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Abstract

It has been shown that NLI models are usu-
ally biased with respect to the word-overlap
between premise and hypothesis; they take
this feature as a primary cue for predicting
the entailment label. In this paper, we fo-
cus on an overlooked aspect of the overlap
bias in NLI models: the reverse word-overlap
bias. Our experimental results demonstrate
that current NLI models are highly biased to-
wards the non-entailment label on instances
with low overlap, and the existing debiasing
methods, which are reportedly successful on
existing challenge datasets, are generally inef-
fective in addressing this category of bias. We
investigate the reasons for the emergence of
the overlap bias and the role of minority ex-
amples in its mitigation. For the former, we
find that the word-overlap bias does not stem
from pre-training, and for the latter, we ob-
serve that in contrast to the accepted assump-
tion, eliminating minority examples does not
affect the generalizability of debiasing meth-
ods with respect to the overlap bias. All the
code and relevant data are available at: https:
//github.com/sara-rajaee/reverse_bias

1 Introduction

Natural Language Inference (NLI) is one of the
most commonly used NLP tasks, particularly in
the scope of evaluating models for their language
understanding capabilities. Since their emergence,
pre-trained language models (PLMs) have been
highly successful on standard NLI datasets, such
as the Multi-Genre Natural Language Inference
(Williams et al., 2018, MultiNLI). However, recent
analytical studies have revealed that their success is
partly due to their reliance on spurious correlations
between superficial features of the input texts and
gold labels in these datasets (Poliak et al., 2018;
Bhargava et al., 2021). As a result, performance
usually drops on out-of-distribution datasets where
such correlations do not hold. Several proposals
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Figure 1: NLI model’s confidence on a randomly sam-
pled subset of instances from the SNLI dataset across
four different degrees of word overlap between premise
and hypothesis. BERT is biased towards the entail-
ment label on instances with full overlap (denoted by
the huge confidence gap with the non-entailment label).
On the contrary, a reverse bias is seen for low and non-
overlapping instances, with a significant confidence lead
on the non-entailment label.

have been put forth to enhance the robustness of
models to the known and unknown biases and im-
prove performance on the so-called challenging
datasets (Stacey et al., 2020; Utama et al., 2020a;
Asael et al., 2022).

One of the well-known dataset biases in NLI
models is the spurious correlation of the entail-
ment label and high word-overlap between premise
and hypothesis. A number of challenging sets are
designed to showcase the tendency of PLMs to
predict entailment for most such cases. HANS
(McCoy et al., 2019) is arguably the most widely
used dataset in this group. Constructed based on
human-made linguistic patterns, the dataset focuses
on high-overlapping samples, the non-entailment
subset of which is deemed as challenging for NLI
models. Most current debiasing methods have con-
sidered the word-overlap bias as one of their main
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targets and have shown substantial improvements
on HANS (Mendelson and Belinkov, 2021; Min
et al., 2020).

In this paper, we revisit the word-overlap bias
in NLI and the effectiveness of existing debiasing
techniques. Despite the popularity of this type of
bias, we find that some of its aspects are generally
ignored in the research community. If we consider
word-overlap as a feature with values ranging from
no to full overlap, and NLI task with two labels of
entailment and non-entailment, we show that there
are other kinds of spurious correlation than the
popular high word-overlap and entailment. Specifi-
cally, as it is shown in Figure 1, we see a clear bias
towards non-entailment for the low and no word-
overlap values (denoted by the high performance
on the non-entailment label, which comes at the
price of reduced performance on the entailment
class). We will refer to this type of bias as reverse
word-overlap throughout the paper.

Through a set of experiments, we demonstrate
that the overlooked reverse word-overlap bias exists
in popular NLI datasets, such as MNLI and SNLI,
as well as in the predictions of PLMs. Moreover,
our results suggest that while existing debiasing
methods can mitigate the overlap bias in NLI mod-
els to some extent, they are ineffective in resolving
the reverse bias.

