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Abstract

A large body of recent work highlights the fal-
lacies of zero-shot cross-lingual transfer (zS-
XLT) with large multilingual language models.
Namely, their performance varies substantially
for different target languages and is the weakest
where needed the most: for low-resource lan-
guages distant to the source language. One rem-
edy is few-shot transfer (FS-XLT), where lever-
aging only a few task-annotated instances in
the target language(s) may yield sizable perfor-
mance gains. However, FS-XLT also succumbs
to large variation, as models easily overfit to the
small datasets. In this work, we present a sys-
tematic study focused on a spectrum of FS-XLT
fine-tuning regimes, analyzing key properties
such as effectiveness, (in)stability, and modular-
ity. We conduct extensive experiments on both
higher-level (NLI, paraphrasing) and lower-
level tasks (NER, POS), presenting new FS-XLT
strategies that yield both improved and more
stable FS-XLT across the board. Our findings
challenge established FS-XLT methods: e.g.,
we propose to replace sequential fine-tuning
with joint fine-tuning on source and target lan-
guage instances, offering consistent gains with
different number of shots (including resource-
rich scenarios). We also show that further gains
can be achieved with multi-stage FS-XLT train-
ing in which joint multilingual fine-tuning pre-
cedes the bilingual source-target specialization.

1 Introduction and Motivation

Successful fine-tuning of mainstream pre-trained
language models (Devlin et al., 2019; Liu et al.,
2019; Conneau et al., 2020) for various NLP tasks
requires a sizeable set of labeled task-specific in-
stances. While such abundant task data are avail-
able for many tasks in English and a few high-
resource languages, annotated examples are much
scarcer for low-resource languages (Joshi et al.,
2020). A large body of recent work thus focused
on zero-shot cross-lingual transfer (zZS-XLT), for
which no labeled instances are available in the tar-

get language (Pires et al., 2019; Cao et al., 2020).
Catalyzed by pretrained massively multilingual
transformers (MMT) such as mBERT (Devlin et al.,
2019), XLM-R (Conneau et al., 2020), or mT5
(Xue et al., 2021), zS-XLT has achieved impressive
results on a wide variety of tasks (Hu et al., 2020;
Ruder et al., 2021). The MMT-driven ZS-XLT, how-
ever, exhibits dramatic performance drops when
transferring to low-resource languages and/or lan-
guages distant from the source language (Lauscher
et al., 2020; Ebrahimi et al., 2021; Adelani et al.,
2021, inter alia). In contrast, recent work high-
lights that language models are excellent few-shot
learners (Brown et al., 2020; Gao et al., 2021): they
adapt well to new tasks or languages when exposed
to only on a handful of labeled instances.

For cross-lingual transfer in particular, sequen-
tial few-shot transfer (FS-XLT) — in which large(r)-
scale fine-tuning in the source language is followed
by the secondary fine-tuning on a few target lan-
guage instances — has been rendered particularly
effective, with massive performance gains reported
for some tasks with as little as 10 target language
instances (Lauscher et al., 2020; Zhao et al., 2021).
However, the effectiveness of sequential FS-XLT
crucially depends on the shot selection (Zhao et al.,
2021). Even more concerning, as we show in §3, is
the sensitivity of FS-XLT to hyperparameter values,
most notably the duration (number of epochs) of
few-shot target language training: such fluctuations
are problematic for true few-shot learning (Perez
et al., 2021), where target language validation data,
to be leveraged for model selection, does not exist.

Contributions. In this work, we shed new light
on FS-XLT and seek to remedy the above pitfalls
of current FS-XLT method. We depart from the
established sequential FS-XLT paradigm and pro-
pose new training regimes for FS-XLT, comparing
them across the dimensions of effectiveness, stabil-
ity, and modularity. Concretely, we propose train-
ing regimes that jointly exploit source and target
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language instances, and allow to model their inter-
action. 1) We demonstrate, both for higher-level
semantic tasks (e.g., NLI) and lower-level token-
level tasks (NER, POS tagging), that joint source
and target language training ‘feeds two birds with
one scone’: (i) it consistently improves FS-XLT
performance, even in setups with a larger number
of target-language shots (e.g., N = 500), and (ii)
makes the training procedure much more stable
and robust, allowing for a reliable selection of the
model checkpoint in true few-shot transfer setups
without a target-language validation set. 2) We find
that preceding the joint bilingual fine-tuning with a
multilingual training step, in which we combine the
shots from multiple target languages, brings further
performance gains. We also show that such multi-
stage training regime improves the computational
efficiency in multilingual FS-XLT setups, i.e., when
the model transfer to multiple target languages is
required. 3) Finally, we validate that benefits of
the new FS-XLT training regimes are not limited to
English as the source language. Our work funda-
mentally challenges the status quo in FS-XLT and
introduces and compares training paradigms that
enable more effective, more efficient, and much
more robust few-shot cross-lingual transfer.

Concurrent (closely related) effort. The con-
current work of Xu and Murray (2022) similarly
demonstrates the utility of joint multilingual FS-
XLT: although their joint fine-tuning approach dif-
fers from ours — they employ gradient surgery (Yu
et al., 2020), an approach that harmonizes compet-
ing gradients originating from instances of different
languages in a training batch — it yields the same
two main benefits: (1) improved target language
performance and (2) more stable training that facil-
itates models selection (i.e., alleviates the need for
target-language validation data).

2 Background and Related Work

MMTs like mBERT and XLM(-R) (Lample and
Conneau, 2019; Conneau et al., 2020) have be-
come the main vehicles of cross-lingual transfer.
Pretrained on multilingual corpora covering 100+
languages, MMTs conceptually enable zero-shot
cross-lingual transfer (zZS-XLT) between any two
languages seen in pretraining (Hu et al., 2020) or
even to unseen languages (Ansell et al., 2021). The
(extent of) ZS-XLT success depends on the quality
and alignment of the representation subspaces of
individual languages (Cao et al., 2020; Hu et al.,

2021; Wu and Dredze, 2020). Accordingly, ZS-
XLT with MMTs tends to be ineffective in transfers
to target languages that are (i) linguistically dis-
tant from the source language and especially those
(i1) un(der)represented in MMT’s pretraining (Hed-
derich et al., 2020; Lauscher et al., 2020; Ruder
et al., 2021; Ebrahimi et al., 2021).

One line of work boosts ZS-XLT by improv-
ing semantic alignment between the representa-
tion subspaces of individual languages, exploit-
ing to this end available word or sentence trans-
lations (Hu et al., 2021; Wu and Dredze, 2020;
Yang et al., 2022). Another, complementary line
of work improves ZS-XLT through increasing the
MMT’s capacity for individual languages (Pfeiffer
et al., 2020, 2022; Ansell et al., 2021, 2022). It at-
tempts to remedy for the “curse of multilinguality”
(Conneau et al., 2020) — an effect where, for a fixed
model capacity, the quality of representations of
individual languages at some point starts degrading
with the addition of more languages.

Unlike the above efforts, which improve the
MMTSs’ representation space in a task-agnostic
fashion, FS-XLT assumes a handful of labeled task-
specific examples in the target language(s) (Hed-
derich et al., 2020; Lauscher et al., 2020; Zhao
et al.,2021). Lauscher et al. (2020) propose sequen-
tial FS-XLT: fine-tuning on few target-language in-
stances follows the initial fine-tuning on sizable
source language data. They show that FS-XLT
brings the largest gains exactly where ZS-XLT fails
the most: for target languages distant from the
source and underrepresented in pretraining. In
follow-up work, Zhao et al. (2021) demonstrate
that FS-XLT is highly sensitive to the choice of
shots. Both studies show the effectiveness of few-
shot transfer to be subject to nature of the task:
lower-level syntactic and token-level tasks (e.g.,
POS-tagging, NER) benefit much more from few
annotated target language instances than higher-
level semantic tasks (e.g., NLI).

The evaluation protocols of both Lauscher et al.
(2020) and Zhao et al. (2021), however, do not
reflect a true few-shot setup: they assume that sub-
stantial validation data in the target language exists
and utilize it to guide model selection (hyperpa-
rameter optimization and early stopping). As such,
these works overestimate the effectiveness of true
FS-XLT: while focused only on monolingual se-
tups, Perez et al. (2021) demonstrate that model
selection criteria based on training data alone yield
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Figure 1: FS-XLT to AmericasNLI and WikiANN with
{10, 50, 100} shots after training on English data (cf.
84). The line plots the mean (incl. +10) test set spread
(in %) of best validation and current checkpoint. Runs
across 3 seeds by language are grouped by colored dots
that mark epochs scoring best on validation sets.

consistently worse few-shot task performance than
model selection based on an extra validation set.
In this work, we rethink FS-XLT and propose
novel FS-XLT paradigms that jointly leverage both
(sizable) source and (few-shot) target language data
in multi-task fashion or via mix-up (Zhang et al.,
2018), and demonstrate their effectiveness as well
as robustness in realistic (i.e., true) FS-XLT setups.

