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Abstract

Multimodal knowledge graph completion
(MKGC) aims to predict missing entities in
MKGs. Previous works usually share rela-
tion representation across modalities. This re-
sults in mutual interference between modali-
ties during training, since for a pair of enti-
ties, the relation from one modality probably
contradicts that from another modality. Fur-
thermore, making a unified prediction based
on the shared relation representation treats the
input in different modalities equally, while
their importance to the MKGC task should
be different. In this paper, we propose MoSE,
a Modality Split representation learning and
Ensemble inference framework for MKGC.
Specifically, in the training phase, we learn
modality-split relation embeddings for each
modality instead of a single modality-shared
one, which alleviates the modality interference.
Based on these embeddings, in the inference
phase, we first make modality-split predictions
and then exploit various ensemble methods to
combine the predictions with different weights,
which models the modality importance dy-
namically. Experimental results on three KG
datasets show that MoSE outperforms state-of-
the-art MKGC methods. Codes are available at
https://github.com/OreOZhao/MoSE4MKGC.

1 Introduction

Multimodal knowledge graphs (MKGs) organize
multimodal facts in the form of entities and rela-
tions, and have been successfully applied to vari-
ous knowledge-driven tasks (Marino et al., 2019;
Sun et al., 2020; Zhang et al., 2018; Zhu et al.,
2022). To address the inherent incomplete prob-
lems in MKGs, multimodal knowledge graph com-
pletion (MKGC) has been proposed (Xie et al.,
2016, 2017), which utilizes auxiliary visual or text
information to help predict missing entities. As

shown in Figure 1a, given the head entity
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(a) An example of contradictory relations between modalities.

I-TCR . TCR Decouple |

(b) Implicit (I-) and Explicit (E-) Tight-Coupling Relation
(TCR), and TCR Decouple (Ours). Note that the arrows with
the same color represent the same relation embedding.

Figure 1: (a) displays an example of multimodal triples,

in which text modality demonstrates relevant relation

and visual modality demonstrates irrelevant relation

. (b) visualizes existing approaches with implicit and

explicit tight-coupling relation (TCR), and our approach
with decoupled relations.

untry

and the relation “—= Y, MKGC is required to pre-
dict the tail entity (The United States of America}.
It can be observed that the descriptions attached
to entities provide supplementary information for

entity prediction.

Existing MKGC methods usually share a com-
mon relation embedding across all modalities for
a pair of entities, which tightly couples multiple
relations from different modalities. We define this
paradigm of MKGC as Tight-Coupling Relation
(TCR). As shown in Figure 1b, according to the
way that the relations from different modalities are
coupled, existing methods can be roughly divided
into two categories: Implicit TCR (I-TCR) meth-
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ods and Explicit TCR (E-TCR) methods. I-TCR
methods (Wang et al., 2021, 2019) usually first fuse
multimodal information of an entity into a single
embedding, and then learn a unified relation repre-
sentation based on the embedding. E-TCR methods
(Mousselly-Sergieh et al., 2018; Xie et al., 2016,
2017) directly model the relationship between sep-
arate multimodal information of entities without
fusion. They usually learn a single relation embed-
ding to simultaneously represent all intra-modal
and inter-modal relations.

Although existing MKGC methods have
achieved promising results, they are limited by
TCR in two folds: (1) Modality relation con-
tradiction. The TCR usually simultaneously rep-
resents multiple relations from different modal-
ities only with a single embedding. However,
for a pair of entities, the relation from one
modality probably contradicts that from another
modality. For example, as shown in Figure
la, the description "American sitcom" of entity

N . countr
demonstrates the relation “—= " to en-

tity  The United States of America |, while the im-
ages do not. The inherent contradiction of TCR
results in modality interference during representa-
tion learning in MKGs. (2) Modality difference
ignorance. Based on TCR, existing methods usu-
ally treat the input in different modalities equally
and make a unified prediction, which ignores the
difference of modality importance. However, dif-
ferent modalities vary in data quality and entity
coverage, and should contribute to the final predic-
tion in varying degrees.

To overcome the above limitations, we propose
a Modality Split learning and Ensemble inference
framework, MoSE. As shown in Figure 1b, in the
training phase, MoSE decouples TCR and learns
multiple modality-split relation embeddings in-
stead of a single modality-shared one, which al-
leviates mutual interference between modalities. In
the inference phase, MoSE first makes predictions
for each modality separately based on the modality-
split embeddings, and then merges them into the fi-
nal prediction. We explore the best combination of
modality predictions with various ensemble meth-
ods, and model the modality importance by mod-
ulating the modality weights dynamically. Exper-
imental results and analysis on three widely-used
datasets show that MoSE outperforms state-of-the-
art methods for MKGC task.

