CODER: An efficient framework for improving retrieval through
COntextual Document Embedding Reranking

George Zerveas', Navid Rekabsaz?, Daniel Cohen'*, Carsten Eickhoff*

LAI Lab, Brown University, USA {george_zerveas, carsten}@brown.edu
2Johannes Kepler University Linz, LIT Al Lab, Austria navid.rekabsaz@jku.at
3Dataminr, USA daniel.cohen@dataminr.com

Abstract

Contrastive learning has been the dominant ap-
proach to training dense retrieval models. In
this work, we investigate the impact of ranking
context — an often overlooked aspect of learning
dense retrieval models. In particular, we exam-
ine the effect of its constituent parts: jointly
scoring a large number of negatives per query,
using retrieved (query-specific) instead of ran-
dom negatives, and a fully list-wise loss. To
incorporate these factors into training, we intro-
duce Contextual Document Embedding Rerank-
ing (CODER), a highly efficient retrieval frame-
work. When reranking, it incurs only a negli-
gible computational overhead on top of a first-
stage method at run time (~ 5 ms delay per
query), allowing it to be easily combined with
any state-of-the-art dual encoder method. Mod-
els trained through CODER can also be used as
stand-alone retrievers. Evaluating CODER in
a large set of experiments on the MS MARCO
and TripClick collections, we show that the
contextual reranking of precomputed document
embeddings leads to a significant improvement
in retrieval performance. This improvement
becomes even more pronounced when more
relevance information per query is available,
shown in the TripClick collection, where we
establish new state-of-the-art results by a large
margin.

1 Introduction

Neural text retrieval models typically rely on a con-
trastive training optimization that uses (query, posi-
tive document, negative document) triplets as train-
ing samples. This scheme is especially popular, as
it is well-suited to the computational constraints
of large transformer-based language models such
as BERT (Devlin et al., 2019) and its variants for
retrieval (Nogueira and Cho, 2020; Khattab and
Zaharia, 2020; Zhan et al., 2020b,a). Referred to
as pair-wise training, the model is asked to score
the similarity between the query embedding and a
ground truth relevant (positive) document embed-

ding, higher than the one between the query and a
negative document embedding.

While such contrastive learning approaches are
effective, by only considering pairs of positive and
negative documents at a time, they (1) deviate from
the target objective of comparing a query against
many documents while discarding inter-document
information, and (2) depart from core list-wise eval-
uation metrics like nDCG (Calauzenes et al., 2012).

Addressing the first shortcoming, recent works
have employed “in-batch” negatives: given a batch
containing (query, positive document) tuples, the
negatives to a tuple are set as the known positive
documents from other queries within that batch.
(e.g. Karpukhin et al. (2020); Luan et al. (2021);
Zhan et al. (2020b); Hofstitter et al. (2021); Qu
et al. (2021)). Although this approach efficently in-
creases the number of negatives to improve perfor-
mance, the presence of hard negative samples' is
critical in achieving state-of-the-art (SOTA) (Xiong
et al., 2020; Zhan et al., 2021b; Qu et al., 2021;
Hofstitter et al., 2021).

The rich literature on learning-to-rank (L2R)
has outlined compelling reasons for taking into
account the context of other candidate documents
being ranked for a query when scoring each doc-
ument (Cao et al., 2007; Ai et al., 2019, 2018),
realized in various list-wise optimizations. Such
approaches allow for the model to directly optimize
IR metrics as opposed to a surrogate pair-wise loss
as seen in the contrastive training regime. Despite
these list-wise approaches achieving competitive
results in a variety of ranking situations, considera-
tions of computational complexity and stochastic
stability practically relegate them to shallow neu-
ral models over handcrafted feature vectors (Bruch
et al., 2020; Pang et al., 2020; Chen and Eickhoff,
2021).

"Hard negatives look similar in topic and term distribu-
tion to relevant documents, while not actually satisfying the
information need.

10626

Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 10626—10644
December 7-11, 2022 ©2022 Association for Computational Linguistics

In this paper, we extend existing work in neg-
ative sampling and list-wise learning to allow for
large pre-trained language models to take advan-
tage of the context found in a large, coherent set
of candidate documents. We particularly examine
the effect of constituent parts of the query con-
text, i.e. (1) jointly scoring a large number of
negatives, (2) using retrieved (query-specific) in-
stead of random negatives, and (3) a fully list-wise
loss. To this end, we introduce COntextual Doc-
ument Embedding Reranking (CODER), a highly
efficient and generic fine-tuning framework that for
the first time enables incorporating context, previ-
ously only considered in learning-to-rank neural
networks, into transformer-based language models
used in state-of-the-art dense retrieval. CODER
acts as a lightweight performance enhancing frame-
work that operates on precomputed document em-
beddings, while transforming the query to account
for new list-wise context information over a large
number of query-specific hard negative candidate
documents. It can be applied to virtually any exist-
ing dual-encoder model, and used both for single-
as well as two-stage dense retrieval.

Our contribution is three-fold: (1) We intro-
duce an efficient framework which enables lever-
aging ranking context; (2) We conduct a large set
of experiments on the MS MARCO (Bajaj et al.,
2018) and TripClick (Rekabsaz et al., 2021b) col-
lections and show that CODER can considerably
enhance the effectiveness of a wide class of dense
retrieval models at minimal computational cost,
while achieving new SOTA results on TripClick;
(3) We explore the impact of the constituent parts of
ranking context in learning effective models. Our
code and trained resources are available in https:
//github.com/gzerveas/CODER.

2 Related Work

Recent work has demonstrated the importance of
the quality of negative documents used during fine-
tuning. Xiong et al. (2020) periodically re-encode
every query and document in the collection during
training in order to mine the most difficult docu-
ments to use as negative candidates via approxi-
mate nearest neighbor (ANN) search. Improving
on this slow and resource-intense process, Zhan
et al. (2020a) (published as Zhan et al. (2021b))
forego fine-tuning of the document encoder, instead
only fine-tuning the query encoder while dynam-
ically mining negatives. TAS-B (Hofstétter et al.,

2021) also improves the quality of negatives by
clustering semantically similar queries, such that
the in-batch negatives are indirectly related to the
ground truth document. While we contribute to
this line of research, we show that one can avoid
such complexity and directly benefit from list-wise
optimization applied on a large, coherent and infor-
mative context of candidate documents, retrieved
for each query in advance.

Moving from quality to quantity of negative can-
didates, RocketQA (Qu et al., 2021) drastically
increases the quantity of random in-batch nega-
tives to several thousands by sharing negatives
across at least 8 V100 GPU instances. Despite
its huge size, this pool of sampled negatives in-
cludes only 4 retrieved hard negatives per query
and is otherwise almost entirely random, with no
shared context across documents. Unlike CODER,
this approach necessitates training an expensive
cross-encoder model to “denoise” (filter out) re-
trieved candidates, otherwise yielding poor per-
formance. Moreover, it involves using the cross-
encoder to pseudo-label additional data samples,
an approach adopted by the currently top perform-
ing dual encoder models following up this work,
RocketQAv2 (Ren et al., 2021b), which addition-
ally leverages list-wise cross-encoder teaching, and
PAIR (Ren et al., 2021a), which includes a loss
term capturing similarity between passages.

To address the increasing complexity and com-
putational requirements of training pipelines, Gao
and Callan (2021a,b) instead propose corpus-
specific, self-supervised pre-training with a be-
spoke transformer add-on (see Baselines in Section
4). An orthogonal approach to reduce computa-
tional requirements focuses on jointly optimizing
query optimizer and product quantization for ANN
search (Zhan et al., 2021a).

List-wise loss functions have been extensively
used within learning-to-rank (L2R), although they
have been limited to either shallow neural mod-
els (Bruch et al., 2020; Cao et al., 2007) or various
deep networks Pasumarthi et al. (2019a); Ai et al.
(2018, 2019); Pang et al. (2020) in works focusing
on L2R datasets. These consist of handcrafted fea-
ture vectors representing query-document similar-
ity such as term overlap, click-through rate, BM25
scores, and other salient features. Effectively apply-
ing L2R concepts to transformer-based language
models used for ad-hoc dense retrieval is a non-
trivial challenge, and represents CODER’s exten-

10627

https://github.com/gzerveas/CODER
https://github.com/gzerveas/CODER

sion of prior works.

Finally, there is a body of work utilizing large
pre-trained language models for retrieval in cross-
encoder (Nogueira and Cho, 2020; Lin et al., 2021;
Hofstitter et al., 2022), late cross-encoder (Khattab
and Zaharia, 2020; Santhanam et al., 2021), and
generative rankers (Lesota et al., 2021), as well as
query/document expansion and indexing (Zheng
et al.,, 2020; Naseri et al., 2021; Mallia et al.,
2021; Nogueira et al., 2020; Gao et al., 2021).
Co-BERT (Chen et al., 2022), a recent method
leveraging ranking context, uses a cross-encoder
BERT Reranker to select candidates and to com-
pute feature vectors as input for the L2R methods
above (Pang et al., 2020) through query-document
term interactions. In comparison, CODER is orders
of magnitude more efficient both during training
and inference.

All existing approaches either advocate for us-
ing a handful of hard negatives (e.g. (Karpukhin
et al., 2020)), or compromise with it due to compu-
tational constraints. By recognizing the importance
of context, our proposed framework is the first to
allow the combination of quantity and quality of
negatives for training SOTA dual encoder models
with very modest computational resources.

3 Method

CODER involves fine-tuning a pre-trained query
encoder to learn a query representation that is as
proximal as possible to the representation of the
ground-truth relevant document(s), by adjusting it
to better account for the context of multiple query-
related documents. The architecture consists of
two main components (Fig. 1): a query encoder,
which builds a query representation, and the doc-
ument set scoring module, which, given a query
representation, jointly scores a set of N precom-
puted embeddings of positives and hard negatives
retrieved by an arbitrary retrieval method, M. Us-
ing precomputed document embeddings reduces
computational costs (memory, FLOPs) by a factor
of N. Thus, unlike all existing approaches, we can
afford to use a large number of such hard negatives
(N = 1000 in our experiments, unless otherwise
noted).