3 Methodology

Issues with Current FS-XLT Methods. Fig-
ure 1 illustrates the main issues of current FS-
XLT techniques, adopting the established sequen-
tial approach (Lauscher et al., 2020; Zhao et al.,
2021; Ustiin et al., 2022). In this experiment, we
adapt models fine-tuned on sizable English task-
specific data with {10,50,100} target-language
shots to AmericasNLI (Ebrahimi et al., 2021) and
WikiANN (NER) (Rahimi et al., 2019) (see §4).
We execute three FS-XLT runs for each target lan-
guage with different randomly selected shots and
examine the test performance over time, displaying
the mean and deviation (+10) across all languages
and runs for different training duration (i.e., for
{1, ..., 50} epochs of target language training).
The gray horizontal line denotes the optimal per-
formance (average across all languages and runs)
in the presence of a target language validation set
(i.e., ‘not-true’ few-shot learning): for each run,
we select the checkpoint that yields the best vali-
dation performance. Individual runs are denoted

with colored dots, each color indicating one target
language. Each dot is vertically aligned with the
epoch/checkpoint of the respective run (x-axis) that
yields the best validation performance.

The figure reveals the instability of sequential
FS-XLT. 1) The optimal epoch/checkpoint varies
across all dimensions of analysis: number of shots,
tasks, and languages. Besides the expected result
that, on average, with more shots we benefit from
longer training,! no discernible pattern emerges. 2)
The optimal training duration substantially varies
even across different runs of the same language,
that is, for different random selections of N shots
(and even for larger number of shots, N = 500,
cf. Figure 2 later in §5.1). These observations ren-
der sequential FS-XLT highly unreliable for the true
FS-XLT setups without target validation data.

New FS-XLT Training Methods. Motivated by
these empirical insights, we explore new FS-XLT
paradigms, aiming to increase robustness and ef-
fectiveness in true FS-XLT setups. Our hypothesis
is that combining abundant source-language task
examples with scarce target examples in a joint
fashion will 1) prevent the models to overfit to
source-language features (see Figure 1), 2) also
prevent overfitting to an (extremely) small set of
target-language shots (Zhao et al., 2021), and 3)
result in the models that are better calibrated for a
particular source-target transfer direction. The Fs-
XLT methods should model the interaction between
source and target examples, rather than performing
source-language fine-tuning which is fully agnostic
of the target language (and vice versa).

The first approach, dubbed ‘macro-averaging
FS-XLT’ (MACRO), conducts bilingual or mul-
tilingual fine-tuning in a joint (i.e., multi-task)
setup. In particular, we compute the total loss
L=0Ls+ (1 —0)Ly as a weighted sum of Lg
and L7, where Lg and L7 are monolingual losses
associated with the examples from the source lan-
guage S and the target language 7', respectively.
J is a standard interpolation hyper-parameter that
adjusts the relative weight between the two losses.
The two individual losses operate over the ded-
icated mini-batches Bg = {z,y;}i=1,. n and
Br = {xé,t?}jzlw7M, which are sampled from
the respective source and target language datasets

'"With as little as 10 shots, longer training, intuitively,
leads to overfitting. Figure 1 proves this for AmericasNLI
and WikiANN, showing that the first checkpoint yields the
best performance for most runs (i.e., the majority of dots are
grouped most to the left of the plot).

10727



Dg and Dp. N and M in combination determine
the size | B| of the entire mini-batch, as well as the
relative share of samples for each language within
the mini-batch. The generalization of the bilingual
MACRO FS-XLT method (MACRO-BI) to its multi-
lingual variant (MACRO-MULTI) is straightforward:
each multilingual batch B would simply comprise
examples from more than 2 languages, and the joint
loss will span more than 2 language-specific losses.

The second paradigm is based on the standard
mix-up technique (Zhang et al., 2018). It has been
proven beneficial for improving task performance
and robustness in monolingual tasks; here, we ex-
tend it to the cross-lingual FS-XLT scenario. This
method, termed MIX-UP, linearly interpolates be-
tween pairs of annotated instances from the source
and the target language as follows:

Top = Axfx (1= N)ah; Gss = Ayf = (1= M)y

A ~ Beta(a)) weighs the contribution between
instances (z7,y;) and (z%,y%). Each instance
(zp,yp) € B can be paired with any other instance
with varying A. We opt to randomly pair instances
in Bg and Br to be ‘mixed’, and keep a con-
stant. The fine-tuning loss £ is then computed via
soft cross-entropy: ZLBV 2 U log gp. Cross-lingual
MIX-UP can be interpreted as ‘soft’ code switch-
ing, occurring in the latent representation space: it
should enhance FS-XLT by further tying, in a task-
specific fashion, the representation subspaces of
the two languages, as the model is trained for the
task on ‘mixed’ representations, rather than inde-
pendent language-specific distributions (Cao et al.,
2020; Yang et al., 2022).

Overview of FS-XLT Training Methods. Besides
introducing novel methods, the main goal of this
work is a comprehensive empirical comparative
study of different FS-XLT training methods/regimes.
For clarity, we provide a quick overview of the wide
spectrum of evaluated regimes and configurations.
First, models may be trained on target language
shots after training on the source language data.
This approach, termed TARGET, is the standard
sequential FS-XLT from prior work (Lauscher et al.,
2020; Zhao et al., 2021).2 The alternative is the
regime that combines source-language and target-
language data instances, termed SOURCE-TARGET,
which comes in two different flavors: our proposed

2A variant that bypasses source-language fine-tuning and
operates only on the few target shots yields massive and con-
sistent drops (Zhao et al., 2021); we thus do not include this
variant in our evaluations.

joint MACRO and MIX-UP paradigms. The sec-
ond axis of difference is the starting point of TAR-
GET or SOURCE-TARGET FS-XLT: we can start
fine-tuning from 1) the original PLM (termed LM
henceforth), or 2) from the final/last checkpoint of
source-language task fine-tuning (termed LAST),
or 3) the ORACLE checkpoint. ORACLE violates
the true FS-XLT: it refers to the model checkpoint
that achieves the best performance on the target
language validation set, measured after each epoch
of source language training (Keung et al., 2020).
We include ORACLE for analysis purposes.

4 Experimental Setup

Tasks and Languages. Following prior studies
focused on FS-XLT (Lauscher et al., 2020; Zhao
et al., 2021), we evaluate all the methods in a rep-
resentative set of tasks that require varying degrees
of semantic and syntactic understanding for suc-
cessful cross-lingual transfer.

Natural Language Inference (NLI). NLI experi-
ments are conducted on AmericasNLI (AmNLI)
(Ebrahimi et al., 2021): it encompasses indigenous
target languages from the Americas, with data care-
fully translated from the Spanish XNLI dataset
(Conneau et al., 2018).3 Unless stated otherwise,
the source is English, and we transfer to the follow-
ing 7 target languages with sizable NLI data avail-
able: Aymara (AYM), Bribri (BZD), Guarani (GN),
Quechua (QU), Raramuri (TAR), Shipibo-Konibo
(SHP), Wixarika (HCH). For NLI, we jointly embed
the hypothesis-premise sentence-pair, obtain the
[CLS] token and feed it into the classifier.

Paraphrasing. The paraphrasing task is conducted
on the PAWS-X dataset (Yang et al., 2019), span-
ning parallel evaluation data for 6 high-resource
languages: German (DE), Spanish (ES), French
(FR), Korean (K0), Japanese (JA), and Chinese (ZH).
We train classifiers in the same fashion as classifiers
for NLI, now only with paraphrase pairs.

Named Entity Recognition (NER). We use the
WikiANN dataset of Pan et al. (2017), and eval-
uate cross-lingual transfer between English and the
following 13 languages: Arabic (AR), Afrikaans
(AF), German (DE), Japanese (JA), Quechuan (QU),
Russian (RU), Kinyarwanda (RW), Swabhili (SW),
Tamil (TA), Urdu (UR), Vietnamese (UR), Yoruba

378-XLT typically fails in transfer to these languages, as
they are unseen during MMT pretraining and are typologically
very distant from English.
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(YO), Mandarin (zH). For NER, we feed output
representations of each token into the classifier.