Overall, the contributions of this paper can be

summarized as follows:

* To the best of our knowledge, we are the first
to deal with the modality contradiction of re-
lation representation and discuss modality im-
portance in MKGC task.

* We propose a modality-split learning and en-
semble inference framework MoSE for MKGC,
which decouples the tight-coupling relation
embedding into modality-split ones in the
training phase, and modulate modality impor-
tance adaptively in the inference phase.

* Experiment results on three datasets demon-
strate that MoSE outperforms 9 baselines and
obtain the state-of-the-art performance in
MKGC task. The results also show that text
modality is a useful complement for MKGC
rather than visual modality.

2 Related Work

Existing researches on MKGC mainly focus on
extending unimodal knowledge graph embedding
(KGE) models to further exploit multimodal in-
formation. We notice that for a pair of entities
in an MKG, existing multimodal KGE methods
all exploit a modality-shared relation embedding
which tightly couples multiple relations from dif-
ferent modalities, which we call Tight-Coupling
Relation (TCR). We divide existing methods to
two categories: implicit tight-coupling relation (I-
TCR) methods and explicit tight-coupling relation
(E-TCR) methods.

2.1 Implicit TCR Methods

I-TCR methods (Wang et al., 2021, 2019) fuse mul-
tiple modalities into a unified entity embedding and
utilize a shared relation representation as shown
in Figure 1b. Thus the learned relation implicitly
fuses multimodal relations. TransAE (Wang et al.,
2019) extends TransE with auto-encoder fusing
visual and text information into entity representa-
tion. Recently, RSME (Wang et al., 2021) notices
the noise in visual modality and propose a forget
gate to adjust the fusion rate of image to entity em-
beddings and reaches state-of-the-art (SOTA) per-
formance. Though I-TCR methods show promis-
ing improvements, they neglect modality contra-
dictions in modality-shared relation representation.
Moreover, they make unified predictions without
assessing whether the modality information is rele-
vant to final predictions. In terms of SOTA RSME,
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the fusion ratio of visual information is determined
by image information itself, i.e. similarity, regard-
less of modality importance to final prediction.

2.2 Explicit TCR Methods

E-TCR methods (Mousselly-Sergieh et al., 2018;
Xie et al., 2016, 2017) utilize a shared re-
lation embedding which tightly couples mul-
tiple relations between intra-modal and inter-
modal entities. E-TCR methods learn represen-
tations with an overall score across all modal-
ities:  structure-structure, structure-visual/text,
visual/text-structure, visual/text-visual/text, all con-
nected by a single modality-shared relation embed-
ding as shown in Figure 1b, which explicitly tightly
couples multiple relations. DKRL (Xie et al., 2016)
and IKRL (Xie et al., 2017) extend TransE with text
and visual modality respectively. MKB (Mousselly-
Sergieh et al., 2018) extends IKRL (Xie et al.,
2017) from visual modality to visual-text multi-
modalities. Although E-TCR methods project mul-
timodal features to a common latent space, the in-
herent semantic contradiction of relations between
different modalities is not eliminated. Moreover,
they utilize weighted concatenation of multimodal
entities to make a unified prediction and does not
consider modality importance either.

3 Methodology

3.1 Preliminaries

In this section, we introduce the notation used in
this paper and formulate the MKGC task.

KGC task. Knowledge graph is a collection
of factual triples G = {(h,r,t)}, where head en-
tity and tail entity h,t € £ and relation r € R.
The KGE model (1) represents entities and rela-
tions to vectors h, r, t, (2) utilizes a score function
f(h,r,t) : £ x R x £ — R to decode the plausi-
bility of a triple to scores. For a particular query
q = (h,r,7), the KGC task aims at ranking all pos-
sible entities and obtaining prediction preference.

MKGC task. In MKGs, each entity e € £
has multimodal embeddings e,,,m € M =
{8,V, T}, which denotes structure, visual, and
text modality respectively. We use eg, €,, e; to
denote corresponding entity embedding, where vi-
sual and text embedding is projection of extracted
features e, = W, f,, er = Wi fy.

