
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 10645–10651
December 7-11, 2022 ©2022 Association for Computational Linguistics

AdapterShare: Task Correlation Modeling with Adapter Differentiation

Zhi Chen1∗, Bei Chen2, Lu Chen1, Kai Yu1, Jian-Guang Lou2

1X-LANCE Lab, Department of Computer Science and Engineering
MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

2Microsoft Research Asia
{zhenchi713, chenlusz, kai.yu}@sjtu.edu.cn, {beichen, jlou}@microsoft.com

Abstract

Thanks to the development of pre-trained lan-
guage models, multitask learning (MTL) meth-
ods have achieved great success in natural lan-
guage understanding. However, current MTL
methods pay more attention to task selection
or model design to fuse as much knowledge
as possible, while the intrinsic task correla-
tion is often neglected. It is important to learn
sharing strategies among multiple tasks rather
than sharing everything. In this paper, we
propose AdapterShare, an adapter differenti-
ation method to explicitly model task correla-
tion among multiple tasks. AdapterShare is
automatically learned based on the gradients
on tiny held-out validation data. Compared
to single-task learning and fully shared MTL
methods, our proposed method obtains obvi-
ous performance improvements. Compared
to the existing MTL method AdapterFusion,
AdapterShare achieves an absolute average im-
provement of 1.90 points on five dialogue un-
derstanding tasks and 2.33 points on NLU tasks.
Our implementation is available at https://
github.com/microsoft/ContextualSP.

1 Introduction

With the development of transformer-based pre-
trained language models (PLMs), natural language
understanding (NLU) has made great progress as a
downstream task. There are two main ways to lever-
age PLMs in NLU tasks. One is the fine-tuning
method, which updates the pre-trained language
model directly on a target task. The other one
is adapters (Rebuffi et al., 2017; Houlsby et al.,
2019), which introduces a small number of task-
specific parameters on a fixed PLM. When training
on the target task, only the introduced parameters
are updated. Compared to the fine-tuning method,
adapter is memory-efficient, since the introduced
parameters are much less than those of the PLM. In
this paper, we focus on the approach using adapters.

∗Work done during internship at Microsoft Research Asia.

Multi-Head 
Attention

Feed 
Forward

AdapterAdapter
layer-wise 

differentiation
Adapter-1

1 1 0 0 0
1 1 0 0 0
0 0 1 1 1
0 0 1 1 1
0 0 1 1 1

task correlation map

𝒕𝟏 Mode

Add & Norm

Add & Norm

Task Group Filter

𝑡! 𝑡" 𝑡# 𝑡$𝑡%
𝑡!
𝑡"
𝑡#
𝑡$
𝑡%

Φ!
&

Figure 1: The architecture of the adapters with task
correlation modeling method.

To transfer the knowledge of different tasks,
Stickland and Murray (2019) proposed a multitask
learning (MTL) method to update the weights of a
shared adapter using the weighting of the objective
functions of all target tasks. The shared adapter
captures the common structure underlying all the
target tasks. This is a typical multitask learning
method based on an implicit assumption that all
tasks benefit from each other, where all parameters
of the adapter are shared during multitask train-
ing. In other words, the task correlation has not
been modeled in the traditional MTL method. In
this paper, we propose a robust adapter differenti-
ation method, called AdapterShare, to model the
correlation of all target tasks explicitly. As shown
in Figure 1, during the multitask learning process,
the sharing strategy of adapter at each PLM layer
is automatically learned according to the adapter
gradients on small-scale held-out validation data.
The learned sharing strategy can be regarded as a
discrete task correlation map.
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The closest work is AdapterFusion (Pfeiffer
et al., 2021), which is a two-stage learning method.
The first stage is to train task-wise adapters sepa-
rately, and the second stage is to fuse all task-wise
adapters with attention mechanism for each tar-
get task. The two-stage method is sensitive to the
initialization of attention weights. Once there are
two tasks that hurt each other, it is hard to assign
zero to the corresponding adapter using soft atten-
tion mechanism. Compared to AdapterFusion, our
proposed AdapterShare learns all the adapters and
their task correlation simultaneously. We adopt a
discrete format to represent task correlation, where
at each PLM layer, every two tasks either share the
adapter (1 in the task correlation map) or not (0 in
the task correlation map).

