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Abstract

Multimodal tasks in the fashion domain have
significant potential for e-commerce, but in-
volve challenging vision-and-language learning
problems—e.g., retrieving a fashion item given
a reference image plus text feedback from a
user. Prior works on multimodal fashion tasks
have either been limited by the data in indi-
vidual benchmarks, or have leveraged generic
vision-and-language pre-training but have not
taken advantage of the characteristics of fash-
ion data. Additionally, these works have mainly
been restricted to multimodal understanding
tasks. To address these gaps, we make two
key contributions. First, we propose a novel
fashion-specific pre-training framework based
on weakly-supervised triplets constructed from
fashion image-text pairs. We show the triplet-
based tasks are an effective addition to stan-
dard multimodal pre-training tasks. Second,
we propose a flexible decoder-based model ar-
chitecture capable of both fashion retrieval and
captioning tasks. Together, our model design
and pre-training approach are competitive on
a diverse set of fashion tasks, including cross-
modal retrieval, image retrieval with text feed-
back, image captioning, relative image caption-
ing, and multimodal categorization.

1 Introduction

Artificial intelligence has taken the fashion industry
by storm in recent years. Significant advances have
been made in tasks like recommendation (McAuley
et al., 2015; Deldjoo et al., 2022) and virtual try-on
(Han et al., 2018; Yang et al., 2022). In addition
to these primarily visual tasks, multimodal tasks
are of particular interest in fashion for e-commerce
applications: for example, text-to-image retrieval
enables a shopper to identify a desired clothing
item via a language query (Zhuge et al., 2021).

Cross-Modal 
Retrieval

Image Retrieval 
w/ Text Feedback

Multimodal 
Categorization

Relative Image 
Captioning

Image 
Captioning

Long sleeve wool-blend sweater in 
faded pink featuring stripes in tones 
of white, blue, grey, black ...

Is light blue 
with no print+

Buffed leather 
slip-on sneakers 
in black ...

+ Sneakers; 
Low Top Sneakers

Long sleeve hoodie in navy blue. 
Drawstrings at hood. Zip closure 
and scoop pockets at front ...

+ Is mint green with 
a smaller design 

FaD-VLP

Figure 1: We present FaD-VLP, a flexible architecture
and pre-training method that can support retrieval-based
and captioning-based tasks in the fashion domain.

A key opportunity to enhance customers’ shop-
ping experiences is in the development of inter-
active multimodal shopping assistants, whereby a
user could converse with a system to identify a
desired product (Yuan and Lam, 2021; Han et al.,
2022). As in Figure 1, a smart assistant is desired
to perform multiple diverse tasks, e.g., cross-modal
retrieval, image retrieval with text feedback, multi-
modal categorization, image captioning, and rela-
tive image captioning. Among them, perhaps the
most notable task in fashion is image retrieval with
text feedback, where the goal is to retrieve a tar-
get image given a reference image coupled with a
user’s language feedback (e.g., “show me a similar
shirt in light blue with no print”) (Wu et al., 2021;
Lee et al., 2021; Kim et al., 2021). In addition to
retrieval-based tasks, a central capability of conver-
sational shopping assistants is in captioning-based
tasks: describing items in detail (Yang et al., 2020)
or the differences among them. However, existing
works on image retrieval with text feedback have
almost exclusively studied that task in isolation,
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focusing on specialized architectures and fusion
methods, with data limited by particular bench-
marks (Lee et al., 2021; Kim et al., 2021).

To train a model that can perform well on sev-
eral fashion-specific multimodal use cases, we ob-
serve an opportunity in the vast availability of mul-
timodal fashion data on e-commerce platforms.
While vision-language pre-trained (VLP) models
have been highly successful for the general domain
(Lu et al., 2019; Li et al., 2020; Su et al., 2020),
prior work has suggested that general VLP mod-
els are helpful but suboptimal for the fashion do-
main (Zhuge et al., 2021; Liu et al., 2021; Goenka
et al., 2022). Fashion images represent a domain
shift from the pre-training data (Liu et al., 2021),
and fashion tasks often require fine-grained repre-
sentations rather than coarse representations from
general VLP models (Zhuge et al., 2021).