TCR methods. I-TCR methods design a
fusion mechanism ®({e,,}),m € M to get
a fused embedding of multimodal entities and

extends the score function as f(h,r,t) =
f(@({hm}),r,2({tn}). E-TCR methods uti-
lize score function across all modalities, where
Flhyrt) = SIS f(hi, 7, 85). Tis worth
noting that both ways utilize a modality-shared re-
lation representation.

3.2 Overview

Figure 2 shows our Modality Split learning and
Ensemble inference framework, MoSE, for multi-
modal knowledge graph completion task. We first
decouple TCR to modality-split relation embed-
dings corresponding to each modality. With the
decoupled TCR, we construct modality-split triple
representations for each modality to prevent modal-
ity interference in representations. Through the
KGE score function, the modality-split representa-
tions are decoded to corresponding score distribu-
tions. In the training phase, we train modality-split
entity and relation representations with intra-modal
scores simultaneously. Considering visual and text
modalities usually embody more contradictory and
uncertain noise than structure modality, we apply
confidence-constraint training objectives for the
two modalities. In the inference phase, we exploit
ensemble inference to combine the modality-split
predictions and obtain the final predictions. We ex-
plored three kinds of ensemble inference methods
aiming at modeling modality importance.

3.3 Modality-Split MKG Construction

In our paper, we assume that the TCR embedding
used in existing methods represents multiple con-
tradictory relations simultaneously and results in
modality interference. Thus we propose to decou-
ple the TCR and construct a modality-split MKG.
With decoupling the contradictory relations from a
modality-shared embedding to multiple modality-
split relation embeddings, MoSE alleviates modality
interference in relation representations. Formally,
we construct decoupled modality-split relation em-
beddings for each relation type. In this paper, we
construct structure, visual and text modality rela-
tion embedding r r,, and r, for relation r. Since
relation representation is decoupled, we also avoid
modality fusion in entities, which also prevents in-
terference within entity representations. Together
with the modality-split entity and relations, we
form a modality-split KG of multiple unimodal
KGs which have identical topology but different
entity and relation representations.
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Figure 2: The framework of Modality-Split learning and Ensemble Inference, MoSE, for multimodal knowledge

graph completion.

3.4 KGC Decoder

With the modality-split KG construction, the score
function is also separated to multiple scores de-
noted as f,(h,r,t) = f(hm,Tm,tm),m € M.
With the modality-split architecture, MoSE is able
to present score distribution for each modality. For
each query triple (h,r,t), the decoder gives differ-
ent scores depending on the learned representation,
which intuitively reflects the strengths and limita-
tions of each modality for entity predictions.

3.5 Training

We utilize multi-class cross-entropy (CE) loss for
training following Lacroix et al. (2018). Given a
query (h,r,7), we construct corrupted triples by
replacing the tail entity with randomly selected
entities in £. We also construct reverse triple
(?,7=% h) for each triple in the training set and
apply the same setting. For all triples, KGC de-
coder provides corresponding probability of truth
pm(t|(h,r)) = softmax(fn(h,r,t)) computed
with a softmax applied to the output of the score
function. We denote p,,(t|(h,r)) as probability
obtained in modality m. The CE loss of modality
m can be calculated as Equation (1).

€]

L=~ Zloy(pm(ﬂ(ha T))

:CE(pm(t| (h7 T))) :

Confidence-constraint Training. Visual and
text modalities usually embody contradictory infor-
mation due to data complexity and diversity. We
notice that the contradiction lies in the fact that
the modality information of entity is not always
relevant to the knowledge of factual triple. In con-
sequence, visual and text modality usually present

(1

uncertainty. To ease the uncertainty, we train
the visual or text modality KGC in a confidence-
constraint manner with a temperature-scaling tech-
nique (Guo et al., 2017). Since the predicted prob-
ability can approximately represent the confidence
score of predictions, we simply compact the proba-
bility distribution by adding a temperature parame-
ter 7 to the output of the KGC decoder as Equation
(2) and extend CE loss to a confidence-constraint
form as Equation (3). In this way, the confidence
of predictions is constrained and the distribution is
softened while prediction results remain the same.
Formally, we use the confidence-constraint loss
for visual and text modality as £{° and L{° respec-
tively.

poc(h,r,t) = softmax(W) .2
Ly = CE(py(t|(h,1))). 3)

Overall Objective. In the training phase, we
simultaneously train three modalities to learn intra-
modal representations separately after the overall
objective Lxac. The overall KGC objective is the
sum of modality losses as Equation (4).