2 Problem Statement

As discussed, the existing multitask learning meth-
ods tend to share all parameters. It assumes that
all target tasks benefit from each other. However,
in practice, it can be detrimental to assume correla-
tion in a set of tasks and simply put them together
for learning (Bonilla et al., 2007). In this paper,
we propose an approach to learn task correlation
automatically. The task correlation indicates that
all the target tasks are clustered into several task
groups. The tasks in the same task group share the
parameters. We maintain the task correlation map
at the granularity of each transformer layer of pre-
trained language models. With adapters training
strategy, the learning process can be formalized as:

Φi ←− argmin(LΦi(Di; Θ0,Φi)), (1)

where Θ0 is initialized parameters of PLM, Φi is
the adapter parameters of i-th task ti, Di is the
annotated training samples of i-th task and LΦi(·)
is the loss function of target task. The adapters
consists of adapter networks at all PLM layers:

Φi = {Φ1
i ,Φ

2
i , . . . ,Φ

L
i }, (2)

where L is the layer number of PLM and Φl
i is

the adapter parameters of l-th PLM layer for the
task group containing task ti. As mentioned, the
task correlation is at layer granularity. If task tj
is in the same task group as task ti at l-th layer,
the adapter parameters are shared between these
two tasks, which means Φl

i = Φl
j . The task group

at l-th PLM layer is defined by layer-wise task
correlation map M l. For example, as shown in
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Figure 2: Calculated inter-task and intra-task gradients
on tiny task-wise held-out validation sets.

Figure 1, there are two task groups: Gl
1 = Gl

2 =
{t1, t2}, Gl

3 = Gl
4 = Gl

5 = {t3, t4, t5} according
to the task correlation map M l, where M l(i, j) = 1
means ti and tj is in the same group at l-th layer.
In the next section, we will introduce how to learn
the layer-wise task correlation map.

3 AdapterShare

In this section, we first introduce the adopted task
correlation learning method in general. Then we
reveal the problem of existing neural differentia-
tion algorithm and improve it in our proposed task
correlation learning algorithm, AdapterShare. Note
that in the following, all learnable parameters are
adapters, while the parameters of PLM are fixed.

3.1 Adapter Differentiation

We model task correlation in a discrete format. The
discrete task correlation map divides all the tar-
get tasks into several task groups. The tasks in
the same task group benefit from each other. The
main challenge is how to quantify the effects of
two different tasks. Inspired by the parameter dif-
ferentiation method (Wang and Zhang, 2021), we
leverage interference degree as the effect metric.
The interference degree of two tasks is the negative
value of the inter-task gradient cosine similarity on
the shared parameters. The inter-task gradient is
calculated on tiny held-out validation data, which
contains validation samples of all tasks. Formally,
the interference degree of a task group is:

I(Φl
i;G

l
i) = max

ti,tj∈Gl
i

−
ḡl
ti · ḡl

tj

∥ḡl
ti
∥ ∗ ∥ḡl

tj
∥ , (3)

ḡl
ti = ∇LΦl

i
(Hi; Θ0,Φ

l
i), (4)

where ḡl
ti is the inter-task gradient of shared

adapter in task group Gl
i, calculated on the held-out

validation data Hi of task ti. The inter-task gradi-
ent ḡl

ti is accumulated gradient of all the samples
in the held-out validation data of task ti. If the
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Algorithm 1: Task Correlation Learning
Set all the elements of task correlation maps to one:
{M l}Ll=1.

Initialize the adapter parameters: {Φl
i}Ll=1, where

Φl
0 = · · · = Φl

N .
// Prepare the data for N tasks
Training dataset: {Di}Ni=1.
Held-out validation dataset: {Hi}Ni=1.
// Training process of each epoch
for i in 1,2,. . . ,N do

1.Sample a mini-batch bi from Di.
2.Switch the adapters into i-th task mode
according to {M l}Ll=1: Φi.
3.Compute loss as Eq. 1 and Update Φi.