Part-Of-Speech Tagging (POS). We use the POS
tags of the UD treebanks (Zeman et al., 2020) and
transfer from English to the following 12 target lan-
guages: Afrikaans (AF), Arabic (AR), Basque (EU),
Chinese (zH), German (DE), Hindi (HI), Hungarian
(HU), Indonesian (ID), Japanese (JA), Russian (RU),
Tamil (TA), Urdu (UR). The model architecture is
identical to NER experiments.

Data Sampling and Shots. For AmNLI and
PAWS-X, we subsample training and valida-
tion subsets from the provided validation splits.*
WikiANN and the Universal Dependencies tree-
bank comprise sufficiently large training and vali-
dation splits; we subsample shots from the training
data. We follow Lauscher et al. (2020) and train
models with £ € {10,50, 100, 250,500} target-
language shots, fixed by task and language.’

Training Details. The main MMT is the base
variant of XLM-R from the transformers library
(Wolf et al., 2020) with mixed precision. For all
tasks, we train models with AdamW (Loshchilov
and Hutter, 2019) with the learning rate fixed to
2¢7% and weight decay of 0.05. All models apply
10% dropout to the output representations prior to
the classification layer at training time. The maxi-
mal input sequence length is set to 256 subwords
for AmNLI and PAWS-X, and 512 for NER and
POS.® ZS-XLT and SOURCE-TARGET variants are
trained for 10 epochs with the linear warm-up rate
of 0.1 and linear decay.” We fine-tune TARGET
regimes for 50 epochs with a constant learning rate.
We train in mini-batches of size 32: the SOURCE-
TARGET regimes balance instances from source and
target languages — for MACRO-BI, we sample 16 in-
stances per language choose the language-balanced
loss (0 = 0.5); MIX-UP interpolates between 32
pairs of instances between the languages, resulting
with 32 ‘mixed’ bilingual examples. For MIX-UP,

“This is also why we evaluate AmNLI on the subset of 7
languages which come with enough validation instances.

SUnlike Zhao et al. (2021), we operate in a more general
unconstrained setup, and do not guarantee an equal number of
shots per each class in a task.

®As a sanity check, we verified that our ZS-XLT implemen-
tation scores comparably to other ZS-XLT work with similar
hyperparameters (Wu and Dredze, 2020; Hu et al., 2021).

"Note that for SOURCE-TARGET setups the source lan-
guage datasets dictate training times, as target language shots
are continously resampled. SOURCE-TARGET for AmNLI is
trained for 5 epochs to reduce computational overhead due to
the large size of English MNLI (Williams et al., 2018).

we keep « fixed to 0.4.8 We run all experiments
over three (fixed) random seeds. Further details on
reproducibility are provided in Appendix A.1.

Evaluation Details. We measure performance with
accuracy on AmNLI and PAWS-X. For WikiANN
and POS, we report the token-level F} score. We
report both performance of final/last (L) and oracle
(O) checkpoints to provide appropriate bounds on
expected and ideal transfer performance.’

5 Results and Discussion

The main results are listed in Table 1. Full results
per individual target languages in each task are
available in the Appendix. First, we corroborate
the findings from prior work (Lauscher et al., 2020;
Zhao et al., 2021), and report considerable gains
with FS-XLT over ZS-XLT across the board and
with different FS-XLT methods. We now dissect the
results across multiple axes of comparison.

Joint versus Sequential FS-XLT. In general,
the joint (i.e., SOURCE-TARGET) FS-XLT variants
score on-par or outperform the sequential (i.e., TAR-
GET) variants, and the gains are observed both at
Last and Oracle checkpoints. Moreover, we note
that the scores taken at the L checkpoint with the
joint variants across all setups are typically higher
than the scores taken at the O checkpoint. This
renders them more suitable for true FS-XLT sce-
narios, and clearly suggests that the proposed joint
approaches remedy the issues with overfitting and
allow for a more stable fine-tuning. We attribute
this finding exactly to bilingual regularization and
transfer calibration (see §3).

Joint Methods: MACRO versus MIX-UP. The two
joint methods typically yield very similar perfor-
mance when all other components are kept equal,
and fine-tuning starts from the LAST or the ORACLE
checkpoint. MIX-UP data augmentation insignifi-
cantly affects performance. The effect is most ap-
parent when comparing SOURCE-TARGET setups
on the higher-level semantic tasks (AmNLI and
PAWS-X), where the model must learn to embed
sentence-pair semantics in the [CLS] token. To
this end, both tasks require initial source-language
fine-tuning as the LM variants lag substantially be-
hind LAST and ORACLE which rely on the initial

8We did not observe significant differences in results with
a € {0.1,0.4,0.7,1.0} in preliminary experiments.

Prior work typically reported only the O performance
which, depending on the target language and downstream task,
can heavily overestimate true FS-XLT performance.
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SOURCE TARGET SOURCE-TARGET
Zero-Shot Few-Shot MACRO MIX-UP
Shots LM LAST ORACLE LM LAST ORACLE LM LAST ORACLE
L o L [¢] L o L [¢] L [¢] L [¢] L (0] L (0] L (0]
= 10 39.6  40.0 | 383 399 384 412|349 360 380 381 374 386|351 354 379 394 372 383
Z 50 39.6 40.0 | 43.8 433 440 43.6 | 40.6 425 444 444 444 450 | 398 40.6 440 445 448 450
g 100 | 39.6 40.0 | 458 450 463 46.2 | 441 449 46.8 46.6 479 475 | 438 443 474 470 477 4717
250 | 39.6 40.0 | 49.7 495 498 494 | 484 492 51.0 512 514 510 | 484 490 515 506 517 513
500 | 39.6 40.0 | 51.7 520 520 512 | 518 525 533 529 538 534|523 516 532 532 53.1 531
9 10 83.8 840 | 81.0 842 80.0 844 | 81.1 81.8 845 845 847 846 | 773 80.6 840 841 838 842
12 50 83.8 84.0 | 835 842 834 844 | 799 812 844 843 846 845 | 744 766 846 844 847 843
E 100 | 838 84.0 | 840 843 835 843 | 799 802 846 845 846 844 | 752 778 84.6 844 847 847
| 250 | 838 84.0 | 832 849 832 844 | 81.2 81.8 846 846 849 848 | 784 792 845 845 845 843
500 | 838 84.0 | 838 853 836 850 | 828 829 853 850 855 853 | 819 819 852 850 85.1 85.0
o 10 525 60.0 | 60.7 633 61.0 643 | 639 651 649 658 649 662 | 642 651 639 651 643 656
= 50 525 600 | 720 723 72,6 73.1 | 728 735 73.1 73.1 731 73.6| 732 73.6 729 734 732 35
Z| 100 | 525 600 | 73.6 745 744 747 | 755 757 754 755 753 152 | 758 758 749 754 754 755
250 | 525 60.0 | 756 765 760 76.7 | 771 773 770 71.1 769 771 | 774 714 769 769 770 7I.1
500 | 525 600 | 774 786 77.6 787 | 792 793 79.0 79.0 792 792 | 795 795 789 789 79.0 79.0
“ 10 62.6 63.8 | 799 799 802 80.2 | 80.5 80.6 799 800 80.1 802 | 80.0 802 799 80.0 80.I 802
o) 50 62.6 63.8 | 849 847 851 85.1 | 854 854 851 852 853 853|854 853 853 853 855 855
| 100 | 626 638 | 866 866 867 869|873 873 87.1 871 872 872|871 872 871 871 872 872
250 | 62.6 638 | 88.7 887 838 889|893 892 891 89.1 892 892 | 892 892 89.1 89.1 892 892
500 | 626 638 | 90.1 902 902 902 | 90.5 904 904 904 90.5 905 | 904 904 904 904 90.5 90.5

Table 1: Benchmarking a spectrum of FS-XLT regimes (see §3). The results are averages over three random seeds,
aggregated over all target languages represented in each task (see §4) Training and evaluation data are identical
across all regimes in the evaluation. L (0) denote performance measured at last (oracle) checkpoint, see §4.

source fine-tuning. MIXUP-LM is most beneficial
for the token-level NER task, but does not yield
sizeable gains on average over the arguably con-
ceptually simpler MACRO paradigm.

Starting Point of FS-XLT. Expectedly, starting FS-
XLT from the ORACLE checkpoint typically yields
better performance than starting from the LAST
checkpoint. ORACLE, however, violates the as-
sumption of a true FS-XLT setup: it uses the val-
idation set in the target language to select a bet-
ter checkpoint for additional FS-XLT fine-tuning,
which is organically better-aligned with the target
language. We note that the gap in performance
between these two initializations slightly decreases
in case of joint SOURCE-TARGET FS-XLT variants:
this again points to improved robustness compared
to sequential FS-XLT.