3.1 Architecture
3.1.1 Query Encoder
The query encoder can be any pre-trained trans-

former encoder, such as BERT (Devlin et al., 2019),
DistilBERT (Sanh et al., 2020), RoBERTa (Liu

S, .. §N
1 $;€ R:scorefordoc.i |

$=0(9(2),X6,)eR"

document set scoring

52)

X, x;€ R4 Xy
x;: embedding of doc. i
query zZ z, Z; z, € R4 z,
encoder J
Z:g“(q;GQ)eRWX
ot
[CLS] what s [SEP]
query q

Figure 1: Schematic diagram of the CODER method.
The architecture consists of two main components: the
query encoding module, which embeds a tokenized
query, and the document set scoring module, which
jointly scores a set of N precomputed candidate doc-
ument embeddings. Here, we experiment specifically
with ¢ = X - g (Z), combined with a list-wise loss and
large N = 1000, which we show allows to effectively
leverage ranking context.

et al., 2019), or ERNIE (Zhang et al., 2019). We
initialize its weights from an existing model al-
ready fine-tuned for retrieval, which we call “base
model”, Mp.

Formally, for each query token ¢;, t € N: 1 <
t < w, where w is the length of the tokenized
query sequence, it extracts a vector representation
z; € R? where d is the encoder’s internal repre-
sentation dimension. These vectors can be linearly
projected to a space of different dimensionality
and become z, € R, to match the dimensionality
of the document embeddings d’, in case the lat-
ter differs. In the general case we thus denote the
extracted representation of a query q as:

Z' =z;...;2,) = C(g:00) e RV, (1)

where 0 are the parameters of the query encoder.
The individual token representations are aggregated
into a single vector using an aggregation function
g. In our experiments, we let g(Z') = 1Y, 2/,
be the mean when using RepBERT (Zhan et al.,
2020b), and g(Z’) = z'1 (i.e. the representation of
the [CLS] token) when using TAS-B (Hofstitter
et al., 2021) as the base model for implementing
the query encoder ((see Section 4).

10628

3.1.2 Document scoring function

The document set scoring function is represented
by ¢ which produces a set of NV scalar relevance
scores §; € R, € N:1 <4 < N. It takes as
an input the aggregated query representation g(Z’)
from the previous section, and a set of N docu-
ment embeddings x; € R™, 1 e N:1<i <N,
precomputed by the base model. Using learnable
linear projections, the dimensionality of the docu-
ment embeddings can potentially be changed to ac-
commodate different scoring functions (e.g., trans-
former blocks with an internal representation di-
mension d’ # m), while matching the dimensional-
ity of the query embeddings. Succinctly, the output
relevance scores are:

where X = [x1;...;xx] € RYX™ are the N doc-

ument embeddings, fp are the parameters of the
scoring function, and d’ = d (i.e. query and docu-
ment embeddings have the same dimensionality).
While a variety of functions can be used as a
scoring function in our framework, including trans-
formers (see Appendix Section A.4), for all results
presented in this work we leverage the simple in-
ner product, which interestingly achieves signifi-
cant performance improvements even without the
contextualized transformation of document embed-
dings. It thus appears that jointly scoring a large
number of query-specific candidates for the same
query within a list-wise loss establishes a strong
enough context for improving performance (see
Section A.5). Beyond computational efficiency,
the main advantage of the above function is that
it facilitates directly using the fine-tuned query en-
coder for dense retrieval (single-stage) through fast
approximate nearest neighbor search. Instead, a
non-linear scoring module would only allow us-
ing the model for reranking in a two-stage retrieval
setting (candidate retrieval, followed by reranking).

=X-g(Z)eRY, (2

3.2 Training through CODER

The document representations X are precomputed
using the document encoder part of any state-of-the-
art dual encoder retrieval model M. To accelerate
training convergence, we initialize our query en-
coder ¢ from the query encoder of the same dual
encoder retrieval model. Throughout training, the
parameters ¢ of the query encoder (and 6 of the
scoring function ¢, if the latter is learnable) are fine-
tuned. To support a memory and compute-efficient

training setting without the need for large or paral-
lel GPUs, the document representations X remain
fixed, although in general they can be transformed
by function ¢ before computing the document sim-
ilarity scores. As with all dense retrieval methods
(e.g., (Zhan et al., 2020b; Xiong et al., 2020; Zhan
et al., 2021b; Hofstitter et al., 2021)), document
representations are assumed to have been precom-
puted and indexed for fast inference runtimes.

A key difference between CODER and all dense
retrieval methods is that, for each query, along with
the k positive (ground-truth) documents, the model
is trained to jointly score a large number N —
k of top candidate documents retrieved by some
candidate retrieval method M. We note that Mo
does not need to be the same method as the base
method that provides the document representations
and the query encoder. This potentially allows
leveraging methods with different characteristics
(e. g. methods with higher recall versus precision,
or a lexical overlap / sparse representation such
as BM25), and can prove beneficial, as shown in
Section 5.

3.3 Loss function

To best take advantage of jointly scoring N doc-
uments for each query, we choose the ListNet
loss (Cao et al., 2007), which is the KL-divergence
between a distribution over the predicted scores §
(given by Eq. (2)) for the N candidate documents,
and a distribution over the target (ground-truth) rel-
evance labels y € RY, given by the dataset for
the same set of candidates (the relevance score of
positive documents is a positive scalar, while for
negative or documents whose label is not explicitly
defined it is set to —o0):

E(Yvé):DKL((y) [o(8))

=—ZG Jog 28 O

o(y)
where o denotes the softmax function. Jointly scor-
ing a large number of retrieved candidates for each
query, in combination with the KL-divergence loss,
distinguishes our method from existing dense re-
trieval methods. This combination establishes and
exploits a context for each query and it is key for ob-
taining a performance improvement over the base
method, as we show in Section 5.4 (and further
discuss in Appendix Section A.5). The benefit
is expected to be even greater for datasets which
include multiple document labels per query, option-

0

10629

ally defined over several levels of relevance. We
show such results in Section 5.2.

4 Experimental Setup

Datasets. We conduct the experiments on pas-
sage and document retrieval tasks,? using two large
publicly available IR collections in the domains
of web and health retrieval. The first dataset is
MS MARCO Passage Retrieval dataset (Bajaj et al.,
2018) used for training and evaluation. We eval-
uate the models trained on MS MARCO also on
TREC Deep Learning Passage Retrieval track 2019
and 2020 (Craswell et al., 2020, 2021). The second
dataset is TripClick, a recently introduced health
document retrieval dataset (Rekabsaz et al., 2021b)
used for training and evaluation. Details of the
collections are provided in Section A.2 of the Ap-
pendix. While the training data of MS MARCO
contains only approximately 1 relevance judgement
per query, the TripClick collection has the advan-
tage of providing a much larger set of relevance in-
formation, namely approximately 42, 9, and 3 data
points per query in HEAD, TORSO, and TAIL sets,
respectively. As shown in the next section, this is
particularly beneficial when optimizing over a large
ranking context in a list-wise manner. Evaluation
details are given in Section A.3 of the Appendix.

Baselines. We choose several dense retrieval
models as baselines, i. e. “base models” subjected
to CODER fine-tuning:

1. RepBERT (Zhan et al., 2020b), a BERT-based
model with a typical dual encoder architecture
which underpins all state-of-the-art dense retrieval
methods, trained using a triplet Max-Margin loss.

2. TAS-B (Hofstitter et al., 2021), which, besides
being a top-performing dense retrieval method on
the MS MARCO / TREC-DL 2019, 2020 datasets,
it also represents methods that have been optimized
with respect to their training process (details in Sec-
tion 2).

3. Finally, to explore the limits of CODER, we use
it to fine-tune a trained CoCondenser retriever (Gao
and Callan, 2021b), the state-of-the-art dense re-
trieval model that does not make use of query-
document term interactions, cross-encoder teacher
models or additional pseudo-labeled data samples,
but instead relies on extensive corpus-specific, self-
supervised pre-training using a special architecture
and contrastive loss component. It is a particularly

>When referring to the unit of retrieval we use the terms
“passage” and “document” interchangeably.

challenging baseline for our CODER framework,
because it has been trained through (a) mining
for hard negatives using a trained version of the
model itself, and (b) the Negative LogLikelihood
(InfoNCE) loss, which is “nearly” list-wise (it dif-
fers from our KL-divergence loss only when there
are more than one positive candidates).

Configurations. For the CODER frame-
work, we use the following notation:
Mp — CODER(Mp,Mc), where Mp is
the base model used to encode documents into
document embedding vectors (and initialize the
query encoder weights), M is the first-stage
retrieval method used to procure the candidate
(context) documents reranked during the CODER
training process, and M is the retrieval method
used as a first stage when CODER is used
as a reranking method during inference; My
vanishes in case CODER is used directly for
single-stage dense retrieval, and the notation
CODER(Mp, M¢) is used instead. In addition
to TAS-B and RepBERT, we also experiment
with BM25 (Anserini implementation (Yang
et al., 2017)) as M¢ and M methods. Specific
hyperparameter details can be found in Table 3 in
Appendix.

5 Results

5.1 Results on MS MARCO and TREC DL

After only a fast and efficient fine-tuning (3.5 hours
for TAS-B, 4.5 hours for RepBERT on a single
NVIDIA TITAN RTX GPU), we observe a sub-
stantial performance benefit when applying our
CODER framework to TAS-B and RepBERT, as
seen in Table 1.

CODER improves retrieval performance re-
markably compared to both the original (single-
stage) RepBERT, as well as two-stage cascade
BM25—RepBERT. CODER confers the largest
performance benefit on RepBERT when reranking
BM25 candidates in a cascade. The single-stage
retriever fine-tuned through CODER is much im-
proved compared to the original RepBERT, and
almost as effective as the cascade, without intro-
ducing any latency or complexity.