// Detect adapter differentiation
for l in 1,2,. . . ,L do

Task group set: {Gl
i}Ni=1

for Gi in {Gl
i}Ni=1 do

for ti in Gi do
// Consistency of intra-task gradients
4.Split Hi into Hi,0 and Hi,1.
5.Calculate ḡl

ti,0 and ḡl
ti,1 as Eq. 4.

6.Calculate C(Φl
i) as Eq. 5.

if all C(Φl
i) > α then

7.Calculate ḡl
ti as Eq. 6.

8.Calculate I(Φl
i;G

l
i) as Eq.3.

if any I(Φl
i;G

l
i) > 0 then

9. Adapter differentiation.
10.Update M l.

interference degree I(Φl
i;G

l
i) > 0, it indicates that

there are at least two tasks in this task group that
have conflicting optimum directions. For exam-
ple, as shown in Figure 2, ḡl

t1 and ḡl
t2 have similar

global optimum directions, while ḡl
t3 has the oppo-

site direction to the other two tasks. It suggests that
t3 may hinder the other two tasks t1 and t2. These
three tasks need to be divided into two different
groups: Gl

1 = Gl
2 = {t1, t2} and Gl

3 = {t3}. The
dividing process is named adapter differentiation,
where one task group is split into two subgroups.
In detail, adapter differentiation has three steps: 1)
The two tasks with the highest interference degree
are taken as representatives and put into two differ-
ent subgroups; 2) Every other task in the current
task group is compared with these two represen-
tatives and added to the subgroup with the lower
interference degree; 3) The parameters of two dif-
ferentiated adapters are copied from the original
adapter. The elements in the task correlation map
M l will change from 1 to 0, if two tasks belong to
different task groups.

At the beginning of the training process, we set
all elements of the task correlation map to 1, which
means that all adapter parameters are shared among

Corpora #Sample I(Token) I(Turn) O(Token) Task
SAMSUM (2019) 14732 104.95 11.2 20.31 DS

TASK (2019) 2205 34.92 2.8 10.84 DC
BANK77 (2020) 12081 21.64 1 3.14 ID
RES8K (2020) 15270 14.44 1 3.38 SF
WOZ2.0 (2017) 7608 78.96 4.6 1.30 DST

Table 1: Statistics of five dialogue understanding
datasets. I(Token) and I(Turn) mean the average length of the
split tokens and the average turns of the input dialogue
content. O(Token) means the average length of the split
tokens of the task-specific output.

Corpora #Train #Dev. #Test #Label Task
WNLI (2012) 634 71 146 2 NLI
RTE (2018) 2500 276 3000 2 NLI

CoLA (2019) 8500 1000 1000 2 ACC
SST-2 (2013) 67000 872 1800 2 SEN
STSB (2017) 7000 1500 1400 1 SIM

Table 2: Statistics of five natural language understanding
datasets.

all tasks. Then, we periodically calculate the inter-
ference degree of the current task groups to activate
the adapter differentiation operation when the in-
terference degree is greater than 0. Once adapter
differentiation starts, the task correlation map will
be permanently changed.

3.2 Avoiding Over-Differentiation

So far, we have introduced the basic adapter dif-
ferentiation method for learning task correlation.
However, in practice, we find a problem called
over-differentiation: the basic adapter differentia-
tion method has an unstable training process, in
which the update of the task correlation map is irre-
versible. At the beginning of the training process,
the shared adapter parameters are fragile and the
inter-task gradients have a big bias on the held-out
validation data. Thus, the adapter differentiation
operation needs to be cautious. In our proposed
AdapterShare, we add another line of defense to
activate the differentiation. We have to make sure
that the inter-task gradient is trusted. As shown in
Figure 2, we can see that each inter-task gradient
is accumulated by intra-task gradients, while the
intra-task gradients vary within a task.