Lrxco=Ls+ [:16)6 + E?C . €))

3.6 Inference

In the inference phase, we explore combination
mechanisms of modality predictions by modeling
modality weights. Modalities have strengths and
limitations due to data quality and entity coverage,
which are always complementary to each other.
Appropriately adjusting modality weights to fully
exploit the complementary strengths would lead to
better prediction performance.
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Ensemble Inference. Inspired by Chen et al.
(2020), we exploit ensemble inference to obtain
final predictions. We propose to directly com-
bine scores instead of ranks since information from
score distributions may get lost during the ranking
process. For each query, we obtain three score dis-
tributions f,,(h,r,t),m € M = {S,V, T} from
three modalities, which could directly reflect the
strengths and limitations of modality for entity pre-
dictions. The scores are combined as Equation (5).

Flhort)= Y wnfm(h,r,t). (5

meM

Next, we propose three variants of MoSE:
MoSE-AI, MoSE-BI and MoSE-MI, which varies in
the modality weight w,,, calculation. We utilize a
small amount of unbiased meta-set to learn modal-
ity weights that can be finely transferred to test-set.
We choose validation-set as meta-set.

Equal-importance Average Inference. We uti-
lize modality average weight without considering
modality importance as a baseline MoSE-AI. For all
modalities, we average the scores to obtain final
prediction as Equation (6).

fAI(h, rt) = 1

- W Z fm(h7rvt)' (6)

meM

Relation-aware Boosting Inference. We find
that entity-relevant triples are sparse and thus hard
to capture the accurate correlation between entity
and modality importance. In this paper, we as-
sume that the relation of each modality varies in
relevance level. So we propose to learn modality
weight in relation-level to adjust modality impor-
tance to final predictions. We divide meta-set by
relation type and upgrade RankBoost (Freund et al.,
2003) mechanism to generate modality weights
wm, (1) corresponding to relation r and combine
modality scores as Equation (7). The MoSE-BI Al-
gorithm is illustrated in Appendix A.

fBI(h,r,t) = Z Wi (1) frn (s i) . (7)

meM

Instance-specific Meta-Learner Inference.
However, for KGs with fewer relations, such as
WNO9 (Xie et al., 2017) with only 9 relations,
MoSE-BI is limited by coarse-grained relation-level
weight learning. Thus we propose to train a meta-
learner to find optimal weight functions for each
triple instance. Following Shu et al. (2019), we

exploit an MLP (Multilayer Perceptron) with only
one hidden layer as a meta-learner to combine the
scores and approximate true predictions. For a
triple (h,r,t), we use the concatenation of three
scores F'(h,r,t) = [fm(h,r,t)],m € M as input,
and train the weighted scores to fit the final predic-
tions. The final prediction is obtained as Equation
(8) where weight parameter © is trained in meta-
set and transferred to test-set.

FMI((h,rt);®) = w(®)F(h,rt). (8)

The optimal weight ® is obtained with CE loss
as Equation (9).

Larr = CE[softmax(FM((h,r,1);©))]. (9)

4 Experiments

4.1 Experimental Setting

Datasets. To evaluate the proposed model, we
conduct experiments on three widely used KGC
datasets: FB15K-237 (Toutanova et al., 2015),
WN18 (Bordes et al., 2013), and WN9-IMG (Xie
et al., 2017). The former two are unimodal KGC
datasets with only structure modal, and the latter
one contains both structure and visual modalities.
We follow previous studies (Wang et al., 2021; Xie
et al., 2016; Yao et al., 2019) to augment the text
and visual modality information of each dataset.
The dataset statistics are shown in Table 1.

Implementation details. To evaluate MoSE, four
metrics are used, i.e., Hits@K, K=1, 3, 10, repre-
senting accuracy in top K predictions, and Mean
Rank (MR). Higher Hits@K and lower MR indi-
cate better performance. We use Pytorch 1.11.0 to
implement MoSE. The operating system is Ubuntu
18.04.5. We use a single NVIDIA A6000 GPU
with 48GB of RAM.

We report the results of three MoSE variants
which vary in the inference methods. MoSE-AI
refers to MoSE with average inference. MoSE-BI
refers to MoSE with boosting inference. MoSE-MI
refers to MoSE with meta-learner inference.