Our framework also significantly improves
the performance of the highly optimized TAS-B
method, which leverages hard negatives and dual
knowledge distillation from two powerful cross-
encoder models, BERT-Reranker and ColBERT.
We furthermore observe that using the CODER-

10630

Model MS MARCO dev TREC DL 2019 TREC DL 2020 Latency
MRR@10 nDCG@10 | MRR@10 nDCG@10 MRR@10 nDCG@10 (ms/query)
BM25 [Anserini] 0.187 0.234 0.843/0.682 0.497/0.417 | 0.820/0.655 0.488/0.412 501
L2Re(ANCE) (Zhan et al., 2020a) 0.341 - - 0.675 - - 47
Co-BERT* (Chen et al., 2022) - 0.958 0.700 0.839 0.699 > 1000
2ColBERT*v1; v2 0.360; 0.397 - - - - 458
2BM25 — ColBERT* 0.349 [BM25] + 61
3RocketQAvV1; v2 0.370; 0.388 - - - - -
CoCondenser [our evaluation] 0.381 0.446 0.971/0.879 0.715/0.656 | 0.937/0.833 0.680/0.618 ~ [RepBERT]
RepBERT (abbrev: RB) [our eval.] | 0.304 0.359 0.917/0.766 0.616/0.548 | 0.902/0.763 0.621/0.561 70
BM25 — RepBERT 0.317 0.373 0.969/0.795 0.674/0.593 | 0.893/0.781 0.640/0.579 [BM25] + 5.8
BM25 — CODER(RB, BM25) 0.326 0.384 0.953/0.798 0.675/0.600 | 0.914/0.816 0.654/0.593 [BM25] + 5.8
BM25 — CODER(RB, RB) 0.3270 0.3859 0.953/0.806 0.677/0.603% | 0.898/0.787 0.672/0.611% [BM25] + 5.8
RB — CODER(RB, RB) 0.324 0.383 0.905/0.785 0.650/0.593 | 0.918/0.785 0.660/0.598 [RepBERT] + 5.8
CODER(RB, BM25) 0.311 0.368 0.855/0.750 0.606/0.552 | 0.906/0.790 0.603/0.550 [RepBERT]
CODER(RB, RB) 0.325 0.384 0.905/0.785 0.652/0.593 | 0.918/0.785 0.660/0.598 [RepBERT]
TAS-B (Hofstitter et al., 2021) 0.340 0.402 0.892 0.712 0.843 0.693 64
TAS-B [our evaluation] 0.344 0.408 0.951/0.875 0.721/0.659 | 0.921/0.832 0.685/0.620 <50
BM25 — TAS-B 0.343 0.404 0.971/0.857 0.723/0.648 | 0.918/0.838 0.696/0.633 [BM25] +5.5
BM25 — CODER(TAS-B, BM25) | 0.349 0.409 0.983/0.872 0.727/0.654 | 0.935/0.846 0.690/0.629 [BM25] +5.5
BM25 — CODER(TAS-B, TAS-B) | 0.350 0.411 0.971/0.828 0.728/0.654 | 0.926/0.846 0.693/0.630 [BM25] +5.5
TAS-B — CODER(TAS-B, TAS-B) | 0.355%® 0.419 0.966/0.857 0.728/0.668 | 0.923/0.844 0.686/0.623 [TAS-B] +5.5
CODER(TAS-B, BM25) 0.347 0.409 0.965/0.890 0.723/0.665 | 0.934/0.835 0.678/0.612 [TAS-B]
CODER(TAS-B, TAS-B) 0.3557 0.419% 0.966/0.857 0.728/0.668 | 0.923/0.844 0.686/0.623 [TAS-B]

Table 1: Performance for passage ranking when applying CODER to the RepBERT (middle section) and TAS-B
(bottom section) base methods. In the notation Mp — METHOD(Mp, M¢c): Mp is the method used for first
stage retrieval when using METHOD for reranking, Mp is the base method and M is the retrieval method which
provides the context (candidate) passages during training. Bold font denotes best results within the same section
(separated by continuous rules). Results of the statistical significance tests (paired ¢-test) are reported only for the
best performing models, where the symbols ¢ and ® denote a significant improvement (p < 0.05) with respect to the
base Mp and BM25— M p, respectively. For TREC DL, two values are given for each metric separated by a slash,
corresponding to the lenient / strict (official) interpretation of relevance labels. Models with * use cross-encoder
term interactions. Rows with 2 are from Khattab and Zaharia (2020); Santhanam et al. (2021), and with ® from (Qu

etal., 2021; Ren et al., 2021Db).

trained query encoder directly for single-stage
dense retrieval is exactly as effective as using
CODER to rerank TAS-B candidates in a cas-
cade, on both MS MARCO and TREC DL tracks.
This result suggests that under certain conditions,
CODER can generalize its ranking function from
the provided training context (limited set of fixed
hard negatives) to the entire dataset, even without
the use of dynamic negative mining, huge batch
sizes or “denoising” as seen in previous work (Qu
et al., 2021; Xiong et al., 2020).

Putting these results into context, we can see that
simply by training through contextual reranking, a
dual encoder model such as TAS-B can improve to
the point that its reranking effectiveness is higher
than a powerful model such as ColBERT, a term-
interaction model still fast enough to be practically
considered for real-time reranking, but at a frac-
tion of the reranking latency cost (5.5 ms vs 61
ms, i.e., less than 1/10th). Its single-stage rank-
ing performance approaches the one by ColBERT,
while being about 10x faster (about 50 ms vs. 458
ms), making it a top-performing method within its
latency class.

Finally, to test the limits of CODER (see Sec-
tion 4), we apply it to fine-tuning a trained CoCon-
denser retriever, the SOTA dense retrieval model
that does not rely on using a cross-encoder in its
pipeline. We observe a slight improvement of 0.002
MRR @10 and 0.004 Recall@10 (the latter statis-
tically significant) on the MS MARCO validation
set. This smaller improvement on MS MARCO is
expected, given that it is a dataset providing very
few relevance judgements per query and thus (a)
poor context for training, and (b) an evaluation set-
ting that may be unsuitable to resolve differences
in ranking effectiveness for a contextually-trained
model. For this reason, we additionally evaluate
the models on TripClick.

5.2 Results on TripClick

Following Rekabsaz et al. (2021b), we report per-
formance in terms of MRR @10, nDCG@ 10 and
Recall@10; nDCG@10 is considered the most im-
portant metric, as multiple relevant documents per
query exist, and the DCTR relevance set addition-
ally uses multiple levels of relevance. The results
are presented in Table 2: Using the same hyperpa-
rameters as in MS MARCO, CODER fine-tuning

10631

Model MRR@10 nDCG@10
BM25! 0.276 0.224
Transformer-Kernel 0.434 0.284
BERT-Dot (SciBERT)? 0.530 0.243
BERT-Cat (SciBERT; PMBERT)? 0.595;0.582 0.294; 0.298
RepBERT (abbrev: RB) 0.526 0.255
BM25 — RepBERT 0.538 0.262

RB — CODER(RB, RB) 0.637* 0.318*
CODER(RB, RB) 0.634 0.316

Table 2: Performance when applying CODER to Rep-
BERT on the TripClick HEAD dataset, using multi-
level (DCTR) relevance labels (metrics cut-off of 10).
All CODER results are statistically significant (paired
t-test, p < 0.05) with respect to both the base and
BM25—base methods. The symbol * on best results de-
notes statistically significant improvement with respect
to all baselines. Results with ! are from Rekabsaz et al.
(2021b), with 2 from Hofstitter et al. (2022).

tremendously improves the performance of Rep-
BERT trained on TripClick, both in reranking as
well as in single-stage dense retrieval. The improve-
ment is especially pronounced on the HEAD sub-
set, where many relevance judgements per query
are available. CODER achieves the SOTA perfor-
mance by a large margin, ahead of all published
results in the literature and on the TripClick leader-
board?, including ensembles of heavyweight cross-
encoder BERT Rerankers which were pre-trained
on the domain-specific PubMedBERT (medicine)
and SciBERT (science) corpora (Hofstitter et al.,
2022). CODER also significantly outperforms the
best existing dense retrieval method (BERT-Dot
pre-trained on SciBERT (Hofstitter et al., 2022))
on the TORSO and TAIL subsets (see Appendix
Table 4). However, presumably because these sub-
sets consist of rare queries with significantly fewer
relevance judgements per query, it falls behind the
domain-pretrained cross-encoders.

Finally, we use TripClick’s validation and test
sets purely for “zero-shot” evaluating the Rep-
BERT, CODER(RepBERT), CoCondenser and
CODER(CoCondenser) models trained exclusively
on MS MARCO. We emphasize that, uniquely in
this setting, these models have not been trained or
fine-tuned on TripClick; they are the same models
described in Section 5.1, now evaluated on a large
dataset with severe distribution shift (biomedical
domain). While zero-shot evaluation is used in-
creasingly often to demonstrate the effectiveness
and generalizability of large transformer models
(e.g. (Brown et al., 2020; Hao et al., 2022; Rad-

3https://tripdatabase.github.io/tripclick/

ford et al., 2021)), here we use it as a means to
bypass the challenge of the expensive pre-training
and fine-tuning of CoCondenser on TripClick. Re-
sults are shown in Appendix Table 5: naturally,
we observe that zero-shot performance in absolute
terms is low; however, CODER-trained models per-
form always better. Moreover, the performance
order CODER(CoCondenser) > CoCondenser >
CODER(RepBERT) > RepBERT, consistent with
our observations for MS MARCO, holds also here
in almost every comparison.

5.3 Efficiency

What is the additional cost of using CODER? Us-
ing a single NVIDIA TITAN RTX GPU (on a node
with Intel Xeon Gold 6142 CPU), it takes about
186 ms to rank 1000 candidates per query in a batch
of 32 queries (out of which less than 10ms refer
to computing representations and scores, with the
rest taken up by batching and loading samples to
the GPU), i.e., a latency of 5.5-5.8 ms per query
is introduced when using CODER as a second-
stage reranker in a cascade. Using CODER as a
single-stage dense retriever only requires the same
processing time as the base method, e.g. RepBERT
or TAS-B. Table 1 reports the latency reported in
(Zhan et al., 2020b), but this in practice will be
determined by the time for loading the query se-
quence to the GPU and encoding it (in our setup, ap-
prox. 5.4 ms per query, out of which approx. 0.3 ms
is the time to compute the representation), in addi-
tion to the time for finding the approximate nearest
neighbors using a library such as FAISS (Johnson
et al., 2017).