Performance over Languages and Tasks. Per-
formance benefits with different FS-XLT regimes,
naturally, depend on the task and target languages
at hand. AmNLI starts profiting from FS-XLT only
with k& > 50 shots. The target languages in AmNLI
are extremely low-resource and unseen in MMT
pretraining: the model thus must see more target-
language data points than, e.g., in NLI transfer to
higher-resource languages from the XNLI bench-
mark (Lauscher et al., 2020). Our new SOURCE-
TARGET variants again substantially outperform
currently established FS-XLT methods, and we ob-
serve increasing returns with more shots. In con-
trast, performance on PAWS-X — which comprises
only high-resource languages (see §4) — primarily

benefits from the more robust joint FS-XLT regimes
rather than from the increased number of shots.
For NER and POS, we observe strong performance
also with the LM initialization. We speculate that
this is because class-conditional token represen-
tations align well with the representations from
the original MMT pretraining; on the other hand,
the models for NLI and paraphrasing must cap-
ture higher-level sentence semantics (via source-
language fine-tuning) before the FS-XLT step.

5.1 Further Analyses

We base our further analyses and comparisons be-
tween sequential and joint approaches on the fol-
lowing two representative variants: TARGET-LAST
and MACRO-LAST. They operate in the ‘real-life’
true FS-XLT scenarios without any validation data
to guide few-shot learning (Perez et al., 2021).

Stability of Transfer. Figure 2 compares stabil-
ity of the two variants for {10, 50, 500} shots (cf,
Appendix A.2). It demonstrates that joint training
substantially reduces instability and variance of FS-
XLT fine-tuning across the board: we observe its
increased robustness and stability across different
tasks, languages, and the numbers of shots. The
plots also illustrate that the joint regime in the true
FS-XLT setup offers performance which is com-
petitive and comes substantially closer to perfor-
mance achieved when exploiting target-language
validation set: this directly indicates that, with joint
bilingual fine-tuning (MACRO) in place, any ad-
ditional labeled instances in the target language
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Figure 2: FS-XLT regimes (joint MACRO versus sequential TARGET) starting from the LAST checkpoint of the initial
source language fine-tuning step. The colored dots group runs for each seed by language and mark the checkpoints
that transfer best to target-language validation data. The line plots the mean (incl. +10) test set spread (in %) of

best validation and current checkpoint.

would be better “spent” if used for training than for
validation. Relying on the joint MACRO variant, the
best-performing checkpoints generally shift closer
to the end of the training, which is a desired be-
havior in the absence of the validation set. In other
words, the joint FS-XLT variants not only improve
but also consistently make FS-XLT fine-tuning more
stable and more predictable, that is, less prone to
language- and task-dependent variations.

Notes on Efficiency and Modularity. While the
joint FS-XLT regimes improve final transfer perfor-
mance, they are less modular by design and might
incur larger computational costs than the sequential
regimes. Namely, they require combining source-
language and target-language instances for each
individual source-target transfer direction, which is
not the case in the sequential regimes. In what fol-
lows, we thus delve deeper into studying efficiency-
and modularity-related research questions.

Joint Multilingual and Multilingual-Bilingual
MACRO. Given Nt target languages, instead of
fine-tuning N7 separate bilingual models (MACRO-
BI), we can, similar to Xu and Murray (2022), train
a single joint multilingual model (MACRO-MULTI,
see §3) which serves all N7 at once. Such FS-XLT
variant, besides potentially reducing computational
and memory costs, might also profit from increased
task data provided in multiple languages (Ansell
et al., 2021). What is more, we can use the LAST
checkpoint of the MACRO-MULTI as the starting
point of the additional subsequent bilingual FS-XLT
specialization (i.e., MACRO-BI). We denote this

novel modular variant, where both steps are based
on the joint FS-XLT paradigm, as MULTI » BI.

Furthermore, we conduct another experiment,
again focused on efficiency of joint FS-XLT fine-
tuning, which includes all the different MACRO
variants: (i) the original MACRO-BI, (ii) MACRO-
MULTI, and (iii)) MACRO-MULTI>BI. The goal is
to investigate how the different joint paradigms
perform under different computational budget con-
straints. To this end, we train those MACRO variants
with {1,2,5,10} x the number of steps of the se-
quential TARGET variant.

For the multilingual step, training is always con-
ducted by including 8 instances for each language
in a mini-batch: this is done to provide sufficient
language-specific examples per mini-batch without
dramatically increasing the mini-batch size. For
AmNLI and PAWS-X, we include all available lan-
guages in training. For NER, we train on {DE, EN,
SW, TA,VI, ZH}, and for POS on {AR, EN, EU, HU,
ID, JA, UR}. We now evaluate all the MACRO and
TARGET variants on the following languages: for
AmNLI, AYM, QUY, and TAR; for PAWS-X, DE,
KO, JA; for NER, sw, VI, zH; for POS, EU, UR, JA.

Table 2 presents the complete results of this set
of experiments, averaged over the three target lan-
guages of each task. First, MACRO-MULTI is on-par
or better than TARGET throughout almost all setups,
but, with the exception of token-level tasks, does
not consistently match the performance of MACRO-
BI, which fine-tunes for a particular source-target
direction. The highest overall performance is ob-
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AmNLI