We follow the widely-used filtered setting (Bor-
des et al., 2013), i.e., excluding other true entities

Dataset #Rel. #Ent. #Train  #Valid #Test
FB15K-237 237 14,541 272,115 17,535 20466
WN18 18 40,943 141,442 5,000 5,000
WN9 9 6,555 11,741 1,337 1,319

Table 1: Datasets statistics for MKGC.
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Model FB15K-237

WNI8 WN9

Hits@1 1 Hits@3 T Hits@10 T MR | His@1 1 Hits@3 T Hits@10 1 MR | Hits@1 1 Hits@3 1 Hits@10 T MR J

Unimodal KGE methods

TransE 0.198 0.376 0.441 323 0.040 0.745 0.923 357 0.864 0.901 0.917 146
DistMult 0.199 0.301 0.466 512 0.335 0.876 0.940 655 0.531 0.871 0.911 241
ComplEx 0.194 0.297 0.450 546 0.936 0.945 0.947 - 0.901 0.913 0.922 256
RotatE 0.241 0.375 0.533 177 0.942 0.950 0.957 254 0.889 0.906 0.922 175
Multimodal KGE methods

IKRL (UNION) 0.194 0.284 0.458 298 0.127 0.796 0.928 596 0.938 21
TransAE 0.199 0.317 0.463 431 0.323 0.835 0.934 352 - - 0.942 17
RSME 0.242 0.344 0.467 417 0.943 0.951 0.957 223 0.878 0.912 0.923 55
MoSE-AT 0.255 0.376 0.518 135 0.929 0.946 0.962 23 0.840 0.932 0.963 4
MoSE-BI 0.281 0.411 0.565 117 0.884 0.953 0.972 8 0.831 0.923 0.964 4
MoSE-MI 0.268 0.394 0.540 127 0.948 0.962 0.974 7 0.909 0.937 0.967 4
Pre-trained Language Model methods

KG-BERT - 0.420 153 0.117 0.689 0.926 58

MKGformer 0.256 0.367 0.504 221 0.944 0.961 0.972 28

Table 2: Knowledge graph completion performance on FB15K-237, WN18, and WNO9. We highlight the best and
the second best results of each column. MoSE-BI performs the best on FB15k-237, and MoSE-MI achieves the best
performance on WN18 and WN9. We can also observe that existing multimodal KGE methods do not perform as

well as RotatE, which is a unimodal KGE method.

when evaluating. We exploit ComplEx (Lacroix
et al., 2018) as KGC Decoder. In this paper, we
mainly focus on contradiction in relation embed-
dings. Thus, we employ SOTA pretrained encoder
to extract visual and text features of entities, i.e.,
ViT (Dosovitskiy et al., 2020) following RSME
(Wang et al., 2021) for visual modality and BERT
(Kenton and Toutanova, 2019) for text modality.
We use Adagrad (Duchi et al., 2011) to optimize
the model. The hyperparameters are selected with
the best Hits@ 10 on the validation set.

Baselines. We compare MoSE with several base-
lines to demonstrate the advantage of our frame-
work. We mainly compare MoSE with KGE meth-
ods, which can be grouped into two categories:
(1) the unimodal KGE methods, including TransE
(Bordes et al., 2013), DistMult (Yang et al., 2015),
ComplEx (Trouillon et al., 2016), RotatE (Sun
et al., 2018); (2) the multimodal KGE methods,
including a) E-TCR methods: IKRL (Xie et al.,
2017), b) I-TCR methods: TransAE (Wang et al.,
2019) and RSME (Wang et al., 2021). We also list
the results of pre-trained language models (PLMs)
for KGC, i.e., KG-BERT (Yao et al., 2019) and
MKGformer (Chen et al., 2022).

4.2 Comparison to the Baselines

The experimental results in Table 2 show that MoSE
obtains the best performance compared to all 9
baselines, which demonstrates the superiority of
MoSE. Compared to unimodal KGE methods, MoSE

outperforms the best unimodal method RotatE,
while other multimodal methods do not. Com-
pared to multimodal KGE methods, MoSE achieves
2% - 10% improvements in Hits@10 and 13 - 216
improvements in MR over the best existing meth-
ods. It is worth noting that even compared to the
pre-trained language model methods, MoSE outper-
forms KG-BERT and MKGformer in all metrics
on FB15K-237 and WN18 datasets.

Q1: Does MoSE succeed in avoiding modality in-
terference? Compared with the corresponding base
model, while other multimodal methods face a cer-
tain level of performance decline, MoSE achieves
consistent improvements in all metrics. For ex-
ample, the Hits@1 and Hits@3 of IKRL drop
compared to those of TransE, and the Hits@3 of
TransAE drops compared to that of TransE on the
FB15K-237 dataset. Even SOTA RSME faces a
slight drop on the WINO dataset in terms of Hits@1
and Hits@3 compared to ComplEx. It reveals that
MoSE can steadily enhance unimodal models with
auxiliary modality information and successfully
avoid modality interference to structure modality.