5.4 Analysis of key factors

5.4.1 Importance of context

In this section we wish to assess the intuitions that
scoring a document within a context of other doc-
uments related to the same query can be advanta-
geous, and that a list-wise loss function like the
one we present in Section 3.3 is better equipped to
leverage this context compared to a superposition
of separate pair-wise loss components. We first
study the impact of varying the type and number of
negative documents during training.

In Figure 2 we show how the performance of
a model initialized from a trained RepBERT base
model evolves during fine-tuning through CODER,
measured in MRR@10 on our MS MARCO val-
idation set when reranking 1000 candidates first
retrieved for each query by BM25. Different

10632

curves correspond to different training settings.
The leftmost evaluation point corresponds to the
best model checkpoint achievable through standard
triplet-based training.

Composition of negatives: We observe that
training with only randomly sampled negatives,
even in large numbers, leads to a deterioration
of performance. We note that this is the case be-
cause through CODER we are optimizing a base-
line model which has already been trained to peak
performance through random negative documents.
Using a small number of retrieved candidates to-
gether with in-batch random negatives, as in cur-
rent SOTA methods (Zhan et al., 2020a; Qu et al.,
2021), again leads to deteriorating performance,
even with many random negatives. Only by using
a large number of coherent, query-specific nega-
tive samples (i.e. retrieved by a retrieval method)
for the same query can CODER extract additional
performance from the baseline. Moreover, adding
1000 additional random documents per query (in-
batch negatives) on top of those does not yield any
benefit, presumably because they are not adding
any context (as they are unrelated to the query and
documents under assessment) and/or they are not
sufficiently challenging.

List-wise loss: When training with the most
commonly used pair-wise loss (Multi-Label Max
Margin, purple dashed curve), even when using
1000 retrieved candidates as negatives within ex-
actly the same training setup, i.e. including the
same positive and negative examples for the same
query in the same batch, we observe that per-
formance only modestly improves performance
(+0.009 MRR @10). The improvement can be at-
tributed to the fact that the model now encounters
a large number of coherent, query-specific docu-
ments for the same query during a single step of
training, which offers a more complete and accu-
rate view of the loss landscape and thus leads to a
more accurate update of parameters. However, the
ranking context is exploited more effectively when
using a list-wise KL-divergence loss (dark blue
curve), as CODER fine-tuning improves MRR@ 10
from 0.345 to 0.363 (+0.018).

Finally, we note that the training loss continu-
ously decreased throughout training in all settings
mentioned above (see Figure 5 in the Appendix),
including the ones in which performance on the
validation set was deteriorating at the same time
(Figure 2). This fact suggests that deteriorating