Moreover, we analyze how NLI models em-
ploy minority instances to enhance their generaliza-
tion. Focusing on the forgettable debiasing method
(Yaghoobzadeh et al., 2021), we realize that elimi-
nating HANS-like examples and the reverse ones
do not hurt the generalization noticeably.

In search of the origin of the bias, we employ
prompt-based techniques to check whether the bias
stems from pre-training. We also verify the robust-
ness of PLMs in a few-shot learning experiment
with controlled and balanced training sets. Our
results suggest that PLMs do not exhibit any bias
towards a specific label. Nevertheless, introducing
a few samples triggers the bias toward the entail-
ment label. Furthermore, balancing the training
examples with respect to their word-overlap pre-
vents the emergence of bias to some extent.

Our contributions can be summarized as follows:

* We expand our understanding of the word-
overlap bias in NLI by revealing an unex-
plored spurious correlation between low word-
overlap and non-entailment.

* We analyze how debiasing methods work for

the whole spectrum of word-overlap bias, find-
ing that they generally fail at addressing bias
for the low and non-overlapping cases.

* To explore the origin of word-overlap bias in
PLMs, we design several new experiments
showing that, even when exposed to a few
training examples, PLMs get biased towards
predicting entailment.

2 Natural Language Inference

In NLI, a model is provided with two input sen-
tences, namely premise and hypothesis. The task
for the model is to predict whether the hypothe-
sis is true (entailment), false (contradiction), or
undetermined (neutral) given the premise.

2.1 Bias in NLI Models

Analyzing NLI models have demonstrated that they
are sensitive to the shortcuts that appear in the
dataset. Several types of bias have been investi-
gated in the literature, including hypothesis-only
prediction, spurious correlations between certain
words and labels (e.g., negation words and the non-
entailment label), sensitivity to the length of hy-
pothesis, and lexical overlap between the premise
and hypothesis (Gururangan et al., 2018; Poliak
et al., 2018; McCoy et al., 2019; Wu et al., 2022).
Relying on these spurious features hampers the lan-
guage understanding ability of NLI models, leading
to poor performance on out-of-distribution datasets
where such superficial correlations do not hold (He
et al., 2019; McCoy et al., 2019).

Word-Overlap Bias. Among the detected
dataset biases, word-overlap is a quite well-studied
shortcut in the NLI task (Zhou and Bansal, 2020;
Mendelson and Belinkov, 2021). We define
word-overlap (wo) as the ratio of words in the
hypothesis (k) that are shared with the premise (p),
ie., “i%p‘. Table 1 shows examples of different
degrees of word-overlap.

2.2 Debiasing Methods

Creating high-quality datasets without any spuri-
ous features between instances and gold labels is
an arduous and expensive process (Gardner et al.,
2021a), making it inevitable for a dataset not to
have biases to some extent. Therefore, to have a ro-
bust model, it is essential to take extra steps for de-
biasing against dataset artifacts. The past few years
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Overlap Sample

Label

P: A little kid in blue is sledding down a snowy hill.

H: A little kid in blue sledding.

Entailment

Full (1.0)
P: The young lady is giving the old man a hug. Non-Entailment
H: The young man is giving the old man a hug.
P: A woman in a blue shirt and green hat looks up at the camera. .
12
= =0.92 . . Entail
13 = 0-923 H: A woman wearing a blue shirt and green hat looks at the camera ntaiment
P: Two men in wheelchairs are reaching in the air for a basketball.
11 g :
= =0.91 . . .. . -Entail
1 0-917 H: Two women in wheelchairs are reaching in the air for a basketball. Non-Entailment
P: Several young people sit at a table playing poker. Entailment
L _ 0071 H: Youthful Human beings are gathered around a flat surface to play a card game.
11 = 0.
P: A blond woman in a white dress sits in a flowering tree while holding a white Non-Entailment
1w H: The woman beats two eggs to make breakfast for her husband.
P: A couple sits in the grass. Entailment
None (0.0) H: People are outside.