Q2: Is it necessary to assess modality impor-
tance? We explored three inference methods with
modality importance in different aspects. MoSE-AI
treats each modality equally and does not consider
modality importance at all, while MoSE-BI con-
siders modality importance in relation-level and
MoSE-MI in instance-level. As shown in Table 2,
MoSE-BI performs the best on FB15K-237 and
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FB15K-237

WN18

WNO9

Model 3 @TT His@3 T His@I0] MR] Hic@l | Hic@3 1 His@10 TMR] His@l ] His@3 | His@I0]1 MR
I-TCR 0.192 0303 0439 439 0.945 0953 0958 298 0.588 0755  0.847 126
E-TCR-AL 0248 0367 0511 140 0910 0945 0960 27 0.779 0916  0.958 5
MoSE-AI 0255 0376 0518 135 0.929 0946 0962 23 0.840 0932 0963 4
E-TCR-BI 0271 0402 0554 121 0.858 0945 0968 10 0756 0914  0.959 4
MoSE-BI  0.281  0.411 0565 117 0.884 0953 0972 8 0.831 0923 0964 4
E-TCR-MI 0247 0367 0510 135 0.924 0956 0971 12 0.878 0930  0.958 5
MoSE-MI 0268 0394 0540 127 0948 0962  0.974 7 0.909 0937  0.967 4

Table 3: Effectiveness of relation decoupling. For the I-TCR variation, we fuse the multimodal entities and exploit a
shared relation representation, which yields a unified prediction. For the E-TCR variation, we replace the modality-
split relation embeddings of MoSE with a shared relation embedding, which yields three prediction scores as well.

MoSE-MI performs the best on WN18 and WN9.
All the best inference methods on the three datasets
outperform MoSE-AI. It demonstrates the necessity
of assessing modality importance for MKGC.

Q3: How to choose the suitable inference meth-
ods? As we can observe, different inference meth-
ods expert in different KG characteristics. The
relation-aware inference MoSE-BI performs better
in complex KGs with extensive relation types such
as FB15K-237 (237 relations) and fails in KGs
with fewer relation types such as WN18 and WN9
(18 and 9 relations respectively) while instance-
specific inference MoSE-MI performs the opposite.
The possible reason is that the inference methods
are with different capabilities to approximate the
optimal combination of modalities. MoSE-BI is
easy to scale to KGs with more relations and able
to achieve relatively better performance. Though
MoSE-MI performs the best in two datasets, we be-
lieve that the single layer MLP may still limit the
fitting capability of MoSE-MI.

4.3 Effectiveness of Relation Decoupling

Since the TCR baselines in Table 2 vary in KGC de-
coder and modality types, we further investigated
different TCR variations of MoSE under the same
setting to demonstrate the effectiveness of relation
decoupling. The results are presented in Table 3.
For I-TCR and E-TCR variation, we replace the
modality-split relation embeddings in MoSE with
a single modality-shared relation embedding. For
I-TCR variation, we further fuse the multimodal
entities with weighted concatenation, which yields
a unified prediction.

As shown in Table 3, MoSE outperforms all its
E-TCR variations under the same inference method.
As for I-TCR method, the best performance of MoSE
exceeds I-TCR in all metrics. It demonstrates the

necessity of modality relation decoupling. We also
notice that I-TCR exceeds MoSE-AI in Hits@1/3
and MoSE-BI in Hits@1 on WN18. The possible
reason is that the modality information of WN18
has many mutual semantics. So modality fusion
brings accurate entity representations. However,
I-TCR obtains a large MR score, indicating it is not
stable as MoSE for MKGC.

4.4 Modality Ablation

To demonstrate how each modality supports final
predictions, we conduct modality ablation. Ta-
ble 4 shows the experimental results obtained
by (1) ensemble inference of three structure
unimodal models Str-Str-Str-AI/BI/MI, (2)
modality-split predictions obtained by KGC de-
coder Mose-Str/Vis/Text.

The improvements of Str-Str-Str over
MoSE-Str is insignificant compared to that of
MoSE-BEST over MoSE-Str. It reveals that MoSE
improves the base unimodal model via effectively
utilizing modality information instead of perform-
ing ensemble inference. For modality-split predic-
tions MoSE-Str/Vis/Text, no single one of three
prediction performances exceeds MoSE-BEST. It
demonstrates that modalities in MoSE effectively
enhance each other and successfully avoid modal-
ity mutual interference. The modality-split predic-
tions also indicate the modality quality for assisting
MKGC. The structure modality, which is directly
learned from KGs, remains the best performance
on all datasets, while visual modality has erratic
performance and text modality consistently pro-
vides the best MR metric.