MRR@10

~~~~~~~~~~

——1000 candidates

----- 1000 candidates, MM loss
1000 cand + 1000 random
1000 random
2000 random

4 candidates + 124 random

4 candidates + 996 random

@ BM25 + RepBERT

0.25
0 50000 100000 150000 200000 250000
0.36 I\'/\/_‘.\,_/‘ M
.
0.34 —1000
512
256
0.32 128
64
03 —32
—16
—38
0.28 ® BM25 + RepBERT
0.26 steps
0 50000 100000 150000 200000 250000

Figure 2: Performance of BM25—CODER(RepBERT)
on MS MARCO validation set over training steps. The
left-most point corresponds to reranking BM25 candi-
dates using the fully trained RepBERT. Top: Effect of
type and number of documents used as negatives. The
purple dashed curve corresponds to training with a pair-
wise (Max Margin) loss. Bottom: Effect of number of
BM25 candidates used as negatives during training.

performance in those settings can be interpreted
as overfitting, when there is insufficient informa-
tion/signal captured by the training objective in
order to learn to rank more effectively.

5.4.2 Number of context documents

We now investigate the importance of the quantity
of negative documents per query during training.
In Figure 2, where the number of BM25-retrieved
candidate negatives is adjusted, we observe increas-
ing performance per additional document until we
reach a number in the order of the dimensionality
of the embedding space (here, 768 for BERT-base).
Increasing the number of negatives beyond this
point yields diminishing returns (see section A.1
for an explanation).

We note that these numbers of negative can-
didates (as opposed to random documents) per
query are much higher than the ones used in all
contemporary work (max. 4 candidates have been
employed in Qu et al. (2021) and 30 in Gao and

10633



Callan (2021b)); the reason that such a high num-
ber is necessary in order to achieve a performance
improvement is that we are fine-tuning a model
already trained to saturation. Only a large number
of retrieved candidate negatives provides enough
training signal to overcome overfitting and improve
performance (Figure 6 in the Appendix shows the
training loss to decrease in all cases).

The above results suggest that most dense re-
trieval models would likely benefit from training
using a context, i.e., a large number of retrieved
candidate documents per query, combined with an
appropriate list-wise loss.

6 Conclusion

We examine the importance of ranking context
and the effect of its constituent parts, i.e., a fully
list-wise loss, a large number of negatives, and
retrieved (query-specific) instead of random nega-
tives, and show that they are all important ingredi-
ents for improving performance. We demonstrate
that a lightweight reranking framework designed
to leverage context is sufficient to significantly en-
hance the effectiveness of a wide range of dense
retrieval models, without expensive cross-encoder
distillation, pseudo-labeling or “denoising” nega-
tives. The only computational overhead is a fast,
resource-light fine-tuning process, with little (when
the model is used as a reranker) to no (when used
as a single-stage retriever) extra computational cost
during inference.

7 Limitations

In the present work we have endeavored to demon-
strate that the performance benefits achieved by
our framework are generalizable with respect to
the dense retrieval method used as base, as well
as the document collections to be searched. For
this purpose, we selected as baselines dual encoder
models which are highly representative of the state-
of-the-art IR approaches, including ones that have
undergone highly optimized training processes.
However, it is always possible that some re-
trieval models will not enjoy similar performance
enhancement when trained through CODER, ow-
ing to the large variety of modeling assumptions or
specially required conditions for training different
models. For example, a model trained through a
process already leveraging most of the ranking con-
text elements examined here (list-wise loss, query-
specific/retrieved candidates, a large number of

them) will stand to benefit less. Conversely, models
trained on datasets including multiple positive doc-
uments per query will exhibit better performance.

We further emphasize that the retrieval methods
compatible with our approach make use of distinct
document and query representations. Thus, it is
not possible to use CODER to directly fine-tune
term-interaction (a.k.a. cross-encoder) models like
BERT Reranker, because each document within
CODER is only available as a single embedding
vector. Finally, we note that, although it is the-
oretically possible to initialize the query encoder
from a generic NLP language model, in all our
presented experiments it is initialized from a base
model (query/document encoder) already trained
for retrieval, the one that is also used to precompute
document embeddings.

Acknowledgements

G. Zerveas would like to thank the Onassis Foun-
dation for supporting this research. This work re-
ceived financial support from the State of Upper
Austria and the Federal Ministry of Education, Sci-
ence, and Research, through grant LIT-2021-YOU-
215, and is also supported in part by the NSF (IIS-
1956221). The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies, either expressed or implied, of NSF or the
U.S. Government.

References

Qingyao Ai, Keping Bi, Jiafeng Guo, and W. Bruce
Croft. 2018. Learning a Deep Listwise Context
Model for Ranking Refinement. In The 41st Interna-
tional ACM SIGIR Conference on Research & Devel-
opment in Information Retrieval, SIGIR *18, pages
135-144, New York, NY, USA. Association for Com-
puting Machinery.

Qingyao Ai, Xuanhui Wang, Sebastian Bruch, Na-
dav Golbandi, Michael Bendersky, and Marc Na-
jork. 2019.  Learning Groupwise Multivariate
Scoring Functions Using Deep Neural Networks.
arXiv:1811.04415 [cs]. ArXiv: 1811.04415.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,
and Tong Wang. 2018. MS MARCO: A Human Gen-
erated MAchine Reading COmprehension Dataset.
arXiv:1611.09268 [cs]. ArXiv: 1611.09268.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind

10634


https://doi.org/10.1145/3209978.3209985
https://doi.org/10.1145/3209978.3209985
http://arxiv.org/abs/1811.04415
http://arxiv.org/abs/1811.04415
http://arxiv.org/abs/1611.09268
http://arxiv.org/abs/1611.09268

Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language Models are Few-Shot Learners.
ArXiv:2005.14165 [cs].

Sebastian Bruch, Shuguang Han, Mike Bendersky, and
Marc Najork. 2020. A stochastic treatment of learn-
ing to rank scoring functions. In Proceedings of the
13th ACM International Conference on Web Search
and Data Mining (WSDM 2020), pages 61-69.

Christopher J. C. Burges. 2010. From ranknet to lamb-
darank to lambdamart: An overview.

Clément Calauzenes, Nicolas Usunier, and Patrick Gal-
linari. 2012. On the (non-)existence of convex, cali-
brated surrogate losses for ranking. In Advances in
Neural Information Processing Systems, volume 25.
Curran Associates, Inc.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the
24th international conference on Machine learning,
ICML °07, pages 129-136, New York, NY, USA.
Association for Computing Machinery.

Xiaoyang Chen, Kai Hui, Ben He, Xianpei Han, Le Sun,
and Zheng Ye. 2022. Incorporating Ranking Context
for End-to-End BERT Re-ranking. In Advances in
Information Retrieval, Lecture Notes in Computer
Science, pages 111-127, Cham. Springer Interna-
tional Publishing.

Zhizhong Chen and Carsten Eickhoff. 2021. Poolrank:
Max/min pooling-based ranking loss for listwise
learning & ranking balance. ArXiv, abs/2108.03586.

Nick Craswell, Bhaskar Mitra,
and Daniel Campos. 2021.
trec 2020 deep learning track.
arXiv:2102.07662.

Emine Yilmaz,
Overview of the
arXiv preprint

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Ellen M Voorhees. 2020. Overview of
the TREC 2019 deep learning track. arXiv preprint
arXiv:2003.07820.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In NAACL.

Luyu Gao and Jamie Callan. 2021a. Condenser: a pre-
training architecture for dense retrieval. In EMNLP.

Luyu Gao and Jamie Callan. 2021b. Unsupervised cor-
pus aware language model pre-training for dense pas-
sage retrieval. ArXiv, abs/2108.05540.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. Coil:
Revisit exact lexical match in information retrieval
with contextualized inverted list. In Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies.

Yaru Hao, Haoyu Song, Li Dong, Shaohan Huang,
Zewen Chi, Wenhui Wang, Shuming Ma, and Furu
Wei. 2022. Language Models are General-Purpose
Interfaces. ArXiv:2206.06336 [cs].

Sebastian Hofstitter, Sophia Althammer, Mete
Sertkan, and Allan Hanbury. 2022. Establishing
Strong Baselines for TripClick Health Retrieval.
arXiv:2201.00365 [cs]. ArXiv: 2201.00365.

Sebastian Hofstétter, Sheng-Chieh Lin, Jheng-Hong
Yang, Jimmy J. Lin, and A. Hanbury. 2021. Effi-
ciently Teaching an Effective Dense Retriever with
Balanced Topic Aware Sampling. SIGIR.

T. Joachims. 2002. Optimizing search engines using
clickthrough data. undefined.

Jeff Johnson, Matthijs Douze, and Hervé Jégou.
2017. Billion-scale similarity search with GPUs.
arXiv:1702.08734 [cs]. ArXiv: 1702.08734.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense Passage Retrieval for
Open-Domain Question Answering. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6769—
6781, Online. Association for Computational Lin-
guistics.

Omar Khattab and Matei Zaharia. 2020. ColBERT:
Efficient and Effective Passage Search via Contextu-
alized Late Interaction over BERT. In Proceedings
of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval,
pages 39-48.

Oleg Lesota, Navid Rekabsaz, Daniel Cohen, Klaus An-
tonius Grasserbauer, Carsten Eickhoff, and Markus
Schedl. 2021. A Modern Perspective on Query
Likelihood with Deep Generative Retrieval Models,
page 185-195. Association for Computing Machin-
ery, New York, NY, USA.

Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2021.
Pretrained transformers for text ranking: Bert and
beyond. Synthesis Lectures on Human Language
Technologies, 14(4):1-325.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin.
2020. Distilling Dense Representations for Ranking
using Tightly-Coupled Teachers. arXiv:2010.11386
[cs]. ArXiv: 2010.11386.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.

10635


https://doi.org/10.48550/arXiv.2005.14165
https://proceedings.neurips.cc/paper/2012/file/50f3f8c42b998a48057e9d33f4144b8b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/50f3f8c42b998a48057e9d33f4144b8b-Paper.pdf
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1007/978-3-030-99736-6_8
https://doi.org/10.1007/978-3-030-99736-6_8
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/arXiv.2206.06336
https://doi.org/10.48550/arXiv.2206.06336
http://arxiv.org/abs/2201.00365
http://arxiv.org/abs/2201.00365
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://doi.org/10.1145/3404835.3462891
https://www.semanticscholar.org/paper/Optimizing-search-engines-using-clickthrough-data-Joachims/cfd4259d305a00f13d5f08841230389f61322422
https://www.semanticscholar.org/paper/Optimizing-search-engines-using-clickthrough-data-Joachims/cfd4259d305a00f13d5f08841230389f61322422
http://arxiv.org/abs/1702.08734
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3471158.3472229
https://doi.org/10.1145/3471158.3472229
http://arxiv.org/abs/2010.11386
http://arxiv.org/abs/2010.11386

RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv:1907.11692 [cs]. ArXiv:
1907.11692.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, Dense, and Atten-
tional Representations for Text Retrieval. Transac-
tions of the Association for Computational Linguis-
tics, 9:329-345.

Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola
Tonellotto. 2021. Learning passage impacts for in-
verted indexes. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1723—
1727.

Bhaskar Mitra and Nick Craswell. 2018. An Introduc-
tion to Neural Information Retrieval t. Foundations
and Trends® in Information Retrieval, 13(1):1-126.

Shahrzad Naseri, Jeffrey Dalton, Andrew Yates, and
James Allan. 2021. Ceqe: Contextualized embed-
dings for query expansion. In European Conference
on Information Retrieval, pages 467-482. Springer.

Rodrigo Nogueira and Kyunghyun Cho. 2020. Pas-
sage Re-ranking with BERT. arXiv:1901.04085 [cs].
ArXiv: 1901.04085.

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and
Jimmy Lin. 2020. Document ranking with a pre-
trained sequence-to-sequence model. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 708-718.

Liang Pang, Jun Xu, Qingyao Ai, Yanyan Lan, Xueqi
Cheng, and Jirong Wen. 2020. SetRank: Learning
a Permutation-Invariant Ranking Model for Infor-