36.8
434
45.7
50.4
517

38.8
42.6
45.8
50.2
52.5

36.3
45.6
48.2
523
523

36.9
46.2
484
5285
52.7

37.6
42.6
45.7
484
522

385
41.9
453
47.6
511

36.7
44.4
48.7
522
53.5

377
44.9
48.0
524
53.5

38.1
424
46.0
49.4
52.8

383
421
45.6
493
515

36.2
44.8
48.5
527
53.2

367
447
488
53.0
53.0

37.1
42.7
46.3
49.7
534

379
43.1
45.7
489
525

36.3
454
48.7
529
533

36.8
45.7
49.2
52,6
533

36.5
42.6
45.9
50.5
533

37.6
434
46.2
50.4
53.1

36.3
452
49.2
53.0
52.7

377
452
49.1
52.6
53.8

36.6
444
46.7
520
54.0

36.5
45.1
472
51y
53.7

37.1
43.7
472
51.0
54.0

374
44.7
473
50.7
53.7

359
45.8
49.0
52.8
53.7

36.7
45.5
48.4
52.6
S35

PAWS-X

77.5
81.1
81.6
80.4
81.3

NER

56.0
714
727
774
79.3

81.5
81.2
81.6
824
82.7
584
71.8
738
78.4
80.0

80.6
80.9
822
82.8
829
62.2
73.0
752
78.7
80.9

80.8
81.4
824
83.1
83.5
66.3
73.8
75.7
79.6
81.4

80.8
81.6
81.8
822
83.0
61.4
69.9
732
76.7
79.1

81.2
81.3
82.1
822
829
61.8
70.0
732
71.0
79.1

81.0
80.8
82.5
824
83.1
65.2
73.5
75.5
78.7
80.7

81.3
81.0
82.8
82.8
83.5
66.2
73.8
76.0
79.0
80.8

80.6
82.0
81.5
823
83.0
61.8
71.0
735
77.1
793

81.3
82.1
81.9
824
82.5
62.6
713
73.9
77.4
79.5

80.5
80.6
82.7
82.5
83.3
65.9
735
75.7
78.7
81.1

81.1
80.8
829
82.7
834
65.9
739
75.8
79.0
81.1

80.7
81.6
81.6
82.1
82.5
62.2
71.1
734
71.6
79.8

81.3
81.7
81.9
82.0
82.7
62.9
71.7
74.0
78.0
80.2

80.2
80.8
82.7
82.5
83.6
66.5
735
75.8
78.9
81.4

81.6
81.1
82.8
82.6
83.6
67.1
742
76.2
78.9
81.3

80.6
81.8
81.7
82.0
83.1
62.1
71.6
74.3
782
80.2

81.5
82.0
81.7
82.0
83.0
63.6
723
74.7
78.4
80.4

80.2
80.9
82.8
824
83.9
67.0
733
76.1
79.3
81.1

81.7
81.0
83.0
82.8
83.7
67.8
74.0
76.4
79.4
81.5

81.7
81.7
81.8
82.0
82.7
62.6
71.8
74.7
78.2
80.2

815
81.6
82.1
81.8
825
63.6
722
74.8
78.2
80.3

81.1
81.6
81.7
819
83.1
62.1
724
74.7
78.3
80.4

81.0
81.5
81.6
81.8
83.0
63.9
72.8
74.9
78.3
80.4

80.7
81.6
82.0
82.7
83.6
67.7
74.0
76.1
79.4
81.4

81.3
81.8
823
82.7
83.1
68.4
74.8
76.5
79.7
814

POS

500

715
83.4
85.6
88.0
89.6

715
83.3
85.6
88.2
89.8

80.6
85.6
87.5
89.1
90.2

80.7
85.8
87.8
89.4
90.4

76.4
81.2
84.5
87.3
89.1

76.4
81.2
84.4
873
89.1

80.7
85.6
87.6
89.4
90.3

80.6
85.5
87.6
89.5
90.4

71.6
82.4
853
879
89.5

71.7
82.4
852
87.8
89.5

80.9
85.7
87.6
89.6
90.5

80.9
85.8
87.7
89.6
90.5

71.9
83.3
85.7
88.4
90.0

78.2
83.3
85.7
88.4
89.9

81.0
85.7
87.8
89.7
90.5

81.0
85.8
87.8
89.6
90.6

78.0
83.5
86.0
88.6
90.1

78.2
83.6
86.0
88.6
90.0

81.0
85.8
87.7
89.6
90.7

81.1
85.8
87.8
89.6
90.6

784
84.4
86.6
88.9
90.1

783
84.4
86.5
88.8
90.0

792
84.8
87.0
89.1
90.2

793
84.8
86.9
89.1
90.1

81.2
86.0
879
89.7
90.5

814
86.0
88.0
89.7
90.5

Table 2: FS-XLT results where each fine-tuning regimes commences from the final checkpoint of English fine-tuning.
All tasks comprise three target languages, and the scores are averaged over three fixed random seeds, with training

and validation subsets being the same for each seed.

AMNLI PAWS-X NER POS
T S-T T S-T T S-T T S-T
Shots L [¢] L (¢] L (0] L [¢] L (¢] L [¢] L (¢] L [¢]
10 36.5 365 358 363 | 780 836 834 831|508 538 540 553|808 808 785 788
100 43.8 441 469 463 | 81.3 83.0 835 828 | 669 682 69.7 702 | 88.1 881 88.6 88.6
500 50.1 49.7 529 524 | 822 830 845 843 | 742 750 767 766 |91.0 91.1 913 913

Table 3: FS-XLT with Chinese as the source language. S=SOURCE, S-T=SOURCE-TARGET (MACRO is used).

tained with the hybrid MACRO-MULTI»BI, which
reaps the best of both worlds: 1) multilingual fine-
tuning prevents overfitting to a single source lan-
guage and provides a better initialization point for
2) the more specialized bilingual fine-tuning for
a particular source-target direction. Note that the
two-stage MULTI»BI fine-tuning also improves the
TARGET variant quite consistently. We report in-
crease in performance both for L and 0 checkpoints.
Nevertheless, MACRO still outperforms TARGET.

The results over different computational bud-
gets reveal that longer training is beneficial for the
MACRO variants. As expected, the setups with
more shots typically require fewer steps to con-
verge. A general finding is that 1) the bilingual
SOURCE-TARGET variants do trade off some of
the computational efficiency for enhanced perfor-
mance, but 2) bilingual fine-tuning times can be
decreased by starting from a better (i.e., multilin-
gual) initialization: cf., the MULTI>BI columns.

Another Source Language. Cross-lingual transfer
predominantly focuses on English as the source
language (Hu et al., 2020; Lauscher et al., 2020),
mostly because of the wide availability and abun-
dance of annotated task data in English. In order to
verify that our main findings generalise and reach

beyond English as the source language, we con-
duct another set of experiments relying on Chi-
nese as the source language.'? The results for the
TARGET-LAST and MACRO-LAST variants are pre-
sented in Table 3. The observed patterns largely
follow the general trends we reported with English
as the source language; what is more, the gains
of SOURCE-TARGET over TARGET even widen for
AmNLI and PAWS-X. We speculate that this might
be due to a lower quality of the source Chinese
instances. Namely, except for POS, the task an-
notations for Chinese were either automatically
translated (AmNLI, PAWS-X) or induced via some
heuristics (WikiANN). Joint bilingual fine-tuning
then provides increased robustness against such
noisy source annotations.

6 Conclusion

Recent work demonstrated large benefits of few-
shot cross-lingual transfer (FS-XLT) with multilin-
gual language models, where a handful of anno-
tated examples in the target language exist, over its
zero-shot counterpart (ZS-XLT). However, as we
have proven in this paper, prior work overestimated

%For AmLI and PAWS-X, we experiment with the same
three languages as in joint multilingual experiments. For NER,
we transfer to AR, UR, and JA, and to AR, DE, and UR for POS.
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FS-XLT performance, relying on an unrealistic as-
sumption of having a dedicated validation set in
the target language to guide model selection. In
this work, we have performed an extensive compar-
ative study of a wide variety of FS-XLT approaches,
challenging the status quo in FS-XLT. Our detailed
analyses have rendered established FS-XLT largely
unstable and performing sub-par in true FS-XLT
setups without the target validation data. We have
thus proposed novel FS-XLT fine-tuning regimes
that take into account interaction between source-
language and target-language data instances, yield-
ing improved, more stable, and more predictable
FS-XLT performance across different tasks, lan-
guages, and numbers of target-language shots. We
hope that our study will inspire better FS-XLT train-
ing and evaluation practices in future work, and
guide new developments for true FS-XLT setups.

7 Limitations

While we have striven to present a comprehen-
sive and wide study of a large spectrum of FS-XLT
fine-tuning regimes, several additional factors must
be taken into consideration. First, few-shot learn-
ing naturally comes with high variance, as demon-
strated by our work (where we set out to decrease
the variance) and a body of prior research in mono-
lingual and cross-lingual transfer contexts. This
study demanded an extremely large computational
budget (see Appendix A.1), so we constrained ex-
periments to independent runs with three seeds.
Ideally, more independent runs (5-10) might yield
even more consistent estimates.

Furthermore, due to computational constraints,
our work largely focuses on cross-lingual natu-
ral language understanding (NLU) and sequence-
labeling tasks. In addition, the community might
find a similar set of experiments insightful for
cross-lingual transfer in other areas such as (i) task-
oriented dialogue systems, or (ii) long-range tasks
like document classification. Moreover, while we
keep hyper-parameters constant throughout differ-
ent regimes, it is highly likely that they can be
further adapted and fine-tuned for a particular task,
language, and selection of shots. However, our core
findings demonstrate that the novel joint FS-XLT
fine-tuning regimes consistently match or exceed
oracle performance while requiring no substantial
hyper-parameter tuning or checkpoint selection.
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A Appendix
A.1 Reproducibility

Infrastructure and Compute. We train our mod-
els on a cluster that provides virtual machines on
which each model was trained on a single NVIDIA
Tesla V100 32GB GPU. We evaluate 7 setups with
three seeds for k£ € {10, 50, 100, 250,500} shots
across 4 tasks in our base experiments, amounting
to 5,145 models trained for 3,756 GPU hours for
our main results. Therein, AmNLI alone takes up
2,170 hours (57.8%).

Datasets. We access all datasets via the Hugging-
face datasets library (Lhoest et al., 2021). When-
ever we subsample data, we initially shuffle the
dataset with one of seed s € {42,43,44} built-
in datasets method and subsequently extract the
first k£ required instances for our experiments. In
case we require a validation subset from the same
dataset, we extract the |[Np| — 500 last available
observations after shuffling to evaluate our models
during training (i.e., to measure ORACLE perfor-
mance). We manually verified that our approach
yields consistent subsamples by seed.

