 53.90 52.45 55.32

Triplet 6.00 4.50 4.67 4.88 6.56 7.01 3.52 3.52 6.06 7.56 6.18 5.25

SpeechRE-e2e One Speaker + Upsampling
Entity 12.42 12.81 9.01 9.48 9.58 10.91 9.93 9.94 9.95 11.34 11.24 13.05

Relation 28.83 31.09 25.24 26.54 28.57 33.8 30.56 29.18 27.9 33.41 30.99 38.74

Triplet 2.95 2.16 2.22 2.65 2.19 2.17 2.14 2.59 1.37 0.91 1.87 1.87

SpeechRE-e2e One Speaker + Pseudo Labeling
Entity 12.42 12.81 15.8 15.85 17.84 16.2 19.4 18.43 22.22 20.25 24.35 21.44

Relation 28.83 31.09 36.57 40.89 38.16 34.59 41.71 39.5 42.06 39.21 48.47 41.4

Triplet 2.95 2.16 2.56 1.95 3.67 1.99 5.01 2.49 4.9 4.46 7.22 4.99

Table 5: The data augmentation analysis.

Multi Speaker Up-sampling Pseudo Labeling
Entity Total

100% 100% + 50% 100% + 100% 100% + 150% 100% + 200% 100% + 250% 100% 100% + 50% 100% + 100% 100% + 150% 100% + 200% 100% + 250%

Amanda Knox 4 0 0 0 0 0 0 0 0 0 0 0 0

Ahmed Rashid 6 0 0 0 0 0 0 0 0 0 0 0 0

National Energy Administration 11 0 0 0 0 0 0 0 0 0 0 0 0

National Urban League 6 0 0 0 0 0 0 0 0 0 0 0 0

National Development and Reform Commission 8 0 0 0 0 0 0 0 0 0 0 0 0

NDRC 6 0 0 0 0 0 0 0 0 0 0 0 0

ADF 6 0 0 0 0 0 0 0 0 0 0 0 0

Australian Defense Force 4 0 0 0 0 0 0 0 0 0 0 0 0

China 11 202 283 385 491 594 696 202 209 213 218 228 232

Corporate Library 6 0 0 0 0 0 0 0 0 0 0 0 0

Portland 5 0 0 0 0 0 0 0 1 2 3 3 3

Pakistani 4 10 17 19 22 26 32 10 10 10 10 10 10

American 7 379 573 742 927 1096 1182 379 415 438 491 538 577

2

Table 6: The frequency in the training set of some entities which is demonstrated because their frequency in the
test set is greater than 3.
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Multi Speaker Up-sampling Pseudo Labeling
Entity Total

100% 100% + 50% 100% + 100% 100% + 150% 100% + 200% 100% + 250% 100% 100% + 50% 100% + 100% 100% + 150% 100% + 200% 100% + 250%

Amanda Knox 4 0 0 0 0 0 0 0 0 0 25 0 50

Ahmed Rashid 6 0 0 0 0 0 0 0 0 16.67 66.67 66.67 50

National Energy Administration 11 18.18 0 0 0 0 0 18.18 36.36 45.45 36.36 45.45 54.55

National Urban League 6 0 0 0 0 0 0 0 0 0 16.67 50 33.33

National Development and Reform Commission 8 0 0 0 0 0 0 0 0 0 62.5 62.5 50

NDRC 6 0 0 0 0 0 0 0 16.67 16.67 16.67 0 0

ADF 6 0 0 0 0 0 0 0 50 50 33.33 33.33 33.33

Australian Defense Force 4 0 0 0 0 0 0 0 0 0 50 0 0

China 11 90.91 54.55 81.82 63.64 54.55 72.73 90.91 36.36 54.55 54.55 45.45 54.55

Corporate Library 6 0 0 0 0 0 0 0 0 0 0 16.67 66.67

Portland 5 0 0 0 0 0 0 0 40 20 20 40 40

Pakistani 4 25 0 0 50 0 0 25 0 0 0 0 0

American 7 28.57 14.29 28.57 0 42.86 71.43 28.57 0 0 14.29 14.29 28.57

1

Table 7: The prediction accuracy of some entities which is demonstrated because their frequency in the test set is
greater than 3.
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