P: An older women tending to a garden.
H: The lady is cooking dinner.

Non-Entailment

Table 1: NLI examples with different degrees of word-overlap (between premise and hypothesis), where the overlap
is the ratio of hypothesis words that are shared with the premise. The highlighted words are the common (in green)
or different (in purple) words (the samples are picked to reflect extreme cases across the word-overlap spectrum).
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Figure 2: The distribution of instances across word-overlap bins (SNLI dataset).

have seen several debiasing methods (Karimi Ma-
habadi et al., 2020; Utama et al., 2020a,b; Belinkov
et al., 2019). For our experiments, we opted for
three different debiasing approaches. We evaluate
the effectiveness of these techniques in mitigating
the overlap bias and its reverse.

Long-tuning. Tu et al. (2020) have shown that
fine-tuning NLI models for more epochs can en-
hance the generalizability of LMs over challenging
datasets. Following their suggestion, we fine-tuned
the models for 20 epochs on the MNLI dataset.

Forgettable Examples. Yaghoobzadeh et al.
(2021) find minority examples without prior knowl-
edge of the dataset artifacts. In the proposed
method, the minority examples are considered sam-
ples that have never been learned or learned once

and then forgotten by the model. Then, the already
trained NLI model is fine-tuned on this subset for
a few more epochs. Following the authors’ sugges-
tion, to find the forgettable examples, we utilized a
simple Siamese Bag of Words (BoW) model where
the sentence representations of the premise and
hypothesis are the average over their word embed-
dings.

Product of Experts (PoE). In this method, a
weak model is supposed to learn superficial fea-
tures in the input. The weak learner’s output is then
used to normalize the main model’s predictions
on over-confident examples. Following previous
studies (Karimi Mahabadi et al., 2020; Sanh et al.,
2021), we employed the following combination
strategy for taking into account both weak learner
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MNLI-dev HANS HANS+ HANS— WANLI
BERT

Baseline 84.2 +0.3 63.9 £1.7 98.5 £1.2 29.3 +4.6 56.9 £0.6
Long-tuning 83.4 +0.8 65.8 £2.3 99.0 +£0.2 32.6 +4.4 58.0 £0.6
Fow 82.7 +0.3 73.8 £0.5 91.8 £0.4 559 +1.3 59.0 +0.3
PoE 80.0 +£0.8 66.9 +2.2 71.6 £3.7 62.2 £2.7 71.6 £0.7

RoBERTa
Baseline 87.2 +0.2 73.3 £3.4 98.5 £1.0 48.2 +7.8 59.7 £1.6
Long-tuning 86.9 £0.3 73.0 £1.7 97.8 +£1.2 48.2 +4.2 60.3 +0.1
Frow 85.6 £0.3 78.9 +0.6 88.1 +2.4 69.7 £2.3 62.0 £1.4
PoE 84.6 +0.1 77.0 £1.5 79.3 £6.2 71.4 £3.7 73.4 +0.1

Table 2: The average accuracy of the baseline models and debiasing methods on the MNLI development (matched)
set as the in-distribution and WANLI and HANS as the out-of-distribution datasets (HANS-+ and HANS—
are entailment and non-entailment subsets, respectively).

and main model predictions:

y = softmaz(log py + log pm) (D

where p,, and p,, are the outputs of the weak
learner and the main model, respectively. The ro-
bust model is trained using a cross-entropy loss
function based on y. We used TinyBERT (Jiao
et al., 2020) as our weak learner.