To this end, we propose a domain-specific fash-
ion pre-training procedure that takes advantage of
fashion image-text data from multiple fashion cata-
logues. Our approach is inspired by the way that
users might shop, via comparisons: a user may first
identify a product, express a desired change in lan-
guage, and then look for a new product that better
matches their preferences. Given that data in this
triplet form—reference product, modification, tar-
get product—is not nearly as common as the paired
image-text data, we propose a lightweight method
for constructing weakly-supervised pseudo-triplet
data from image-text pairs. Additionally, we pro-
pose a unified, decoder-based model architecture
for both retrieval-based and captioning-based fash-
ion tasks. Together, we refer to our architecture
and pre-training approach as FaD-VLP: Fashion
Decoder with Vision-and-Language Pre-training.

To summarize, we make the following contri-
butions. We propose a unified architecture for
retrieval-based and captioning-based fashion tasks
(Section 3.1) and a fashion pre-training frame-
work, including 2 novel pre-training tasks based
on weakly-supervised pseudo-triplets (Section 3.2).
Our approach achieves competitive performance
on 7 downstream fashion tasks: image-to-text re-
trieval, text-to-image retrieval, image retrieval with
text feedback, category recognition, subcategory
recognition, image captioning, and relative image
captioning (Sections 4 and 5.1). Finally, we con-
duct a thorough ablation study to analyze the effects
of our pre-training procedure (Section 5.2).

2 Related Work

A substantial body of work has focused on using
the Transformer architecture (Vaswani et al., 2017)
in the context of vision-and-language pre-training
(VLP) (Li et al., 2019; Su et al., 2020; Chen et al.,
2020b; Radford et al., 2021a; Li et al., 2021a; Yu
et al., 2022a). Recent works have begun to focus
on the fashion domain (Gao et al., 2020; Zhuge
et al., 2021; Zhu et al., 2021; Dong et al., 2021;
Zhang et al., 2021; Goenka et al., 2022; Yu et al.,
2022b). VLP works generally differ in their choice
of model architecture and pre-training objectives.
Model Architecture. Most existing VLP mod-
els, especially in the fashion domain, use encoder-
style modules for both image and text, focusing
on multimodal understanding tasks (which do not
involve generation—e.g., image-text retrieval, mul-
timodal classification). There are two main classes
of these models: (i) single-stream early fusion (Li
et al., 2019; Su et al., 2020; Chen et al., 2020b; Li
et al., 2020), and (ii) two-stream late fusion (Tan
and Bansal, 2019; Lu et al., 2019; Jia et al., 2021;
Radford et al., 2021a). The nature of the down-
stream tasks often influences the choice of number
of streams; e.g., image-text retrieval is most prac-
tical with late fusion architectures which can have
faster inference. In this work, we propose a flexible
decoder-based model architecture, which embraces
the advantage of both early and late fusion mech-
anisms, and is capable of not only multimodal un-
derstanding tasks, but also captioning tasks (e.g.,
image captioning and relative image captioning).
Pre-training Objectives. Several pre-training
tasks have been effectively used for VLP. Some
of the most popular include masked modeling or
matching objectives for the different modalities
(Li et al., 2019; Lu et al., 2019; Su et al., 2020;
Chen et al., 2020b); others include cross-modal
contrastive learning (Li et al., 2021a; Radford et al.,
2021a; Li et al., 2021b), caption generation (Zhou
et al., 2020; Wang et al., 2022), and object tagging
(Li et al., 2020). Fashion data has some unique
properties that could be leveraged at pre-training,
partly to mitigate the domain shift which makes
generic VLP less effective for fashion (Zhuge et al.,
2021). For example, there are more structured at-
tributes in fashion captions, which entitles people
to naturally do comparisons when choosing their
desired shopping items. Inspired by this, we pro-
pose that weak triplet-based comparison is used as
the basis for additional pre-training tasks.
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Figure 2: Our proposed FaD-VLP architecture consists of an image encoder, a text decoder, and a multimodal de-
coder, with three configurations that conform to various retrieval and captioning tasks. Shared colors indicate shared
parameters, curved arrows represent cross attention, and tokens with a bold border denote pooled representations.

3 Method

We introduce FaD-VLP, our architecture and pre-
training method for fashion tasks. We first detail
our architecture design (Figure 2), which unifies
several retrieval and captioning settings. We then
describe our pre-training approach.