To alleviate this issue, we randomly split all the
intra-task gradients into two groups and calculate
the accumulated intra-task gradients of these two
groups: ḡl

ti,0
and ḡl

ti,1
. Then, we use their cosine
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DU Tasks
(T5)

Methods
ST MT AdapterFusion AdapterShare

SAMSUM (R-L) 48.80 47.78 47.36 49.12
TASK (BLEU) 88.45 89.54 89.92 90.20

BANK77 (ACC.) 91.58 89.25 91.10 93.15
REST8K (F1) 97.28 96.41 95.93 97.58

WOZ2.0 (JGA) 91.25 90.70 89.12 92.89
OVERALL 83.47 82.74 82.69 84.59

Table 3: Results on five dialogue understanding tasks with the backbone T5.

NLU Tasks
(BERT)

Methods
ST MT AdapterFusion AdapterShare

WNLI (ACC.) 56.34 61.97 56.33 61.97
RTE (ACC.) 66.06 77.61 70.75 77.62

CoLA (MCC.) 58.02 59.06 60.23 60.64
SST-2 (ACC.) 93.12 92.66 93.12 92.77

STSB (Spearman) 88.78 89.28 89.88 88.96
OVERALL 72.46 76.12 74.06 76.39

Table 4: Results on five natural language understanding tasks with the backbone BERT.

similarity as the consistency of inter-task gradient,
calculated as:

C(Φl
i) =

ḡl
ti,0
· ḡl

ti,1

∥ḡl
ti,0
∥ ∗ ∥ḡl

ti,1
∥ . (5)

The adapter differentiation on a task group can be
activated only when all tasks in this task group
have consistency values greater than the threshold
α. The inter-task gradient of task ti is equal to
the sum of two accumulated intra-task gradients,
formalized as:

ḡl
ti = ḡl

ti,0 + ḡl
ti,1. (6)

To distinct with basic adapter differentiation
method, we name the improved method as robust
adapter differentiation. The details of task correla-
tion learning are shown in Algorithm 1.

4 Experiments

4.1 Datasets

We evaluate our proposed AdapterShare on five dia-
log understanding (DU) datasets (shown in Table 1)
and five natural language understanding (NLU)
datasets (shown in Table 2). There are five differ-
ent dialog understanding tasks in DU datasets. DS,
DC, ID, SF and DST represent dialogue summary,
dialogue completion, intent detection, slot filling
and dialogue state tracking, respectively. Five NLU

datasets are chosen from GLUE benchmark, span-
ning four different NLU tasks. NLI, ACC, SEN
and SIM indicate natural language inferencing, ac-
ceptability, sentiment and similarity, respectively.

4.2 Experimental Setup

In order to investigate the proposed AdapterShare
training method, we compare it with ST, MT and
AdapterFusion. ST trains a separate adapter for
each target task. MT trains the adapters on all the
target tasks (Stickland and Murray, 2019). Adapter-
Fusion fuses the separated ST adapters on the target
task with attention mechanism.

As described in Su et al. (2022) and Chen et al.
(2022), the dialogue understanding tasks can be
formulated as a unified sequence-to-sequence gen-
eration task. For five DU tasks, we leverage T5-
base model (Raffel et al., 2020) as the backbone of
the generation model. For five NLU tasks, we im-
plement all the experiments based on the released
code by Liu et al. (2019). The backbone of NLU
tasks is BERT-large (Kenton and Toutanova, 2019).
The adapters is implemented based on Adapter-
Hub (Pfeiffer et al., 2020), where the pre-trained
language models are inherited from HuggingFace
library (Wolf et al., 2019). We set the threshold of
intra-task consistency α to 0.707 (cos(π/4)). The
learning rate is 1e-5. We conduct all the experi-
ments on V100 GPU with 16G memory. All the
metrics are the higher, the better.

10648



Figure 3: Differentiated adapters on 24 transformer
layers of T5. X-axis represents the task name. Y-axis
represents the number of shared tasks.