2.3 Experimental Setup

Datasets. In our experiments, we opted for the
Multi-Genre Natural Language Inference dataset
(Williams et al., 2018, MNLI) for training the NLI
models. The dataset contains 433k training exam-
ples. Since the gold labels for the test set are not
publicly available, we follow previous work and
report results on the development-matched (MNLI-
dev in the tables). Also, following the convention
in previous studies, we merge neutral and contra-
diction examples into the non-entailment group. As
challenging datasets, we considered HANS (Mc-
Coy et al., 2019) and WANLI (Liu et al., 2022). In
the former dataset, each instance is curated in a way
that all words of the hypothesis are also observed in
the premise, irrespective of the word order. Previ-
ous work has shown that biased NLI models tend to
perform poorly on HANS, particularly for the non-
entailment class (Yaghoobzadeh et al., 2021). The
latter challenging set has employed GPT-3 (Brown
et al., 2020) to generate high-quality instances fol-
lowed by filtering done by human crowd-workers.
Quality tests on WANLI indicate that the dataset
contains fewer artifacts compared to MNLI.

Models. As for PLMs, we opted for the base ver-
sion of BERT and RoBERTa (Devlin et al., 2019;
Liu et al., 2020) and fine-tuned them for three
epochs as our baselines. We trained the models
with a learning rate of 2e-5, employing the Adam
optimizer for three different random seeds. The
batch size was set to 32 with a max length of 128.
All the reported results are based on three random
seeds.

2.4 Results

Table 2 shows the results for the baseline mod-
els (BERT and RoBERTa) and the three debias-
ing techniques on different datasets. The bias in
the baseline model is highlighted by the perfor-
mance contrast across the entailment (HANS+)
and non-entailment (HANS—) subsets. As can be
seen, the three debiasing methods are generally ef-
fective in softening the biased behavior, reflected
by the improved performance on HANS— (and, in
turn, HANS), and also WANLI.

3 Reverse Word-Overlap

Considering the word-overlap bias as a spectrum,
the existing studies have mainly focused on a small
subset of the spectrum, i.e., the case with full word-
overlap and its spurious correlation with the en-
tailment label. In this section, we evaluate the
performance of NLI models on other areas of the
spectrum and with respect to both labels (entail-
ment and non-entailment) to broaden our insights
on the robustness of these models considering the
word-overlap feature.
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BERT RoBERTa
Overlap
Entailment Non-Entailment Entailment Non-Entailment

Full 99.7 +0.1 133 +1.4 99.7 +0.1 17.6 +0.9
[0.8,1.0) 92.9 +0.0 83.0 £1.5 95.9 +0.6 92.7 £2.4
[0.6, 0.8) 85.2 +0.4 86.2 +1.6 91.5 £1.4 84.5 +2.8
[0.4, 0.6) 74.2 +0.1 91.9 +1.1 85.8 +2.4 90.2 +2.4
[0.2,0.4) 64.5 +0.6 95.1 +0.6 78.5 £2.8 93.8 £1.6
(0.0,0.2) 55.5 +1.4 96.7 +0.5 68.6 +3.3 96.0 +£1.2
None 61.6 +£1.3 95.2 £0.2 77.2 £3.4 93.6 £1.5

Table 3: The accuracy of the two NLI models across different overlap bins and on both subsets. The lowest numbers

in each column are underlined.

3.1 Probing Dataset

As for this probing study, we experimented with the
SNLI dataset (Bowman et al., 2015), merging the
training, development, and test sets to build a uni-
fied evaluation set. The set was split into seven bins
based on the degree of overlap. The statistics are
reported in Figure 2. As an example, the [0.6, 0.8)
bin contains samples that have a word overlap (be-
tween premise and hypothesis) of greater than (and
equal to) 0.6 and less than 0.8.