3.1 Model Overview
To motivate our model architecture, we enumerate
three desired properties:

i. Dual Image & Text Encoders. As referenced in
Section 2, two-stream / dual-encoder architectures
are more efficient for cross-modal retrieval than
single-stream architectures. With dual encoders,
candidate embeddings can be retrieved using a
lightweight similarity function (e.g., dot product)
with a particular query embedding.

ii. Dual Multimodal & Text Encoders. Key to our
pre-training procedure is the alignment of multi-
modal representations with image representations.
This setup is useful for the downstream task of im-
age retrieval with text feedback: a target image is
retrieved given an image with text feedback. We
desire an architecture that is dual-stream with re-
spect to a hybrid-modal input (image and text) and
another image.

iii. Multimodal Decoder for Text Generation. For
captioning tasks, we need to generate text given
image input. Thus, we desire that the architecture
contains a multimodal decoder.

To satisfy (i) and (iii), prior work (Li et al.,
2022) has used a mixture of unimodal encoders

and encoder-decoders; more recently, Yu et al.
(2022a) demonstrated the effectiveness of using
single decoder-based model; a decoder can be used
for generation, but can also provide global repre-
sentations given a whole sequence.

Building upon this result, our architecture is
decoder-based, and consists of three modules: a vi-
sual encoder V , a text decoder T , and a multimodal
decoder M. For V , we use a convolutional network.
We obtain image token representations from the in-
termediate outputs of the convolutional network
(i.e., the output of layers 3 and 4 in a ResNet-50,
following Kim et al. (2021)). We obtain pooled rep-
resentations from V using average pooling over the
final feature map. We use a multi-layer transformer
architecture for T and M. Each layer consists of a
causal multi-headed self-attention module followed
by a feed-forward network and layer normalization.
For M, we also include a cross-attention layer be-
tween the image representation and the outputs of
the causal self-attention. We extract pooled repre-
sentations from T or M using the output of corre-
sponding to an [EOS] token (which has attended to
all prior tokens).

Our architecture has the following modes:

(a) Aligner / Captioner. This mode can align
cross-modal representations or caption an image.
For alignment, we input a caption to T and an im-
age to V , extracting the pooled representations. For
captioning, we pass the outputs of T to M and
condition M on the image via cross attention.

(b) Relative Captioner. In this mode, we can in-
put a text (e.g., a relative caption comparing two
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images) into T and two image representations into
M. We use a gated, second cross-attention mecha-
nism for the second image input. The second cross
attention module is computed on the output of the
first cross attention. The multimodal decoder can
be trained to generate a relative caption conditioned
on images.

(c) Fuser. This mode can fuse an image and text,
and align the results with another image. We input
a relative caption to T , a reference image represen-
tation to M via cross attention, and a target image
into V . The pooled representation of the target can
be aligned with the fused representation from M.

The three modes repurpose the same components
which allows us to share parameters among modes.
We prepend text inputs with a special token indi-
cating which of the three modes the architecture
is operating in. Following prior VLP work (Lu
et al., 2019; Li et al., 2020; Su et al., 2020; Li et al.,
2021a, 2022), we initialize our model with BERT
encoder weights (Devlin et al., 2019). As BERT
does not have cross-attention parameters, they are
learned from scratch.

3.2 Pre-training Objectives
Image-text pairs are a common choice for pre-
training vision-language systems; these pairs can
be mined or repurposed from existing datasets,
such as captioning datasets. As described in Sec-
tion 4.1, we repurpose a set of fashion datasets to
form a pre-training dataset D consisting of fashion
image-text pairs. We use D for domain-specific pre-
training. This section describes our pre-training
tasks, which include two tasks based on paired data
(Section 3.2.1), as well as two novel tasks based on
triplet data (Section 3.2.2). Implementation details
are given in Appendix A.

3.2.1 Pre-training with Pairs
Cross-Modal Contrastive Learning (CMC). To
align the representations of images with their cor-
responding texts, we use a cross-modal contrastive
loss. Given an image I and a text T , we extract
the pooled feature vectors i and t from the visual
encoder V(I) and the text encoder T (T ). We then
project i and t to a normalized lower-dimensional
joint embedding space using two learned linear
transformations, f and g. We measure the similar-
ity between i and t as

κ(i, t) = f(i)T g(t).