Code. Our code is available at: https://github.
com/fdschmidt93/fsx1t
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A.2 Stability Of Few-Shot Cross-Lingual Transfer

Shots

POS

AmNLI PAWS-X NER

TARGET MACRO

TARGET

TARGET

Figure 3: FS-XLT regimes (joint MACRO versus sequential TARGET) starting from the LAST checkpoint of the initial
source language fine-tuning step. The colored dots group runs for each seed by language and mark the checkpoints
that transfer best to target-language validation data. The line plots the mean (incl. +10) test set spread (in %) of

best validation and current checkpoint.
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A.3 Full Results over Individual Target Languages
A4 AmericasNLI

SOURCE TARGET SOURCE-TARGET
Zero-Shot Few-Shot MACRO MIX-UP
Weights k Shots LM LAST ORACLE LM LAST ORACLE LM LAST ORACLE
Metric L oL O L O|]L O L O L O|L O L O L O
Aymara 10 39.7 395|380 39.0 393 418|345 37.0 369 37.1 348 380|345 359 368 381 367 383
AYM [ 7750 |7397 395|449 450 447 46.1 | 409 421 454 456 422 428 [37.01 40.0 445 448 456 455
[ 7100 | 397 395|457 455 469 487 [ 459 464 460 467 477 469 | 430 43.6 490 479 473 479
[ 7250 397 395|493 50.0 50.I 509|500 514 516 514 533 515|505 516 520 51.1 520 522
[ 7500 | 39.7 395|520 525 51.6 50.8|51.6 51.6 546 548 552 56.1 [525 509 537 543 535 544
Bribri 10 | 408 404 |39.1 40.0 39.0 40.7 | 364 363 399 397 41.0 416 36.1 359 403 402 39.1 398
BZD [ 7750 | 40.8 404 | 447 452 445 442 | 441 457 476 458 49.0 494 [ 425 430 47.0 486 475 487
| 100 | 40.8° 404 | 48.6 46.8 492 482 [492 49.6 515 505 525 512|482 481 517 512 525 507
[ 7250 | 408 404 | 526 52.0 549 551|520 514 542 546 534 537 [513 523 552 548 553 54.6
| 500 | 40.8° 404 | 566 564 568 56.7 | 546 56.1 579 573 577 582|564 550 565 567 572 56.8
Guarani 10 [ 41.1 421 [ 403 417 393 440357 357 386 394 383 400|344 345 406 425 394 39.1
GN [ 7750 | 411 42.1 | 46.8 47.1 452 449 | 40.8 425 453 454 455 46.1 [ 407 402 471 467 456 46.7
[ 7100 | 41.1 42.1 | 47.6 46.6 488 479 [ 450 453 492 476 493 497 | 448 463 496 488 49.6 504
[ 7250 | 41.1 421|521 514 497 497|498 517 516 522 51.6 518|483 502 514 508 517 50.5
[ 7500 | 41.1 421|542 528 534 513|513 524 533 527 540 529|535 528 526 525 535 526
Wixarika 10 384 375|369 384 375 393|338 355 37.6 384 364 373|344 343 362 380 355 36.6
HCH [ 750 | 384 375|403 399 40.6 398|359 381 403 403 40.1 402|364 358 399 395 39.8 40.8
[ 7100 | 384 375|418 399 41.0 40.8 [ 37.0 383 408 40.5 41.6 420|379 372 418 426 423 417
| " 250 | 384 375|442 445 434 415|403 403 452 459 448 431|395 393 456 455 440 447
[ 7500 | 384 375|448 46.1 445 43.8 [ 457 46.8 464 457 455 452 | 447 440 469 465 457 46.0
Quechua 10 373 383|372 40.1 386 426|336 33.6 372 360 369 37.6|344 345 37.1 391 374 3838
QUY [ 750 | 3737 383|439 43.1 46.1 46.0 | 423 451 444 460 467 482 | 425 424 432 446 466 46.0
[ 7100 | 373 383 | 47.8 462 482 48.1 | 413 415 475 481 504 49.0 [ 453 456 477 46.1 498 49.4
[ 7250 | 373 383|522 51.7 51.5 521|503 497 528 521 545 545|501 512 528 528 548 540
[ 7500 | 373 383|527 533 540 53.6| 521 527 556 55.1 553 549 [527 53.1 548 554 547 55.0
Shipibo 10 [41.0 429 [41.0 428 403 420|364 387 400 39.8 392 40.0 | 367 37.5 402 424 379 409
SHP [ 750 | 41.0 429 | 444 43.0 444 428 [39.6 419 445 442 429 43.0 | 40.1 424 444 444 443 442
[ 7100 | 41.0 429 | 459 444 444 439 (452 474 459 456 44.6 459 | 43.8 442 462 467 452 453
[ 7250 | 41.0 429 | 477 48.0 482 47.8 487 50.8 500 502 505 504|505 49.6 515 50.1 503 50.0
[ 7500 | 41.0 429|513 512 515 50.6|550 552 538 537 543 52.8 [ 541 534 545 543 544 526
Raramuri 10 39.1 392|353 373 349 376|339 354 357 364 351 359|349 349 342 354 348 350
TAR |~ 50 |739.1 392 | 415 39.7 425 41.1 [ 404 42.1 434 436 444 451|390 404 420 429 441 428
[ 7100 |39.1 392|435 458 457 46.1 [ 450 455 467 469 49.0 47.8 | 433 452 457 456 468 484
[ 7250 |39.1 392|495 488 50.8 48.8 [ 480 488 517 522 518 524|486 49.1 519 493 539 532
[ 7500 | 39.1 392|504 51.7 524 514526 526 516 512 543 539|521 519 533 529 529 543
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A5 PAWS-X

SOURCE TARGET SOURCE-TARGET
Zero-Shot Few-Shot MACRO MIX-UP
Weights | k Shots LM LAST ORACLE LM LAST ORACLE LM LAST ORACLE
Metric L 0 L [0) L 0 L 0 L o) L ) L 0 L 0 L o)
German 10 88.7 887|844 887 829 889|874 872 895 895 892 89.1 | 846 86.0 888 887 89.1 89.2
DE [~ 50 | 887 887|885 888 885 888 8.2 87.1 89.0 89.1 89.6 893|804 837 89.0 89.0 89.0 88.5
[ 100 | 887 88.7|889 889 889 89.1 8.8 866 894 89.4 89.2 888|822 834 89.1 89.0 893 889
| 7250 | 887 887|872 888 874 887|874 866 892 839 894 894|846 847 89.0 892 89.1 89.1
[ 7500 | 887 887|876 89.0 865 889872 870 894 895 89.6 89.4 | 864 872 893 892 895 892
Spanish 10 80.5 89.7 859 89.7 859 897|883 884 89.8 894 89.8 894 | 859 882 89.8 89.8 898 89.8
ES [~ 50 | 895 89.7|889 89.7 889 89.7 885 880 90.0 89.8 90.0 89.8 | 847 855 89.7 892 89.7 89.2
[ 7100 | 895 89.7 |89.0 893 89.0 893872 868 89.6 89.7 89.6 89.7 | 825 852 90.0 90.I 90.0 90.1
[ 7250 | 895 89.7|887 89.7 887 89.7|881 876 899 897 899 89.7 [850 856 89.5 89.0 89.5 89.0
[ 7500 | 89.5 89.7|882 903 882 903|889 838 903 892 903 892|879 87.8 89.8 89.5 89.8 89.5
French 10 89.6 902 | 87.7 89.8 865 904 | 89.1 89.0 90.0 904 90.5 90.3 | 87.3 882 90.0 89.4 89.8 89.6
FR [~ 750 |89.6 902|887 90.0 892 904 841 87.8 90.0 89.7 90.1 90.1 |80.I 844 903 902 902 90.0
[ 7100 | 89.6 902|894 89.6 894 902|872 87.6 902 899 90.6 90.5 | 845 864 902 90.2 90.4 90.1
[ 250 |89.6 902|889 90.1 89.0 90.1 873 880 90.0 90.4 90.5 90.7 | 86.0 86.4 90.5 90.4 902 89.9
[ 7500 | 89.6 902|893 902 887 90.1 | 892 89.1 91.0 91.0 91.0 91.0 | 886 885 90.6 90.3 904 90.7
Japanese 10 |77.1 771757 772 745 771|727 735 713 771 712 715|683 716 767 715 761 71.0
JA [~ 50 |77.1 771|766 77.1 747 768|713 739 716 715 767 769 | 62.8 645 780 77.8 780 773
[ 7100 | 771 771 | 772 775 740 763 723 730 712 780 772 712|672 709 778 715 771 714
[ 250 | 77.1 77.1 | 769 788 764 773|744 754 784 782 7782 780699 712 775 718 780 77.6
[ 7500 | 771 771|777 79.6 774 789 [ 764 769 792 79.0 79.4 793|758 752 794 794 788 79.1
Korean 10 [|767 772|722 786 722 782|711 734 783 780 787 784|629 699 773 716 772 716
KO |~ 50 | 767 7712|782 7715 776 7186|714 726 785 782 789 795|650 670 789 783 789 78.6
[ 7100 | 767 772|786 786 78.6 785|706 710 787 788 786 787|658 679 786 781 792 793
[ 250 | 767 772|712 796 711 788|729 741 784 783 7786 784|688 70.6 786 783 788 782
[ 7500 | 767 772|788 797 79.6 797|754 755 795 79.1 7794 798|738 742 80.1 79.6 79.6 79.3
Chinese 10 81.1 813|800 816 782 822|780 794 823 825 828 828|746 79.6 813 815 81.0 819
ZH [~ 50 |'81.1 813|803 817 8I.3 822|778 780 814 814 823 815|732 744 817 820 824 824
[ 7100 |'81.1 813|812 822 8.2 823|754 760 822 814 824 814|688 732 817 81.6 821 827
[ 250 | 81.1 813|802 821 804 821|774 788 816 822 828 828|757 768 820 820 81.6 819
[ 7500 | 81.1 813|816 832 8i.I 824797 802 821 825 831 830|787 787 823 822 822 82.1
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A.6 WikiANN