3.2 Results

Unless specified otherwise, the experimental setup
in this experiment is the same as the one reported
in Section 2.3. Table 3 reports the results across
different word overlap bins for both BERT and
RoBERTza and for both labels. As expected, high
contrast is observed on the full overlap subset: near-
perfect NLI performance on the entailment, while
poor performance on non-entailment, suggesting a
strong bias towards the entailment label. This is the
conventional type of NLI bias that has been usually
discussed in previous studies. The HANS challeng-
ing dataset is constructed based on the same type of
bias. However, surprisingly, the results show that
this biased behavior only exists for samples with
full overlap. In fact, no notable bias is observed
even for the high overlap samples in the [0.8, 1)
bin. This observation further narrows down the
scope of HANS as a challenging dataset and raises
questions on the robustness of models developed
based on the dataset.

Reverse bias. Interestingly, the results in Table
3 shed light on another inherent spurious correla-
tion that exists between NLI performance and the
degree of word-overlap. Particularly towards the
non-overlap extreme, the performance drops on en-

tailment and increases on non-entailment samples.
In the (0.0, 0.2) bin, we see the largest gap: 55.5
entailment vs 96.7 non-entailment for the BERT
model. We refer to the biased behavior of NLI mod-
els on the low word-overlapping samples towards
the non-entailment label as the Reverse bias.

It is also worth mentioning that based on the pro-
posed results, reverse bias covers a broader range
of bins in comparison with the word-overlap bias.

3.3 Effectiveness of Debiasing Methods

Figure 3 shows the performance of the three de-
biasing methods (described in Section 2.2) across
the seven bins in our word-overlap analysis. As
can be observed, debiasing methods improve over
the baseline on the full-overlap (“Full” in Figure 3)
and non-entailment subset, with PoE proving the
most effective. The improvement is expected since
the results on the challenging dataset, HANS, sug-
gest the same. This, however, comes at the price
of reduced performance on the entailment subset,
specifically in the BERT model.

As we move toward the non-overlap end of the
spectrum (“None” in Figure 3), the performance
gap between the entailment and non-entailment la-
bels grows, mainly due to the drop in entailment
performance. Interestingly, the experimental re-
sults reveal that debiasing methods are clearly inef-
fective in addressing the reverse bias and perform
similarly to the baseline models.

4 Analysis

4.1 Role of Minority Examples

In the context of word-overlap bias, the non-
entailment instances that have full overlap (be-
tween premise and hypothesis) are usually referred
to as minority examples. Tu et al. (2020) show that
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Figure 3: The performance of the baseline and the three debiasing methods across the seven word-overlap bins for
both labels and for BERT and RoBERTa. Across the spectrum, the debiasing techniques seem to be effective only
on samples with high (particularly full) word-overlap on the non-entailment subset and are either ineffective (or
even harmful) towards the other end of the overlapping spectrum and on the entailment subset.

minority examples of the training set play a cru-
cial role in the generalizability of language models,
and eliminating them can significantly hurt per-
formance on challenging datasets, such as HANS.
Yaghoobzadeh et al. (2021) relate the forgettables
with the minority examples by observing the differ-
ence in word-overlap distribution in forgettables.

We carry out a set of experiments on the forget-
table approach, where a subset of the training data
is chosen for further fine-tuning of models (66k in
our NLI experiments for the Fpow method). We
extend the forgettable analysis to the low word-
overlap or reverse minority examples. We also
verify the role played by minority examples in the
performance of debiasing methods.

As the first step, we compare the distribution
of instances with respect to their overlap in the
original training set of MNLI and its forgettable
subset. The results are shown in Figure 4. As can
be seen, the forgettable subset tends to have better
coverage over the minority subset than the original

MNLI training set. See the right side of Figure 4(a)
and the left side of Figure 4(b).

One can hypothesize that better coverage of mi-
nority examples is the reason behind the effec-
tiveness of the forgettable approach. To verify
this hypothesis, we eliminate several subsets from
Fow and fine-tune the NLI models with the re-
maining samples. We considered the following
four settings:

* Full — NEnt: Full overlap between premise
and hypothesis with the non-entailment label.

* None — Ent: No overlap and entailment la-
bel.

* [0.8, 1.0] — NEnt: More then 80% overlap
and non-entailment label.