mation Retrieval. In Proceedings of the 43rd Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 20,
pages 499-508, New York, NY, USA. Association
for Computing Machinery.

Rama Kumar Pasumarthi, Sebastian Bruch, Xuanhui
Wang, Cheng Li, Michael Bendersky, Marc Na-
jork, Jan Pfeifer, Nadav Golbandi, Rohan Anil, and
Stephan Wolf. 2019a. TF-Ranking: Scalable Tensor-
Flow Library for Learning-to-Rank. In Proceedings
of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’19,
pages 2970-2978, New York, NY, USA. Association
for Computing Machinery.

Rama Kumar Pasumarthi, Xuanhui Wang, Michael Ben-
dersky, and Marc Najork. 2019b. Self-Attentive Doc-
ument Interaction Networks for Permutation Equiv-
ariant Ranking. arXiv:1910.09676 [cs]. ArXiv:
1910.09676.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua
Wu, and Haifeng Wang. 2021. RocketQA: An
Optimized Training Approach to Dense Passage
Retrieval for Open-Domain Question Answering.
arXiv:2010.08191 [cs]. ArXiv: 2010.08191.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing Transferable Visual Models From Natural Lan-
guage Supervision. ArXiv:2103.00020 [cs].

Navid Rekabsaz, Simone Kopeinik, and Markus Schedl.
2021a. Societal biases in retrieved contents: Mea-
surement framework and adversarial mitigation for
bert rankers. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval.

Navid Rekabsaz, Oleg Lesota, Markus Schedl, Jon
Brassey, and Carsten Eickhoff. 2021b. TripClick:
The Log Files of a Large Health Web Search Engine.
In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 2507-2513. Association for
Computing Machinery, New York, NY, USA.

Navid Rekabsaz and Markus Schedl. 2020. Do neural
ranking models intensify gender bias? In Proceed-
ings of the 43rd International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, pages 2065-2068.

Ruiyang Ren, Shangwen Lv, Yingqi Qu, Jing Liu,
Wayne Xin Zhao, QiaoQiao She, Hua Wu, Haifeng
Wang, and Ji-Rong Wen. 2021a. PAIR: Leveraging
Passage-Centric Similarity Relation for Improving
Dense Passage Retrieval. Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 2173-2183. ArXiv: 2108.06027.

Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao,
QiaoQiao She, Hua Wu, Haifeng Wang, and Ji-Rong
Wen. 2021b. RocketQAv2: A Joint Training Method
for Dense Passage Retrieval and Passage Re-ranking.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2825-2835, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. DistilBERT, a distilled ver-
sion of BERT: smaller, faster, cheaper and lighter.
arXiv:1910.01108 [cs]. ArXiv: 1910.01108.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon,
Christopher Potts, and Matei Zaharia. 2021. Col-
BERTV2: Effective and Efficient Retrieval via
Lightweight Late Interaction. ArXiv:2112.01488
[cs].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 5998—-6008. Curran
Associates, Inc.

10636


http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1162/tacl_a_00369
https://doi.org/10.1561/1500000061
https://doi.org/10.1561/1500000061
http://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1901.04085
https://doi.org/10.1145/3397271.3401104
https://doi.org/10.1145/3397271.3401104
https://doi.org/10.1145/3397271.3401104
https://doi.org/10.1145/3292500.3330677
https://doi.org/10.1145/3292500.3330677
http://arxiv.org/abs/1910.09676
http://arxiv.org/abs/1910.09676
http://arxiv.org/abs/1910.09676
http://arxiv.org/abs/2010.08191
http://arxiv.org/abs/2010.08191
http://arxiv.org/abs/2010.08191
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.48550/arXiv.2103.00020
https://doi.org/10.1145/3404835.3463242
https://doi.org/10.1145/3404835.3463242
https://doi.org/10.18653/v1/2021.findings-acl.191
https://doi.org/10.18653/v1/2021.findings-acl.191
https://doi.org/10.18653/v1/2021.findings-acl.191
https://doi.org/10.18653/v1/2021.emnlp-main.224
https://doi.org/10.18653/v1/2021.emnlp-main.224
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://doi.org/10.48550/arXiv.2112.01488
https://doi.org/10.48550/arXiv.2112.01488
https://doi.org/10.48550/arXiv.2112.01488

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate Nearest Neighbor
Negative Contrastive Learning for Dense Text Re-
trieval. arXiv:2007.00808 [cs]. ArXiv: 2007.00808.

Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini:
Enabling the Use of Lucene for Information Retrieval
Research. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR °17, pages
1253-1256, New York, NY, USA. Association for
Computing Machinery.

Dianhai Yu Yanjun Ma and Dianhai Yu Yanjun Ma.
2019. PaddlePaddle: An Open-Source Deep Learn-
ing Platform from Industrial Practice. Frontiers of
Data and Domputing, 1(1):105-115.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min
Zhang, and Shaoping Ma. 2021a. Jointly Optimizing
Query Encoder and Product Quantization to Improve
Retrieval Performance, page 2487-2496. Association
for Computing Machinery, New York, NY, USA.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min
Zhang, and Shaoping Ma. 2021b. Optimizing Dense
Retrieval Model Training with Hard Negatives. In
Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1503—1512, Virtual Event
Canada. ACM.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and
Shaoping Ma. 2020a. Learning To Retrieve: How to
Train a Dense Retrieval Model Effectively and Effi-
ciently. arXiv:2010.10469 [cs]. ArXiv: 2010.10469.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang,
and Shaoping Ma. 2020b. RepBERT: Contextu-
alized Text Embeddings for First-Stage Retrieval.
arXiv:2006.15498 [cs]. ArXiv: 2006.15498.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced Language Representation with Informative
Entities. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1441-1451, Florence, Italy. Association for
Computational Linguistics.

Zhi Zheng, Kai Hui, Ben He, Xianpei Han, Le Sun,
and Andrew Yates. 2020. BERT-QE: Contextualized
query expansion for document re-ranking. In Find-

ings of the Association for Computational Linguistics:
EMNLP 2020, pages 4718-4728.

A Appendix

A.1 Motivation for simultaneously scoring a
large number of negative documents

In contrastive learning, models are trained to assign
a higher score for similarity between the query and
a positive document than between the query and all

negative documents: s(q, p;r) > s(q,p; ), V4,7,
where p;-" denotes a positive and p; a negative
document/passage respectively. In Figure 3, vector
representations of documents are depicted as points
(red for positive, blue for negative documents) in a
d-dimensional space that is shared with the query
representation vector. Because functions used to
compute similarity increase with decreasing Eu-
clidean distance, the objective can be fulfilled by
learning to map the query within a smaller distance
from a given positive document p;r compared to
all negative documents*. However, for a space of
dimension d, when fewer than d + 1 negative doc-
uments are included in a loss calculation, there is
an infinite subspace where the query representation
can lie, arbitrarily far from the positive document,
and still satisfy this condition. At least d + 1 nega-
tive documents are required to constrain the space
of objective-favored query mappings to a bounded
convex polytope: given that the positive document
is contained within a simplex formed by d + 1 neg-
ative documents as vertices in that space (interval
in R, triangle in R2, tetrahedron in R3 etc), the loss
function will favor mapping the query onto another
simplex in the same space, within which the dis-
tance from the positive document will be bounded.
Of course, training with fewer than d + 1 nega-
tive documents per query still works: although the
loss landscape as revealed by only a few negative
documents is a rough approximation, and thus the
parameter updates computed by stochastic gradient
descent for each batch will be suboptimal and noisy,
a good minimum of the loss can still be found in
expectation by iterating over the entire training set.
However, as the number of negative documents per
query increases to d + 1, the approximations of the
gradients of the loss and thus parameter updates at
each training step will be more accurate and there-
fore training will be more efficient. Increasing the
number of negatives to an even higher number is
still expected to yield a performance improvement,
but at a reduced rate: this is because (a) there is
no guarantee that with d + 1 negatives per query,
the positive document will be contained within a
simplex of negatives, but with every additional neg-
ative this probability increases, and (b) once the
positive document is contained within a finite sim-
plex, the probability for every additional negative

*Because document vectors are distributed far from the
origin, this will typically be true even when the dot product is
used as a similarity function.

10637


http://arxiv.org/abs/2007.00808
http://arxiv.org/abs/2007.00808
http://arxiv.org/abs/2007.00808
https://doi.org/10.1145/3077136.3080721
https://doi.org/10.1145/3077136.3080721
https://doi.org/10.1145/3077136.3080721
https://doi.org/10.11871/jfdc.issn.2096.742X.2019.01.011
https://doi.org/10.11871/jfdc.issn.2096.742X.2019.01.011
https://doi.org/10.1145/3459637.3482358
https://doi.org/10.1145/3459637.3482358
https://doi.org/10.1145/3459637.3482358
https://doi.org/10.1145/3404835.3462880
https://doi.org/10.1145/3404835.3462880
http://arxiv.org/abs/2010.10469
http://arxiv.org/abs/2010.10469
http://arxiv.org/abs/2010.10469
http://arxiv.org/abs/2006.15498
http://arxiv.org/abs/2006.15498
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139

document to further constraint the bounded sub-
space where the loss can be minimized becomes
increasingly smaller.

Figure 3: Positive (blue) and negative (red) document
vectors in a shared document and query embedding
space of 1 (upper row) and 2 (lower row) dimensions.
The contrastive learning objective simply requires the
query representation to be mapped closer to the posi-
tive than all negative documents; this means that for a
d-dimensional space, the query representation need not
necessarily lie in proximity to the positive document, but
simply within an infinite subspace (left column: grey
part of line in 1D space, grey-outlined part of plane
in 2D space). At least d 4+ 1 negative documents are
required to constrain the space of favorable query map-
pings to a bounded convex polytope. Given that the
positive document is contained within a simplex formed
by d + 1 negative documents as vertices in that space
(interval in R, triangle in R2, tetrahedron in R? etc), the
loss function will favor mapping the query onto another
simplex in the same space (right column: grey interval
in 1D space, grey-outlined triangular area in 2D space).

The above theoretical analysis can explain the
observations made e.g. by Hofstitter et al. (2021),
who obtained significantly better performance
when increasing the batch size from 32 to 256,
or by Qu et al. (2021), who used “cross-batch”
random negatives (pooled from different GPUs) to
effectively increase the number of “in-batch” neg-
atives to a few thousand documents in order to
“reduce the discrepancy between training and in-
ference", and noticed a substantial improvement
of performance as a result. Also, in agreement to
our explanation above, the performance improve-
ment they observed as a function of the number
of negatives quickly saturated when exceeding the
dimensionality of the document embedding space.

Finally, it is evident from the analysis above that
the closer the negative document representations lie
to to the ground truth representation (i.e. the more
relevant the negatives are), the smaller the bounded

convex subspace will be, a fact which supports the
observed importance of challenging negatives in
literature (Xiong et al., 2020; Zhan et al., 2021b;
Qu et al., 2021; Hofstitter et al., 2021).

A.2 Data

In the present work we only examine passage re-
trieval, and use the terms “passage” and “document”
interchangeably. All data used are in English.

A.2.1 MS MARCO and TREC Deep Learning

Following the standard practice in related con-
temporary literature, we use the MS MARCO
dataset (Bajaj et al., 2018), which has been sourced
from open-domain logs of the Bing search engine,
for training and evaluating our models. The MS
MARCO passage collection contains about 8.8 mil-
lion documents and the training set contains about
503k queries labeled with one or (rarely) more rel-
evant documents, on a single level of relevance.

For validation we use a subset of 10k samples
from “MS MARCO dev”, which is a set containing
about 56k labeled queries, and refer to it as “MS
MARCO dev 10k”. As a test set we use a differ-
ent, officially designated subset of “MS MARCO