SOURCE TARGET SOURCE-TARGET

Zero-Shot Few-Shot MACRO MIX-UP
Weights k Shots LM LAST ORACLE LM LAST ORACLE LM LAST ORACLE
Metric L o L o L (6] L (0] L (0] L (0] L (0] L (0] L (0]
Afrikaans 10 1729 733|729 756 726 755 752 755 763 760 758|754 759 756 745 754 753

78.6 788 774 782 782|777 718 782 782 788 719

80.3 79.6 79.6 80.0 793|797 79.5 80.1 80.3 80.5 80.2

82.0 822 82.1 820 819|820 81.8 83 820 822 819

835 836 83.5 835 834 [843 844 837 837 837 837
696 69.1 699 688 70.6|69.0 706 680 698 700 716
738 739 744 743 746 [738 739 740 746 743 748

749 754 759 755 760|755 760 754 760 757 762

773 714 776 718 718 [717 718 780 780 781 781
80.0 797 797 798 798 [80.0 799 798 799 798 79.7
739 717 725 718 725735 736 716 723 722 731

75.0 739 745 743 748 [ 752 754 741 744 745 746

AF 50 729 733|769 769 778 719

100 [729 733|786 79.8 793 792 |

250 | 729 733|812 812 81.0 819|816

500 | 729 733|828 837 833 837 [
Arabic 10 [ 432 490|666 667 642 66.7

AR 50 432 490 | 725 73.0 721 725 |

100 [432 490|734 73.8 732 739

250 | 432 49.0 | 748 767 755 176.7

500 | 432 49.0| 766 79.1 768 784
German 10 706 716|683 723 682 735

DE 50 706 71.6 | 721 731 726 738 |

| 100 [706 716|731 73.6 732 737 762 750 751 751 757755 756 749 756 759 76.0

| 250 | 706 716|755 766 757 767 775 769 769 767 769 [71.3 774 767 7167 711 712

500 | 706 71.6| 764 779 77.1 7784|787 787 783 783 785 785|787 788 781 783 784 785
Japanese 10 17.1 179 [ 320 328 326 331|315 328 349 362 353 368|315 330 322 347 335 344

JA 50 171 179 | 435 440 447 453 | 465 474 469 47.1 474 472 [472 475 449 462 462 478

100 [ 17.1 17.9 | 478 48.1 492 49.7 [ 514 522 502 509 508 51.3[50.1 515 503 506 49.6 505

| 250 [171 179|527 534 542 544[563 564 557 556 550 553|562 563 550 550 552 554

500 | 17.1 17.9 (558 57.6 58.0 580 [59.7 59.7 59.1 59.1 59.5 59.5[59.7 59.9 588 588 588 592
Quechuan 10 [548 553[61.1 615 59.8 639|588 629 622 60.1 622 632637 640 632 647 638 629

QU 50 548 553|705 692 746 731696 71.9 689 683 693 702|712 724 699 71.7 700 69.5

[ 100 | 548 553|714 729 749 732|763 762 744 733 752 732|780 764 709 720 746 742
Russian 10 | 657 665|647 720 647 720|716 733 73.0 738 73.0 738 |73.1 734 721 738 721 738
RU [ 750 | 657 665|781 784 78.1 784|781 784 780 784 78.0 784 788 788 779 782 7119 782

100 | 657 665|803 802 803 802|787 785 792 795 792 795 [79.1 792 794 796 794 79.6

250 | 657 665|805 820 805 820|813 814 81.6 816 816 816|814 815 814 815 814 815
500 | 657 665|823 833 823 833 832 831 833 833 833 833|831 831 831 832 831 832

Rwanda 10 [ 576 573|576 628 590 635|640 611 622 640 604 629|606 590 633 630 59.6 604
RW [ 750 | 576 573|759 732 745 765|766 758 733 740 750 754 [75.1 739 732 732 155 744

[ 100 | 576 573|755 776 752 768|783 766 763 782 758 753|784 71.0 764 714 7118 769
Swahili 10 |[61.1 638|706 705 708 726|738 741 747 748 739 749|747 748 732 746 T44 746
SW [ 750 [61.1 638|843 842 844 845 | 8 843 838 84.8 842 839 842 841 841 843 842 83.6

100 | 61.1 63.8 | 846 850 855 853

86.0 865 863 853 858859 854 858 865 85.1 85.1

250 | 61.1 638|873 882 878 87.5 88.1 88.1 879 87.8 876|834 888 8381 883 879 879
| 7500 |61.1 63.8|89.0 89.8 837 89.6|89.5 892 895 89.6 894 89.9 [89.6 892 89.6 895 89.6 89.6
Tamil 10 [586 614628 629 632 648|630 637 664 669 663 669|627 641 645 660 654 66.7
TA 50 586 614|706 712 714 712723 719 723 721 728 727|720 720 729 724 727 728

100 | 586 614|736 734 730 727|741 739 743 744 741 741 [ 740 740 737 743 745 744

250 | 586 614|749 761 757 76.1 [770 769 77.0 77.1 77.0 770|773 769 167 765 713 171.1
| 7500 | 586 614|767 777 765 7783|784 792 787 786 79.0 786 |79.6 793 779 781 785 783
Urdu 10 569 640|746 751 750 775|715 780 759 774 768 772|713 1786 73.6 762 768 782
UR 50 569 64.0 | 797 79.6 80.5 814 808 80.6 813 815 80.6 813 |81 819 81.0 828 813 822

100 | 569 64.0 | 80.5 81.8 809 833|829 827 832 824 822 81.7[820 825 833 836 827 832

250 | 569 640|838 839 845 854|853 854 850 853 849 854 [85.1 851 851 853 853 858
| 500 | 569 640|857 865 853 86.6|87.3 872 872 867 87.8 875|876 87.6 874 874 879 817
Vietnamese 10 [ 707 708|642 71.6 649 720|732 755 741 755 750 76.1 | 740 745 749 751 748 756
VI 50 707 70.8 | 783 789 77.8 785|784 79.0 788 787 788 789|795 80.1 787 792 787 79.3

100 [ 707 708|799 80.1 79.4 79.6|798 80.0 795 79.6 79.7 80.1 | 80.7 81.0 799 80.6 80.0 80.4

250 | 707 70.8 | 822 83.0 81.9 825|823 824 820 820 82.0 822|830 831 821 821 817 820
[ 7500 [707 70.8 | 83.0 832 822 835|834 83.8 830 83.1 83.0 829|838 839 829 831 825 828
Yoruba 10 [ 281 487|613 659 655 673|618 658 650 668 652 690|631 657 617 625 612 674
YO |50 | 281 487|820 855 835 85.1 )2 832 86.8 863 847 877|809 837 864 856 847 86.1
100 [ 281 487|851 855 893 872|864 870 881 873 880 867|867 877 867 865 87.1 873
Chinese 10 [256 278330 330 33.0 330|387 40.6 392 40.6 392 406 | 358 389 367 39.0 367 39.0
ZH 50 [25.6 27.8|517 523 517 523|534 550 529 532 529 532|544 552 529 537 529 53.7
100 | 256 27.8|53.6 563 53.6 563|585 593 580 585 58.0 585|586 59.1 568 57.8 56.8 578
250 | 256 278|628 639 628 639|654 655 643 648 643 648 [ 650 653 63.8 640 63.8 640

500 | 256 278|660 670 660 67.0|687 689 680 683 680 683|684 686 67.6 675 61.6 67.5
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A.7 Part-Of-Speech Tagging