* [0.0, 0.2] — Ent: Less than 20% overlap and
entailment label.

The results are reported in Table 4. Interestingly,
we observe that removing HANS-like examples
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Figure 4: Normalized distribution of instances with respect to their word-overlap in the original training set of

MNLI and the subset identified by Fgow -

(Full—NEnt), which were hypothesized to play the
main role in improving performance on the chal-
lenging datasets, does not affect the performance of
Fpow notably. The observation is consistent even
for larger subsets of high-overlapping instances
([0.8, 1]—NEnt). Discarding the reverse group
(low-overlapping entailment samples) yields a sim-
ilar pattern. So, it can be inferred that such samples
do not play the primary role in the debiasing meth-
ods’ effectiveness.

This opens up questions on how NLI models
extrapolate to patterns unseen during training and
how debiasing methods enhance their generaliza-
tion over out-of-distribution data. This is particu-
larly interesting in light of observations made by
(Tu et al., 2020) that standard training does not
enable such extrapolation. We leave further investi-
gations in this area to future work.

4.2 The Origin of Word-Overlap Bias

We conducted another experiment to see if the vul-
nerability of NLI models to the word-overlap fea-
ture and the reverse bias comes from pre-training
or from fine-tuning on the task-specific data. To
this end, we followed Utama et al. (2021) in evalu-
ating pre-trained models under zero- and few-shot
settings. To rule out the impact of fine-tuning and
verify if the pre-trained model exhibits similar bi-
ases with respect to word-overlap, we evaluated
BERT in a zero-shot setting by reformulating the
NLI task as a masked language modeling objective.
Following previous studies (Schick and Schiitze,
2021; Utama et al., 2021), we transformed the NLI
examples using the below template:

Premise ? [MASK], Hypothesis.

where the [MASK] token denotes the gold label. We
used a simple verbalizer with yes, maybe, and no as

mappings to, respectively, the entailment, neutral,
and contradiction labels.

The first row of Table 5 shows the results for the
zero-shot setting. The similar performance across
HANS— and HANS+ shows that the pre-trained
BERT model does not exhibit much bias towards
a specific label. Therefore, the bias stems from
the fine-tuning on the task-specific instances. This
is reflected even with as few as 16 samples in the
few-shot scenario (where we have fine-tuned the
prompt-based model). As the number of training
instances increases, the gap between the entailment
and non-entailment samples grows.

Balanced data. We also examined the role of
class imbalance in the training data on the emer-
gence of word-overlap bias. For this experiment,
we defined four categories based on the overlap
{Full, [0.5, 1), (0.0, 0.5), and None} and uniformly
sampled K instances per label. The bottom block
of Table 5 presents the results. It can be inferred
that having a balanced training set can reduce the
bias to some extent. Finally, the high variance
on the HANS subsets suggests that the quality of
training examples and word-overlap percentage be-
tween the premise and hypothesis can have a sig-
nificant impact on the bias in NLI systems.

5 Related Work

Dataset biases in NLP. Different categories of
bias have been discovered and discussed in NLP
datasets. Earlier work has discovered that negative
words are correlated with contradiction label in the
SNLI dataset (Naik et al., 2018; Gururangan et al.,
2018). Hypothesis-only (Gururangan et al., 2018)
and word-overlap between hypothesis and premise
(McCoy et al., 2019) are other types of biases dis-
cussed in the literature of SNLI and MNLI datasets.
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MNLI-dev HANS HANS+ HANS— WANLI Eliminated
BERT