dev”, originally called “MS MARCO dev.small”,
which contains 6980 queries. However, following
standard practice in literature and leaderboards, we
refer to it as “MS MARCO dev”. We also evaluate
on the TREC Deep Learning track 2019 and 2020
test sets, each containing 43 and 54 queries respec-
tively, labeled to an average “depth” of more than
210 document judgements per query, and using 4
levels of relevance: “Not Relevant” (0), “Related”
(1), “Highly Relevant” (2) and “Perfect” (3). Ac-
cording to the official (strict) interpretation of rele-
vance labels’, a level of 1 should not be considered
relevant and thus be treated just like a level of 0,
while the lenient interpretation considers passages
of level 1 relevant when calculating metrics.

A.2.2 TripClick

We additionally evaluate our framework on a dif-
ferent dataset, for two reasons: first, to assess the
robustness and generality of our framework across
datasets. Second, our approach is premised on
using a list-wise loss function while jointly scor-
ing a large number of documents within the same
query context, and thus differences from pair-wise
approaches are expected to be more pronounced

Shttps://trec.nist.gov/data/deep2019.
html

10638


https://trec.nist.gov/data/deep2019.html
https://trec.nist.gov/data/deep2019.html

Parameter Value
Max. query length 32
Max. doc. length (MS MARCO) 256
Max. doc. length (TripClick) 512
Batch size 32
Optimizer RAdam
Adam epsilon 1.3e-7
Learning rate 1.73e-6
LR warmup steps 9000
Weight decay 9.5e-5
Dropout 0.1
Max. gradient clipping 1.0
dnmdd 768

Table 3: Main configuration parameters of CODER
(without transformation of document representations).

when training on a dataset where several documents
have been judged with respect to their relevance to
a query.

TripClick is a recently introduced health IR
dataset (Rekabsaz et al., 2021b) based on click
logs that refer to about 1.5M MEDLINE articles.
The approx. 700k unique queries in its training set
are split into 3 subsets, HEAD, TORSO and TAIL,
based on their frequency of occurrence: queries
in TAIL are asked only once or a couple of times,
while queries in HEAD have been asked tens or
hundreds of times. As a result, each query in
HEAD, TORSO and TAIL on average ends up
with 41.9, 9.1 and 2.8 pseudo-relevance judge-
ments, using a click-through model (RAW) where
every clicked document is considered relevant. The
dataset also includes alternative relevance judge-
ments using the Document Click-Through Rate
(DCTR), on 4 distinct levels (the latter follow the
same definitions as the TREC Deep Learning eval-
uation sets). For validation and evaluation of our
models we use the officially designated validation
and test set, respectively (3.5k queries each).

A.3 Evaluation

We use mean reciprocal rank (MRR), normalized
discounted cumulative gain (nDCG), and recall
to evaluate the models on TREC DL tracks, MS
MARCO and TripClick, in line with past work
(e.g. (Xiong et al., 2020; Zhan et al., 2020a; Hofstét-
ter et al., 2021; Rekabsaz et al., 2021b)). All train-
ing and evaluation experiments are produced with
the same seed for pseudo-random number genera-
tors. While relevance judgements are well-defined

in MS MARCO and TripClick, for the TREC DL
tracks there exist strict and lenient interpretations
of the relevance scores of judged documents (see
Section A.2). As past work has been inconsistent
in specifying which interpretation is used, we eval-
uate all models on both versions, denoted as {le-
nient}/{strict} in Table 1. We calculate the metrics
using the official TREC evaluation software.’

A.4 Using a transformer as document scoring
function

We have experimented with more complex, para-
metric functions ¢ as scoring modules, including
feedforward neural networks and stacks of trans-
former blocks (see diagram in Figure 4), which ex-
plicitly model inter-document relationships. When
we use a transformer encoder as a scoring module,
we do not use positional encodings over the input
document embeddings, because we require permu-
tation invariance: given fixed positional encodings
of ranking order, it would be trivial for the model
to learn to assign higher scores for documents of
higher rank; at the same time, there is no mean-
ingful sequence order over document embeddings
other than relevance ranking.

Although a transformer encoder of 2 blocks was
able to marginally outperform the simple function
of Equation (2), the small improvement makes it
hard to justify precluding the option of single-stage
dense retrieval, as well as the additional compu-
tational cost. However, in future work, we in-
tend to more thoroughly investigate the use of a
transformer-based scoring function, adding more
transformer blocks, which we have not been able
to implement due to computational constraints -
self-attention incurs a O(NN?) GPU memory depen-
dence on the number of context documents V.

A.5 How context can help even without
parametric modeling of document
relationships

The improvement of our contextual reranking
framework over standard triplet training can be
attributed to the fact that the model now encounters
many more query-specific candidate documents for
the same query during a single step of training,
which offers a more complete and precise view of
the loss landscape and thus leads to a more accu-
rate update of parameters in the same step (also see
discussion in Sec. A.1). However, this constitutes a

6trec.nist.gov/trec_eval/index.html

10639


trec.nist.gov/trec_eval/index.html

document set
transf. “decoder”

Z' = §(q; Qq) e R

ﬁ+ﬁ

PN

S, S

N
T T $; € R: score for doc. i
/ \ !
V2 v, € RY Uy
I T Skip connection + Normalization T

, & Feed Forward
/ z R \ Skip connection + Normalization
Cross-attention
o d T T Skip connection + Normalization T
V41 Z z; €ER z,
Self-attention
transformer block % B KT T j/
4 4 4 4 D | 1
e ||| | - - . —
!
+ Positional Encoding x'; x'; ERY x'y
mEE . W b ]
9 9 q:€R qw encoding
NG r x, HER™  xy
| \ I \ . )
[CLS] what s [SEP]  query g x;: embedding of doc. i

Figure 4: Schematic diagram of CODER employing a transformer “decoder” as a document set scoring module.

“weak” exploitation of ranking context offered by
CODER.

The ranking context is exploited more effectively
when using a list-wise KL divergence loss. We
believe that one reason is that often, among the
retrieved candidates, some documents which have
not been labeled as positive, are in fact relevant
(i.e. false/mislabeled negatives) (Qu et al., 2021).
The KL-divergence function is well-positioned to
deal with this case, compared to a pair-wise loss
(e.g. Max-margin loss) and the Negative Loglikeli-
hood Loss (NLL, a.k.a. InfoNCE) as used e.g. in
(Karpukhin et al., 2020) and (Qu et al., 2021). The
KL-divergence loss, which compares the distribu-
tion of predicted scores against the annotated rele-
vance scores, does not directly penalize assigning a
high score to a document annotated as non-relevant;
instead, it severely penalizes assigning a low score
to a ground-truth relevant document. Therefore,
as long as the ground-truth positive document p
receives a not-too-low normalized relevance score
5, = softmax(p(X))p, e.g. §, > 0.2, which al-
lows it to escape the very steep part of the loss
curve L(5,) = —log(sp) close to 5, = 0, the loss
will still be small. Thus, it will not severely af-
fect the model’s parameters to erroneously force
ranking p higher than the false negatives.

Of course, the more such false negative docu-
ments exist, receiving non-zero weight in the pre-

dicted score distribution, the more difficult it be-
comes for 5, to be high, which leads to a higher
loss. However, the existence of more than one
labeled positives (k > 1) per query alleviates
this problem: the individual normalized scores of
the k positives will be affected less by the exis-
tence of false negatives, and because of the form of
L(z) = —log(x), the overall loss will be smaller
than in the case of k¥ = 1. This is an additional
benefit the KL-divergence loss has over NLL, as
the NLL only takes into account a single positive
document at a time.

A.6 Notes on RepBERT used for reranking
BM25

We surprisingly found RepBERT to be significantly
more effective when used as a reranker with BM25
as the first stage retrieval method, although it has
been developed and so far only considered and
evaluated as a stand-alone dense retrieval method.
This is despite RepBERT being an overall much
stronger retrieval method than BM25, with a much
better recall (0.943 with a cut-off at 1000 passages
on MS MARCO dev, versus 0.853 for BM25). This
observation may fall within the scope of the general
discussion regarding the advantages of combining
exact (lexical) and inexact (latent representation)
matching (Mitra and Craswell, 2018). One can
also hypothesize that BM25 may filter out candi-
dates which would otherwise (spuriously or justi-

10640



Training Loss
10

200 150200 200200 250200

steps
0.1

—1000 candidates —1000 candidates, MM loss
0.01 1000 random 2000 random

—4 candidates + 124 random 4 candidates + 996 random

Figure 5: Evolution of the loss on the training set,
as training of BM25—CODER(RepBERT) progresses.
Different curves correspond to a different type and num-
ber of documents used as negatives during training.
While training loss is decreasing in all cases, only using
numerous retrieved candidates as negatives, combined
with a list-wise KL-divergence loss, results in a signifi-
cant improvement of performance over the base method
(see Figure 2) on the validation and test sets.

fiably) lie close to the ground truth passsage in a
latent semantic space, and would have been thus
preferred by the deep learning ranker, while not
being considered as “hits” in the metrics; this inter-
pretation is supported by the observations of (Qu
et al., 2021), who found that very often actually
relevant passages have not been labeled as such in
MS MARCO.

A.7 Additional Results on TripClick

Table 4 shows the performance of models trained
and evaluated on the TripClick dataset. Table 5
shows zero-shot evaluation results for models
trained on MS MARCO, but evaluated on TripClick
(a dataset of queries and articles in the biomedical
domain) without any additional training.

A.8 Detailed comparison with related work

Recent work on ad-hoc information retrieval
has employed transformer-based architectures
following two main approaches: the first ap-
proach (Nogueira and Cho, 2020; Khattab and
Zaharia, 2020) allows direct interactions between
query and document terms through attention, offer-
ing impressive retrieval performance, albeit at the
expense of computational efficiency; it can practi-
cally be used only as part of a cascade system for
reranking candidate documents retrieved by a first-

376 Training Loss

3.26 M
2.76 —1000

512
256
128

1.76 64

—

1.26 16
' —8

0.76

2.26

0.26

200 50200 100200 150200

steps

200200 250200

Figure 6: Evolution of the loss on the training set,
as training of BM25—CODER(RepBERT) progresses.
Different curves correspond to a different number of
BM25 candidates used as negatives during training.
While training loss is decreasing in all cases, only using
a large number of candidates results in a significant im-
provement of performance over the base method on the
validation and test sets (see Figure 2).

stage method, and still introduces a significant end-
to-end processing delay, in the order of seconds
per query. These powerful but slow “cross-encoder”
models have also been used as teachers for “dual
encoder” (a.k.a “bi-encoder”) methods (Lin et al.,
2020; Qu et al., 2021; Ren et al., 2021a; Hofstitter
et al., 2021). These methods constitute the second
approach, described below.

The dual encoder approach employs an architec-
ture of two transformer encoders (optionally shar-
ing weights, or implemented as the same encoder,
distinguishing between queries and documents by
adding special sequence type encodings) to sepa-
rately encode the query and document sequences,
without interactions between them. For inference,
it relies on the efficient computation of the dot prod-
uct through high-performing Approximate Near-
est Neighbors libraries such as FAISS (Johnson
et al., 2017) to evaluate the similarity between ex-
tracted query and document representations. This
approach, called “dense retrieval”, is highly effec-
tive, fast and single-stage, but still lags behind in
terms of retrieval performance compared to the first
approach.

Our framework addresses the current dilemma of
slow reranking versus fast but less effective single-
stage retrieval: it efficiently fine-tunes the query
encoder of an existing (base) dense retrieval dual
encoder model through reranking a set of precom-