4.5 Case Study

To demonstrate the intuitive ability of MoSE to as-
sess modality importance, we conduct case studies
with MoSE-BI, which provides modality weights
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Model FB15K-237 WNI18 WN9

Hits@1 1 Hits@3 1 Hits@101T MR | Hits@1 1 Hits@3 1T Hits@10 1 MR | Hits@1 1 Hits@3 T Hits@101T MR |
MoSE-BEST 0.281 0.411 0.565 117 0.948 0.962 0.974 7 0.909 0.937 0.967 4
Str-Str-Str-AI  0.256 0.386 0.542 166 0.945 0.954 0.960 247 0.909 0916 0.923 201
Str-Str-Str-BI  0.262 0.392 0.547 162 0.946 0.954 0.960 247 0.909 0916 0.923 200
Str-Str-Str-MI  0.256 0.386 0.541 206 0.945 0.954 0.960 322 0.909 0.916 0.923 263
MoSE-Str 0.264 0.392 0.545 168 0.946 0.954 0.960 264 0.908 0.914 0.922 193
MoSE-Vis 0.167 0.242 0.329 890 0.527 0.611 0.685 2017 0.092 0.231 0.392 243
MoSE-Text 0.245 0.364 0.500 161 0.255 0.442 0.618 96 0.262 0.487 0.709 27

Table 4: The experimental results of modality ablation. MOSE-BEST refers to results obtained by the best variant
of MoSE for each dataset, i.e., MOSE-BI for FB15K-237 and MoSE-MI for WN18 and WNO. Str, Vis, Text refer to
structure, visual and text modality respectively. Str-Str-Str-AI/BI/MI refers to results obtained by replacing
both visual and text modalities in MoSE with structure modality. MoSE-Str/Vis/Text refers to the modality-split

prediction performances of each modality.

structure visual text
WNO A 28 42
WN18 1 16 61
FB15K—237-I . . 1817 40 .
0.0 0.2 0.4 0.6 0.8 1.0

(a) Average modality weights (%) of datasets.

actor - 11 68
country - 0 70
month - 67 0
languages 50 26
category - 19 38
winner 4 15
010 012 014 016 018 110

(b) Examples of modality weights (%) of FB15K-237 rela-
tions. Relations are abbreviated. See Appendix B for full
relation names.

Figure 3: Modality weights (%) learned by MoSE-BI.

for each modality corresponding to each relation.
Figure 3 shows modality weights in Equation (7)
to combine predictions from multiple sources.

Modality Importance. Figure 3a shows av-
erage modality weights on each dataset obtained
by MoSE-BI. We can observe that text modality
provides the greatest contributions on WN18 and
WNO, while visual modality provides the minimum
on all datasets. It demonstrates that text modality
provides valuable information supporting knowl-
edge predictions while visual modality in the oppo-
site. The possible reason is that descriptions often
mention relevant entities, while images are only
highly related to entity itself.

Relation Cases. Figure 3b presents some exam-
ples to show how much each modality contributes
to relation learning on FB15K-237. The higher
level of modality importance often stems from
more relation-relevant modality information. For

—e= MR =e= Hits@10
1.0 = [ p———p——————
\i/l 0o “"_“L -==5% 0.96 095 556 006 600
0.8 /
= \\ / 400
®o0.6 % &
2 AN
T 04 77N 200
/
45.03 . e - .
024 dona VB2 20 a2 _S7r s 47
0.5 1.0 2.0 4.0 8.0 16.0 32.0
Temperature

Figure 4: Temperature Parameter Analysis conducted
by MoSE-AI on WNO.

example, for relation country_of_origin (abbr.
country) shown in Figure 1la, the text modality
provides more relevance information than visual
modality. As shown in Figure 3b, text modality
presents importance up to 70% while visual modal-
ity presents 0%. The results also demonstrate that
MoSE-BI is able to identify which modality is more
credible and then assign a higher weight in a fine-
grained relation level.