Baseline 84.2 +0.3 63.9 1.7 98.5 £1.2 29.3 +4.6 56.9 +0.6

Frow 82.7 +0.3 73.8 £0.5 91.8 £0.4 55.9 +1.3 59.0 +0.3
Full — NEnt 82.8 +0.4 71.7 £0.9 93.2 +0.4 50.3 +2.0 59.4 +0.5 782
[0.8, 1.0] — NEnt 83.2 +0.2 72.3 £0.8 93.5+1.3 51.1 +2.9 58.8 +0.5 6,350
[0.0,0.2] — Ent 82.9 +0.4 73.7 £0.7 91.9 +0.8 55.4 +2.1 59.5 +0.7 1,801
None — Ent 82.8 +0.5 73.8 £0.8 92.1 +£1.5 55.5 +3.1 59.3 +0.6 482

RoBERTa

Baseline 87.2 +0.2 73.3 £3.4 98.5 +1.0 48.2 +7.8 59.7 +1.6

Frow 85.6 +0.3 78.9 +0.6 88.1 +2.4 69.7 +2.3 62.0 £1.4
Full — NEnt 86.4 +0.2 79.1 +£1.3 92.1 +1.6 66.1 +4.0 62.2 +0.9 782
[0.8, 1.0] — NEnt 86.6 +£0.2 78.4 +£1.0 95.9 +0.8 60.8 +2.8 61.8 +0.7 6,350
[0.0,0.2] — Ent 86.1 £0.2 79.3 +£1.3 89.8 £1.2 68.7 £2.1 62.3 £0.9 1,801
None — Ent 86.1 £0.2 79.1 £1.2 88.6 +2.1 69.5 £2.9 62.1 +0.7 482

Table 4: The performance of Fpgow after eliminating four different subsets. Eliminated denotes the number of

eliminated examples in each setting. All the subsets tend to be in the same performance ballpark with respect to the
generalizability of the model on the out-of-distribution datasets (WANLI and HANS).

In particular, word overlap has also been investi-
gated in the context of duplicate question detection
on the QQP dataset (Zhang et al., 2019). For both
NLI and QQP, it has been shown that considerable
spurious correlations exist between high word over-
lap and the entailment/duplicate label. In this word,
we focused on the word overlap bias in the NLI
dataset and introduced an overlooked aspect of this
bias: the correlation between low word overlap and
non-entailment class.

Challenging sets. In the past few years, sev-
eral challenging datasets have been introduced to
study the limitations of NLP models and, in par-
ticular, pre-trained language models in learning
robust features and ignoring dataset biases. Chal-
lenging datasets for NLI include HANS (McCoy
et al., 2019), ANLI (Williams et al., 2022), MNLI-
hard (Gururangan et al., 2018) and Stress-tests
(Naik et al., 2018). Similar datasets for other
tasks include PAWS (Zhang et al., 2019; Yang
et al., 2019), for duplicate question detection, and
FEVER-Symmetric (Schuster et al., 2019), for
stance detection.

Spurious correlation. Gardner et al. (2021b) ar-
gue that for complex language understanding tasks,
any simple feature correlation should be considered
spurious, e.g., “not” and the contradiction label
in NLI. Spurious correlations can also be defined
from the viewpoint of generalizability Chang et al.
(2021); Yaghoobzadeh et al. (2021). According to

this definition, a feature is spurious if it works well
only for specific examples. The reverse word over-
lap feature described in this paper fits well within
both definitions. Schwartz and Stanovsky (2022a)
review several definitions for spurious correlations.

Debiasing methods. Many studies try to remove
the spurious correlations or dataset biases either
from the training dataset or the model. Most debias-
ing approaches filter or down weight those training
examples that are either easy or contain spurious
correlations (He et al., 2019; Karimi Mahabadi
et al., 2020; Utama et al., 2020a; Sanh et al., 2021).
Others augment the training set with examples that
violate the spurious correlations. A mix of both
these approaches has also been investigated by Wu
et al. (2022). An alternative approach is to extend
the fine-tuning either on all (Tu et al., 2020) or parts
of training data (Yaghoobzadeh et al., 2021).