puted document embeddings, offering a substantial

10641



Model DCTR Head RAW Head RAW Torso RAW Tail
MRR nDCG | MRR nDCG Recall | MRR nDCG Recall | MRR nDCG Recall

BM25! 0.276  0.224 | - 0.199 0.128 | - 0.206 0.262 | - 0.267  0.409
Transformer-Kernel! - 0.284 - 0.284  0.167 - 0.272  0.321 - 0.295 0.459
BERT-Dot (SciBERT)? | 0.530 0.243 | - - - - - - - - -
BERT-Cat (SciBERT)? 0.595 0294 | - - - 0459 0360 - 0.377 0.408 -
RepBERT (abbrev: RB) | 0.526  0.255 0.574 0.344 0.199 | 0.338 0.246 0.309 | 0.254 0.268 0.404
BM25 — RepBERT 0.538 0.262 | 0.592 0.356 0.204 | 0.359 0.269 0.340 | 0.278 0.297  0.445
RB — CODER(RB, RB) | 0.637* 0.318* | 0.679* 0.421* 0.235* | 0.433 0.308 0.355 | 0.296 0.315 0.469
CODER(RB, RB) 0.634 0.316 | 0.674 0419 0.234 | 0433 0.308 0.355 | 0.296 0.315 0.468

Table 4: Performance when applying CODER to RepBERT on the TripClick dataset, using multi-level (DCTR) and
binary (RAW) relevance labels (cut-off of 10). The symbol * on best results denotes statistically significant (paired
t-test, p < 0.05) improvement with respect to all baselines. Results with ! are from Rekabsaz et al. (2021b), with 2

from Hofstitter et al. (2022).

Model DCTR Head ‘ RAW Head RAW Torso RAW Tail

MRR nDCG | MRR nDCG Recall | MRR nDCG Recall | MRR nDCG Recall
RepBERT-MSM 0.233 0.107 | 0.278 0.149  0.085 | 0.205 0.130 0.151 | 0.117 0.122  0.195
CODER-MSM(RepBERT-MSM) 0.244 0.113 | 0.294 0.157 0.091 | 0.211 0.139 0.166 | 0.127 0.137 0223
Cocondenser-MSM 0.242 0.114 | 0293 0.156 0.091 | 0.217 0.144 0.178 | 0.153 0.162 0.254
CODER-MSM(Cocondenser-MSM) | 0.251 0.117 | 0.305 0.161 0.093 | 0.216 0.146 0.182 | 0.154 0.164 0.259

Table 5: Zero-shot results: all models are trained on MS MARCO (‘-MSM’ suffix) but evaluated on TripClick.

performance improvement over the base model.
During inference, it can be used either for rapid
reranking in a cascade system, incurring a delay
per query of a few milliseconds, or directly for
single-stage dense retrieval, at the same speed as
the base method, if no non-linear contextual docu-
ment transformation is employed.

The state of the art has advanced through the
exploration of techniques which select better neg-
ative documents so as to improve the training pro-
cess. It has been clearly demonstrated that the
quality of negative documents (essentially, how
challenging/relevant they are) significantly affects
similarity learning and confers performance bene-
fits. Throughout training, Xiong et al. (2020) use
the progressively improving document encoder to
periodically (every few thousand steps) recompute
document representations of all documents in the
collection and re-index the document collection us-
ing FAISS. They also use the query encoder to re-
compute all training queries and retrieve the hardest
(i.e. highest similarity) negatives through FAISS
to construct triplets for the subsequent training pe-
riod. Zhan et al. (2020a) improve on this effec-
tive but very slow and resource-intense process by
eschewing fine-tuning of the document encoder,
and they instead precompute and fix all document
representations; they only fine-tune the query en-
coder, by retrieving at the end of each training

step the hard negatives used for the next training
step. Their motivation is two-fold: on the one hand,
they argue that performing retrieval through the
entire collection at each training step, instead of
reranking candidates, reduces the discrepancy be-
tween inference retrieval and training tasks, naming
their method “Learning to Retrieve” (published as
“STAR”/“ADORE” in (Zhan et al., 2021b)). On
the other hand, they believe that reranking stati-
cally retrieved negatives quickly ceases to be ef-
fective, because the model quickly learns to rank
static negatives lowly. Although we follow their ap-
proach in precomputing document embeddings and
fine-tuning only the query encoder, in the present
work we show that reranking statically retrieved
negatives can indeed be a very effective frame-
work, provided that one establishes a context for
the query: to achieve this, different from Zhan et al.
(2020a), who essentially use dynamically created
triplets and a pair-wise loss, we use a large number
(N = 1000) of static pre-retrieved candidates per
query (instead of a single or a couple) in combi-
nation with a list-wise loss function. Additionally,
when using a parametric scoring function ¢, our
framework allows transforming document embed-
dings on the fly based on the context of the other
candidate documents and the query itself.

The work of Qu et al. (2021) is also motivated by
reducing the discrepancy between training and in-

10642



ference task, and as a solution they increase the
quantity of negatives by using a computational
framework for parallelism, PaddlePaddle (Yan-
jun Ma and Yanjun Ma, 2019), to multiply the num-
ber of in-batch negatives by the number of GPUs
used for training (an approach they call “cross-
batch negatives”). As part of an elaborate, multi-
step process, they fine-tune a base dual encoder
model which has initially been trained through
“cross-batch” negatives, after first retrieving the
most relevant documents per query to use as static
negatives. However, their approach only uses 4
such hard negatives per query, together with a pair-
wise negative loglikelihood loss, and relies on sev-
eral thousands of random cross-batch negatives. It
thus differs from ours in that it does not establish a
context; in fact, Qu et al. (2021) find that without
training a slow but powerful term-interaction model
for “denoising” (excluding the most relevant docu-
ments from the set of negatives), the performance
of the fine-tuned model is substantially worse than
the base model. Instead, our framework signifi-
cantly improves performance when fine-tuning the
base model, while being much faster and less de-
manding in terms of infrastructure. Also, since
the number of negatives per query in our case is
decoupled from the batch size, it can grow with-
out the possibly detrimental effects that increasing
the batch size can have on batch gradient descent
optimization.

TAS-B (Hofstitter et al., 2021) goes into the
orthogonal direction of improving the quality of
negative documents, using a simple but effective
idea: it first clusters queries by semantic similar-
ity and then packs queries from the same cluster
into the same batch, such that their corresponding
ground-truth relevant documents, which are used
as in-batch negatives, are no longer random, as doc-
uments highly relevant to a query are very likely to
also be relevant to the semantically related queries
in the same batch. Despite starting from a different
motivation, TAS-B can be seen as following an indi-
rect, “noisier” version of our approach: effectively,
the scores of several somewhat related in-batch neg-
ative documents enter the calculation of the loss
for a given query. One difference lies in the type of
loss function used: pair-wise in the case of TAS-B,
list-wise in our case. This becomes especially im-
portant in the case of more than one ground-truth
relevant documents (rare in MS MARCO), and/or
several levels of relevance judgements. A second,

more important difference is that our negatives are
the top-N — k documents retrieved by the base re-
trieval method (where k is the number of positives),
and thus for competitive base retrieval models they
will almost certainly be of higher relevance than
even the related in-batch negatives of TAS-B; at
the same time, they are the documents which the
model itself considers as the most similar to the
query, and thus by definition the most challenging
and suitable negatives to be juxtaposed with the
ground-truth relevant document.

With respect to simultaneously scoring a set
of candidate documents, our approach is reminis-
cent of list-wise ranking models which employ
self-attention (Pang et al., 2020; Pasumarthi et al.,
2019b). However, there are several key differences:

* Type of features: to evaluate semantic sim-
ilarity between query and documents, these
methods rely on BM25/TF-IDF interaction
between query and document terms. These
sparse query-document features, alongside
PageRank and features such as freshness and
click-through rates, are fed as input vectors
to stack of customized self-attention blocks
(SetRank, (Pang et al., 2020)) or to a single
self-attention layer over document representa-
tion followed by concatenation with a query
representation and scoring layers (Pasumarthi
et al., 2019b).

* Architecture: our framework supports but
does not necessarily rely on self-attention or
other non-linear transformation of document
representations. In the variant where we do
make use of self-attention, we do not use po-
sitional encoding, in order to enforce permu-
tation invariance. Not only do we represent
queries very differently (through a separate
query transformer encoder), but training the
query encoder is the main objective of our
method. Also, query representations can en-
ter as part of a cross-attention module, which
allows document representations to interact
with query term representations. Thus, our
architecture is akin to a complete encoder-
decoder transformer (Vaswani et al., 2017):
the encoder extracts query ferm representa-
tions, while a “decoder” component (without
attention masking or positional encoding) con-
currently transforms and scores a set of doc-
ument embeddings (see Figure 4 in the Ap-
pendix).

10643



* Annotation and learning objective: SetRank
uses a custom “attention rank loss func-
tion” over provided target rankings, since the
datasets used for training (Istella LETOR’,
Microsoft LETOR?®, Yahoo! LETOR?) in-
clude 46-500 judged documents per query, on
5 levels of relevance.

* They are only used for reranking, with the
pool of candidate documents given in the
dataset. Our framework allows both reranking
retrieved candidates of a first-stage retrieval
method, as well as single-stage dense retrieval.
During training, one can use dynamic retrieval
of negatives through ANN search, following
(Zhan et al., 2021b), although we defer inves-
tigating this for future work.

In summary, we can say that existing works mod-
eling inter-document relationships and employing
list-wise ranking loss functions are specific to the
data modalities of “deeply annotated” datasets com-
monly used for list-wise ranking. As baselines
they use models such as LambdaMART (Burges,
2010), RankSVM (Joachims, 2002) and GSF (Ai
et al., 2019), and do not consider application of the
proposed approaches to sparsely annotated, large
scale deep learning datasets such as MS MARCO,
nor do they compare or refer to any contempo-
rary transformer-based dense retrieval or reranking
models which currently represent the SOTA in ad
hoc text retrieval. Likewise, the latter SOTA work
does not consider list-wise ranking approaches,
or refer and compare to the former line of work.
Our present work aspires to bridge the gap be-
tween these two relatively isolated research com-
munities by bringing list-wise, context-based rank-
ing methodology to large, pre-trained transformer-
based models, used in dense retrieval and trained
through sparsely annotated, large scale datasets
such as MS MARCO.

A.9 Potential Risks

The neural IR models in these studies, whether
in their “base” form or extended by CODER, in-
herently contain societal biases and stereotypes.
As discussed in previous studies (Rekabsaz et al.,
2021a; Rekabsaz and Schedl, 2020), these biases
originate from already existing biases in the under-
lying transformer-based language models, as well
"http://blog.istella.it/istella-learning-to-rank-dataset

8http://research.microsoft.com/en-us/projects/mslr
*http://learningtorankchallenge.yahoo.com

as the fine-tuning process on the IR collections.
Therefore, using these models in practice may lead
to unfair treatment of various social groups (e.g. re-
flected in the representation or order of appearance
in ranked lists of retrieval results), and we strongly
advocate a conscious and responsible utilization of
the models.

However, we note that CODER can potentially
help alleviate this problem, as it offers a suitable
framework for incorporating algorithmic bias mit-
igation methods into deep IR models. We have
explored and verified this potential in follow-up
work.

A.10 Artifacts

All artifacts used for this work (datasets, models,
software) are publicly available and the terms of
use are available on their respective sources. They
have been used within their intended scope of use
(research). Artifacts we created based on those may
be restricted by terms and conditions specified by
the original artifacts (derivatives of data accessed
for research purposes should not be used outside of
research contexts).

10644