We can push the embeddings of matched images
and texts together according to this similarity met-
ric, and unmatched embeddings further apart, by
applying the following bidirectional InfoNCE loss
(van den Oord et al., 2018; Zhang et al., 2020):

LCMC =− 1

B

B∑

j=1

(
log

exp(κ(i(j), t(j)))
∑B

k=1 exp(κ(i
(j), t(k)))

+ log
exp(κ(i(j), t(j)))

∑B
k=1 exp(κ(i

(k)), t(j)))

)
.

where B is a sample of indices from our pretraining
dataset D. We use the Aligner / Captioner mode of
our architecture for this task.

Image Caption Language Modeling (ICLM).
In addition to alignment, we encourage the model
to gain image-grounded text generation capabilities.
We use a language modeling loss that maximizes
the conditional probability of a caption T (j) given
an image I(j):

LICLM = − 1

B

B∑

j=1

|T (j)|∑

k=1

logPM(T
(j)
k | T (j)

<k , I
(j))

where T
(j)
k refers to the kth token, and T

(j)
<k refers

to the context history of tokens. As with the CMC
task, we use the Aligner / Captioner mode of our
architecture.

3.2.2 Pre-training with Triplets
Taking inspiration from the way users utilize com-
parisons when browsing products (e.g., looking at
a product, having a desired change in mind, and
identifying a new product), we hypothesize that
(image, text, image) triplets can be used to build
additional multimodal capabilities into the model
beyond cross-modal tasks like CMC and ICLM.

Below, we describe two pre-training objectives
that assume access to triplets (Iref, Trel, Itgt), where
Itgt is a target image and Trel is a relative caption
describing the difference between Itgt and some
reference image Iref. Note we only have access to
image-text pairs in D; we describe how we con-
struct these triplets from pairs in Section 3.3.

Hybrid-Modal Contrastive Learning (HMC).
We propose a pre-training task, using the Fuser
mode of the architecture, that aligns the fused rep-
resentation of Iref and Trel with the unimodal repre-
sentation of Itgt. Intuitively, this would imbue the
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( )
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Figure 3: Two examples of pseudo-triplets. From a
reference image-text pair, we find a target image-text
pair and then construct a relative caption for the two
images.

model with the ability to modify Iref in embedding
space, as specified by Trel.

We project the pooled features m and it of
the multimodal and target image embeddings
M(Iref, Trel) and V(Itgt) using two learned linear
transformations, h and f respectively. We measure
the similarity between m and it as

κ′(m, it) = h(m)T f(it).

We then apply the following contrastive loss:

LHMC =− 1

B

B∑

j=1

log
exp(κ′(m(j), it

(j)))
∑B

k=1 exp(κ
′(m(j), it

(k)))
.

Relative Caption Language Modeling (RCLM).
We additionally apply a language modeling loss,
using the Relative Captioner mode of our archi-
tecture, that maximizes the conditional probability
of a relative caption given a reference and a target
image:

LRCLM =− 1

B

B∑

j=1

|T (j)
rel |∑

k=1

logPM(T
(j)
rel,k | T (j)

rel,<k, Iref, Itgt).

3.3 Constructing Pseudo-Triplets
Collecting additional pre-training data for the
triplet-based tasks would be expensive, thus we
aim to construct triplets purely from the paired
image-text data. We propose a simple approach for
generating weakly supervised pseudo-triplets.

We iterate through each image-text pair in D,
treating it as a reference (Iref, Tref). As in Figure 3,

Name # Pairs

FACAD (Yang et al., 2020) 888K
Fashion-Gen (Rostamzadeh et al., 2018) 260K
Fashion200K (Han et al., 2017) 172K
Shopping100K (Ak et al., 2018) 100K
DeepFashion (Liu et al., 2016) 26K

Table 1: Breakdown of the pre-training dataset.

for each reference, we select a target image-text
pair (Itgt, Ttgt), then construct a relative caption as
a function rel of the two captions, Tref and Ttgt. We
use (Iref, rel(Tref, Ttgt), Itgt) as our pseudo-triplet.