Analysis of debiasing. Given the increasing in-
terest in debiasing methods, there have been con-
cerns about their widespread use. Schwartz and
Stanovsky (2022b) argue that excessive balancing
prevents the models from learning anything (in par-
ticular, important world and commonsense knowl-
edge), making it neither practical nor desired. They
suggest abstaining and interacting with the user
when the contextual information is not sufficient
and also focus on zero- and few-shot learning ap-
proaches instead of full fine-tuning. In this paper,
we showed that balancing datasets should only be
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Baseline

MNLI-dev HANS HANS+ HANS-— WANLI
Zero-shot 42.0 55.3 57.5 53.1 58.0
K= 16 456 £1.2 53.6 +1.3 73.2 £16.5 34.4 +13.9 54.7 +2.3
K= 32 46.9 +0.6 50.84+0.8 98.3+1.2 33428 50.1 £2.2
K= 64 49.6 +0.3 50.3+0.3 994 4+0.5 1.1+1.1 48.4 +4.3
K =128 52.7 +0.9 50.0 £ 0.0 99.9 +0.2 0.1 £0.2 45.1 £04
K = 256 56.4+0.4 50.7+0.8 98.1 £2.2 334+39 50.3 £ 0.0
K =512 614+1.1 50.0 £0.1 100 £ 0.0 0.1 £0.1 46.2 £2.0
Balanced

K =16 441406 52.5+15 95.6 +2.6 93457 543 +32
K =32 457 +£1.3 51.9+1.1 82.2 +15.7 21.5 +13.4 52.0 +1.3
K =064 452 +1.1 524 4+1.1 69.8 +6.0 351438 54.44+0.3
K =128 48.0 £0.1 51.7 +0.1 95.7 £5.0 7.7 +5.2 52.8 +£3.3
K = 256 51.3+1.3 51.2 +£3.0 84.9 +15.6 17.5 +21.5 51.8+35
K =512 532402 51.3+28 86.8 +£10.8 15.8 +16.5 495 +1.7

Table 5: Zero-shot and few-shot results of prompt-based fine-tuning for BERT. While no significant bias is seen
in the zero-shot setting, only with a few task-specific examples, BERT predictions are biased towards entailment
(HANS+ vs. HANS—). Balancing the training set (bottom block) slightly reduces the extent of bias.

taken as a partial solution for eliminating spurious
correlations. We also showed that in this context,
few-shot learning might not be effective. Mendel-
son and Belinkov (2021) found that debiasing meth-
ods encode more extractable information about the
bias in their inner representations. This observation
is explained in a concurrent work to ours in terms
of the necessity and sufficiency of the biases (Joshi
et al., 2022). In this paper and for the word-overlap
bias, we showed that our selected debiasing tech-
niques are not robust against if we consider the
whole spectrum.

6 Conclusions

In this work, we uncovered an unexplored aspect
of the well-known word-overlap bias in the NLI
models. We showed a spurious correlation between
the low overlap instances and the non-entailment
label, namely the reverse word-overlap bias. We
demonstrated that existing debiasing methods are
not effective in mitigating the reverse bias. We
found that the generalization power of debiasing
methods (the forgettable approach in particular)
does not stem from minority examples. We also
showed that the word-overlap bias does not seem
to come from the pre-training step of PLMs. As
future work, we plan to focus on designing new
debiasing methods for mitigating the reverse bias
for NLI and similar tasks. Also, building specific
challenging sets, similar to HANS, for the reverse
bias helps to expand this line of research.
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8 Limitations

In our experiments, we have focused on two pop-
ular PLMs, BERT and RoBERTa. Using more
PLMs, with diversity in the objective and architec-
ture and evaluating their robustness is one of the
extendable aspects of our work. Moreover, we eval-
uated three debiasing methods, but this could have
been expanded to more. The other susceptible as-
pect to improvement is creating a more high-quality
dataset for analyzing the overlap bias and its re-
verse. We have used SNLI as our main probing set,
a crowdsourcing-based dataset that contains some
noisy examples, especially in minority groups.
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