4.3 Results

The proposed AdapterShare adopts a robust adapter
differentiation method to learn task correlation.
As shown in Table 3, we can find that the pro-
posed AdapterShare can get the best performance
than the baselines. Compared with the single-task
method, AdapterFusion method can not obtain any
performance gain in encoder-decoder setup. In
the encoder-only situation, AdapterFusion method
can achieve the best performance on two of five
tasks, as shown in Table 4. Compared with the
single-task method, it actually gets obvious im-
provements, which is consistent with the original
conclusion (Pfeiffer et al., 2021). However, in
encoder-only setup, our proposed AdapterShare
can still obtain the best performance on three of
five tasks and get the best overall score. MT method
shares all the parameters among all the tasks. In
dialog understanding tasks, the overall score of ST
is better than MT, which indicates that there are
some tasks hurt by other tasks. The final results
on DU tasks further indicate our proposed Adapter-
Share, which learns the task correlation map, is
more efficient than independent training (ST) and
complete-sharing methods. The final differentia-
tion architecture on T5 is shown in Figure 3. The
four shared tasks mean that all five tasks are shared
with each other in the corresponding layer. We can
see that the adapter differentiation happens only
on T5 decoder side and all the adapters on encoder
are shared. This phenomenon is interesting. As
we know, inputs in all DU tasks are the dialogue
context. The encoder module, as the presentation
function, is used to represent the dialogue context.
Compared with the encoder, the decoder needs to

solve different DU tasks, whose outputs are very
different. Various DU tasks need to pay attention
to different dialogue context areas. For example,
the DST task is more inclined to obtain the entity
information mentioned by the user, and the inten-
tion detection is more inclined to pay attention to
user actions.

We also conduct an ablation study to compare
robust adapter differentiation method with basic
differentiation method on dialog understanding
tasks. The performance curves on the development
datasets are shown in Appendix A. It shows that
the training process of the robust adapter differenti-
ation method is more stable than the basic method.
The metrics of robust method on DU tasks are also
higher than the basic differentiation method.

5 Conclusion

In this paper, we propose a robust adapter differ-
entiation method to automatically learn task cor-
relation in the multitask learning setting. On both
encoder-decoder and encoder-only PLMs, our pro-
posed method can achieve exciting performance
gains compared to the separated training, complete-
sharing and AdapterFusion methods. In future
work, we will try our method in the domain trans-
fer area, which is a more general scenario than
multitask learning.

Limitations

There are two main limitations in this paper. The
first one is about the scale of multiple tasks. In the
experiments, there are five tasks on dialogue under-
standing area and natural language understanding
area. It is unsure whether the proposed method
works in a large-scale task learning setup. The sec-
ond one is the implicit assumption included in our
proposed method that the effect of two tasks are
mutual, where one benefits/hurts the other means
that the other also benefits/hurts itself. There is
currently no evidence for the validity of this as-
sumption. We leave these explorations for future
work.

Ethical Considerations

As our adapter differentiation methods are vali-
dated on the existing datasets, we follow the origi-
nal copyright statements of 10 datasets. All claims
in this paper are based on the experimental results.
No demographic or identity characteristics infor-
mation is used in this paper.

10649



References
Edwin V Bonilla, Kian Chai, and Christopher Williams.

2007. Multi-task gaussian process prediction. Ad-
vances in neural information processing systems, 20.

Inigo Casanueva, Tadas Temcinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulic. 2020. Efficient
intent detection with dual sentence encoders. ACL
2020, page 38.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Zhi Chen, Lu Chen, Bei Chen, Libo Qin, Yuncong Liu,
Su Zhu, Jian-Guang Lou, and Kai Yu. 2022. UniDU:
Towards a unified generative dialogue understanding
framework. In Proceedings of the 23rd Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue, pages 442–455, Edinburgh, UK. Associa-
tion for Computational Linguistics.

Samuel Coope, Tyler Farghly, Daniela Gerz, Ivan Vulić,
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A Ablation Study on DU Tasks

(a) Basic adapter differentiation.

(b) Robust adapter differentiation.

Figure 4: The performance curves on five dialogue un-
derstanding tasks with (a) basic adapter differentiation
and (b) robust adapter differentiation methods.
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