4.6 Uncertainty in MKGs

To investigate the uncertainty of MKG predictions,
we adjust the temperature parameter as shown in
Figure 4. We use MoSE-AI to rule out the impact
of ensemble inference. We vary the temperature
7T in Equation (2) from 27! to 2° with exponential
growth. As the temperature increases, the perfor-
mance tends to grow and converge to stable. When
T = 271, the confidence to visual and text modal-
ity is enlarged and MoSE faces great performance
decline. We can also observe that MoSE with larger
T always outperforms 7 = 2° = 1 in which the
confidence is not constrained. It proves our as-
sumption about the uncertainty of visual and text
modalities.
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5 Conclusion

In this paper, we propose a novel modality split
learning and ensemble inference framework for
multimodal knowledge graph completion called
MoSE. MoSE first decouples modality-shared rela-
tion embedding to modality-split relation embed-
dings and performs modality-split representation
learning in the training phase, aiming at overcom-
ing modality relation contradiction. Then, MoSE
exploits three ensemble inference techniques to
combine the modality-split predictions by assessing
modality importance. Experiment results demon-
strate that MoSE outperforms state-of-the-art meth-
ods for MKGC task on three widely-used datasets.

Limitations

Despite that MoSE achieves some gains by modality-
split learning and ensemble inference, MoSE still
has the following limitations:

First, MoSE does not fully exploit visual modality.
Since the image of the entity is highly self-relevant
and covers less information about other related en-
tities, we reduce the visual modality importance
during ensemble inference to cater to the MKGC
task, which heavily relies on the relationship be-
tween entities. Nevertheless, we believe there are
other ways to exploit visual modality suitably.

Second, for a fair comparison, we follow SOTA
method RSME (Wang et al., 2021) and utilize a
single-image setting. We believe that under the
multiple-image setting, the problem of modality
relation contradiction still holds. Intuitively, even
with more images, the image of the entity "The
United States of America" in Figure 1a is unlikely
to involve the entity "Friends". Quantitatively, the
similarity of multiple images from the same entity
is up to 99.250% on FB15K-237 and 99.255% on
WNI18 respectively. Therefore, there is little dif-
ference between single-image and multiple-image
settings in our work. However, more images may
introduce more side information, such as related
entities, from which MKGC model may benefit.
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Appendix
A MoSE Boosting Inference Algorithm

In this section, we present the algorithm detail of
relation-aware boosting inference method MoSE-BI
in Algorithm 1. We first divide the meta-set D to
relation-aware sets D, by relation type. At each set,
we exploit RankBoost (Freund et al., 2003) algo-
rithm to model modality importance and combine
modality scores to obtain final predictions.

The main idea of RankBoost is to turn a ranking
problem into a classification problem. The score of
corrupted entity h,,(h,r, e) less than that of true
tail entity h,,(h,r,t) is seen as True prediction
while False prediction in the opposite. It is worth
noting that we select the best modality in each
round to eliminate the impact of modality order.

B Relation names

Table 5 shows original relation names in Figure 3b.

Algorithm 1 MoSE Boosting Inference Algorithm

Input: The meta-set D = {(h,r,t)},h,t € E,r € R;
Modality set M; Modality-split scores fm (h,7,t),m €
M;

Output: 72/ (h,r,t) =3\ wm(r) fm(h,7,t)

1: divide meta-set D by relation r € R to D = {D,}

2: for each relation set D, € D do

30 init Di(e) = xg, wm(r) = 0,m € M

4:  for each modality m =1, ..., |M| do

. _ 17fm(h,7"7€) < fm(hﬂ",t)
5. h"”(e) B {1,fm(h,7', 6) >= fm(h’7 T7t)
6: fori=1,...,|M|do

) 1 . =1 Dm(e

7. wh = Sin( ZES,hm( )=1 (e)

2 ZeES,hm(c):—l D, (e)
8: select the best and unchosen modality with max

: _ 1 | M|
weight wy, = max{wy,, ..., wm '}

% Zn =Y .ce Du(e)eap(~wmhu(c))
10: Dm+1(6) = (E)Sflfp(Z w (6))
11: Wi (1) = Wi (1) + Wi "

12: return FPI1(h 7 t) = Y ment Wm (1) fm (b, 7, t)

relation abbv. relation name

/tv/tv_program/regular_cast./tv/

actor
regular_tv_appearance/actor
country /tv/tv_program/country_of_origin
month /travel/travel_destination/climate./
o travel/travel_destination_monthly_climate/month
languages /tv/tv_program/languages
category /award/award_category/category_of

/award/award_ceremony/awards_presented./

winner .
award/award_honor/award_winner

Table 5: Relation abbreviations and full names.
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