SOURCE TARGET SOURCE-TARGET
Zero-Shot Few-Shot MACRO MIX-UP
Weights k Shots LM LAST ORACLE LM LAST ORACLE LM LAST ORACLE
Metric L oL O L O|]L O L O L O|]L O L O L o
Afrikaans 10 86.5 86.5|91.6 914 928 928 (912 91.1 902 902 909 90.6|91.5 915 905 904 910 912
AF [ 750 865 865|945 944 949 947 [940 940 930 930 933 935[942 941 93.0 93.1 937 937
| 100 | 865 865|953 953 956 956|951 951 947 946 94.6 946|955 954 947 945 949 94.6
| 250 | 865 865|968 967 969 969 |97.0 969 963 963 965 96.6 | 97.0 97.0 964 963 964 96.4
| 500 [865 865|973 973 974 97.5[97.6 975 974 973 976 975|977 97.7 972 972 975 974
Arabic 10 [706 714 (832 83.1 832 832834 834 828 828 827 828|827 828 829 829 831 834
AR | 50 [706 714|848 849 850 851|852 852 854 854 853 852851 851 853 854 854 853
| 7100 | 706 714|854 856 855 856|861 86.1 862 862 862 862|858 858 862 862 864 864
| 250 [70.6 714|867 867 868 868|872 872 873 873 874 873|870 87.0 872 872 873 8713
| 7500 |706 714|874 874 874 815|877 877 878 817 87.8 87.8 875 816 877 877 817 8.7
Basque 10 545 552|737 738 741 741|739 740 734 736 739 742|737 740 742 742 743 744
EU |50 [545 552|816 81.5 81.9 819|819 820 817 819 817 819|820 821 823 823 82.6 825
| 100 | 545 552|848 848 849 851|854 853 857 857 855 855|854 854 856 857 859 859
| 7250 | 545 552|880 884 885 889890 89.1 8.0 89.1 89.1 892 [89.0 89.0 892 892 893 894
| 7500 | 545 552|904 90.6 907 90.8 |91.1 91.0 91.0 91.0 91.0 91.0[91.0 909 91.0 91.0 91.0 9I.1
Chinese 10 342 408 | 649 649 650 652|678 680 673 673 67.1 674|661 669 669 67.1 673 672
ZH | 50 | 342 408|749 749 754 756|716 714 768 768 772 77.1 780 718 77.0 770 716 77.6
| 100 | 342 408|787 78.6 79.1 792|817 81.7 80.8 80.7 81.2 813|815 815 80.8 80.8 81.1 8I.1
| 250 | 342 408 | 829 829 832 83.1 847 846 842 842 845 845|846 846 841 841 846 845
[ 7500 | 342 40.8|855 855 856 857|868 867 865 864 866 86.6| 867 867 863 863 865 86.5
German 10 86.1 863|900 90.0 90.0 90.0|90.0 90.1 892 894 89.1 89.5|90.1 90.1 892 89.6 893 89.6
DE | 50 [86.1 863|924 924 924 924 (923 923 916 918 91.6 91.7 (922 923 91.7 918 91.6 91.9
[ 7100 | 86.1 863|934 935 935 935 [934 934 929 930 929 929935 934 929 93.0 929 929
| 250 | 86.1 863|946 94.6 945 947 | 947 948 944 944 944 944 [ 948 948 945 945 945 945
| 500 |86.1 863|952 953 951 953|954 954 952 952 952 952 (954 954 952 953 953 953
Hindi 10 667 672|843 843 845 847|847 848 83.6 839 842 84.1 | 841 843 838 838 840 84.1
HI | 50 | 667 672|884 834 883 883|886 834 883 884 885 885|882 881 884 885 885 88.6
| 7100 | 667 672 |89.1 893 894 893896 895 89.6 89.6 895 89.6|89.2 893 895 89.4 89.7 89.6
| 250 | 667 672905 90.7 904 90.6 909 909 909 909 90.9 91.0[90.8 909 909 90.8 90.9 90.9
| 500 [667 672|91.1 912 91.2 912 [915 915 915 914 915 915|914 914 91,5 91.5 91.5 91.5
Hungarian 10 [750 753|869 869 872 872|852 853 849 851 848 854|856 857 848 849 847 85.0
HU |50 [750 753|917 91.7 91.8 918920 91.8 915 913 91.3 91.1 [91.7 91.7 915 917 915 91.5
| 100 [75.0 753|930 93.0 932 932[933 932 930 929 93.1 93.1 933 933 930 929 931 93.1
[ 7250 | 750 753|948 94.6 949 949 [ 949 948 948 948 949 949 [ 951 950 950 949 950 95.0
| 7500 | 750 753|958 958 959 959959 959 959 959 959 958 [958 959 959 958 959 95.8
Indonesian 10 |[71.6 716|741 741 746 746|744 744 734 736 737 738|742 742 739 739 741 740
D | 50 [716 716|763 763 765 763|757 757 758 759 759 759|757 759 762 763 764 76.5
| 100 |71.6 716|765 765 764 764|761 760 763 763 764 762|760 760 767 767 766 76.6
[ 250 [716 716|770 769 768 769|768 767 7170 769 77.0 77.1 767 767 711 771 711 71.0
| 500 |716 716|769 77.0 767 768|768 767 770 71.0 77.1 77.1 769 766 712 771 713 7712
Japanese 10 247 283 (752 752 756 755|789 79.0 782 780 783 785|774 715 713 715 712 712
JA | 50 | 247 283|812 812 815 816|838 837 836 836 835 833|836 836 833 831 831 828
| 100 | 247 283|833 833 834 837851 850 85.1 848 854 853|847 849 845 846 846 845
[ 7250 | 247 283|861 86.1 862 863|873 872 871 870 873 87.0|87.1 87.1 867 86.6 868 86.7
| 7500 | 247 283|874 878 877 877|881 882 882 881 882 882|878 878 881 880 832 88.1
Russian 10 828 83.1 | 853 853 852 852|862 864 855 856 856 857|864 864 855 856 86.1 86.1
RU |50 828 83.1|884 884 888 888|889 889 878 879 881 882|893 893 834 835 838 888
| 100 | 82.8 83.1 /902 902 90.3 90.4 |90.5 90.6 89.6 89.7 90. 90.1 [90.6 90.6 90.0 90.0 90.3 90.4
| 250 [82.8 831|918 91.9 919 921923 923 91.7 91.7 91.9 919|923 923 920 920 921 92.1
| 7500 |82.8 831930 93.1 931 932934 934 930 93.1 933 933 (933 933 932 932 934 934
Tamil 10 [ 435 440665 663 669 663|662 667 672 671 681 67.1]655 655 67.1 667 613 66.7
TA | 50 | 435 440|767 755 777 716|783 787 785 781 79.7 788 773 712 78.6 784 787 8.8
| 100 | 435 440|809 807 81.0 818|829 827 826 823 829 821|814 814 8.1 824 824 825
| 7250 [435 440|854 843 856 854 [86.1 860 86.1 858 863 865|857 858 86.1 86.0 860 859
Urdu 10 556 559|837 837 838 838|836 83.6 83.6 834 832 833|829 829 832 833 83.1 832
UR | 50 [556 559|874 873 875 875|872 872 878 878 875 877 [87.1 871 875 874 878 877
| 7100 | 556 559|889 88.8 887 887|889 887 89.1 892 89.0 89.0 | 889 889 89.1 889 89.0 88.9
[ 7250 [55.6 5590900 902 90.0 90.0 [ 90.4 902 90.4 90.4 90.6 90.6 | 89.9 89.9 903 90.2 903 904
| 7500 |556 559|909 909 90.8 909 909 909 91.1 91.0 91.2 912 [90.7 90.7 909 910 91.0 91.2
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A.8 Multilingual Results

TARGET S-T MULTI

MACRO-LAST

L O L (6] L (6]
10 383 399 | 380 381 38.0 382
E 50 438 433 | 444 444 | 439 447
< 100 | 458 450 | 468 46.6 | 468 46.8
250 | 497 495 | 510 512 | 50.1 @ 50.1
500 | 51.7 520 | 533 529 | 526 524
10 81.0 842 | 845 845 84.4 842
E 50 835 842 | 844 843 84.4 843
E 100 | 84.0 843 84.6 845 842  84.0
250 | 832 849 | 846 846 | 843 842
500 | 83.8 853 853 850 | 852  85.1
10 598 62.1 652  66.1 645  66.1
5 50 714 719 | 724 727 | 729 732
z 100 | 73.0 737 | 747 748 | 748 749
250 | 766 776 | 717 717 | 719 719
500 | 782  79.1 795 79.6 | 797 < 79.6
10 794 794 | 794 794 | 80.1 80.2
8 50 843 843 843 843 84.7 847
&1 100 | 859 858 859 858 863  86.2
250 | 87.6 876 | 87.6 876 | 879 879
500 | 885 884 | 835 884 | 88.6 83.6

Table 4: Multilingual FS-XLT transfer results. Please refer to §5 for details.

10742