Selecting Targets. Intuitively, we want Iref and
Itgt to be related (such that there are some shared
properties of the reference and the target item) but
not identical (so the relative caption would be mean-
ingful). To do this, for a given reference (Iref, Tref),
we find

argminj∈S∆((Iref, Tref), (I
(j), T (j)))

where ∆ is a similarity metric and S is a set of
indices sampled from the indices in D, and set
(Itgt, Ttgt) = (I(j), T (j)). We use the following
metric:

∆((I, T ), (I ′, T ′)) =− λ1 · κ(ϕI(I), ϕI(I
′)))

− λ2 · κ(ϕI(T ), ϕT (T
′))

+ λ3 · d(T, T ′),

where ϕI and ϕT are feature extractors for image
and text, d is the token-wise Hamming distance (for
nouns, adjectives, and participles), κ is cosine sim-
ilarity, and λ1, λ2, and λ3 are scalar weights. We
use frozen feature extractors: ResNet-50 (He et al.,
2016) for ϕI and all-MiniLM-L12-v2 (Reimers and
Gurevych, 2019) for ϕT . The intuition behind our
choice for ∆ is that pairings should be visually sim-
ilar, and texts should be semantically similar and
have token overlap.

Constructing Relative Captions. To construct
a relative caption Trel, we design a function rel
of the reference and target captions Tref and Ttgt.
Our goal is to describe the difference between both
images such that HMC and RCLM are empirically
helpful for our downstream tasks. By training M to
match the fused representation of an image Iref and
relative caption Trel, we would be adding fusion
capability to M (with no extra data) and potentially
getting stronger representations of image and text.
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Method Image-to-Text Text-to-Image AverageR@1 R@5 R@10 R@1 R@5 R@10

VSE (Kiros et al., 2014) 4.01 11.03 22.14 4.35 12.76 20.91 12.53
VSE++ (Faghri et al., 2018) 4.59 14.99 24.10 4.60 16.89 28.99 15.69
SCAN (Lee et al., 2018) 4.59 16.50 26.60 4.30 13.00 22.30 14.55
PFAN (Wang et al., 2019) 4.29 14.90 24.20 6.20 20.79 31.52 16.98
CLIP, 0-shot (Radford et al., 2021a) 18.56 37.86 51.02 16.78 37.92 50.22 35.39
ViLBERT (Lu et al., 2019) 20.97 40.49 48.21 21.12 37.23 50.11 36.35
VLBERT (Su et al., 2020) 19.26 39.90 46.05 22.63 36.48 48.52 35.47
ImageBERT (Qi et al., 2020) 22.76 41.89 50.77 24.78 45.20 55.90 40.22
FashionBERT (Gao et al., 2020) 23.96 46.31 52.12 26.75 46.48 55.74 41.89
OSCAR (Li et al., 2020) 23.39 44.67 52.55 25.10 49.14 56.68 41.92
Kaleido-BERT (Zhuge et al., 2021) 27.99 60.09 68.37 33.88 60.60 68.59 53.25
FaD-VLP (Ours, w/o CLIP init.) 59.88 83.64 91.52 55.24 83.18 91.30 77.46
FaD-VLP (Ours) 64.30 86.78 93.48 58.66 84.92 91.58 79.95

Table 2: Results for Image-Text / Text-Image Retrieval (ITR / TIR) on Fashion-Gen (Rostamzadeh et al., 2018).

Method Dress Shirt Toptee AverageR@10 R@50 R@10 R@50 R@10 R@50

TIRG (Vo et al., 2019) 14.13 34.61 13.10 30.91 14.79 34.37 23.66
CIRPLANT (Liu et al., 2021) 17.45 40.41 17.53 38.81 21.64 45.38 30.20
CoSMo (Lee et al., 2021) 21.39 44.45 16.90 37.49 21.32 46.02 31.25
FashionVLP (Goenka et al., 2022) 26.77 53.20 22.67 46.22 28.51 57.47 39.14
DCNet (Kim et al., 2021) 28.95 56.07 23.95 47.30 30.44 58.29 40.84
FaD-VLP (Ours, w/o CLIP init.) 29.15 55.97 23.45 46.61 30.85 57.57 40.60
FaD-VLP (Ours) 32.08 57.96 25.22 49.71 33.20 60.84 43.17
Prog. Lrn. - RN-50 (Zhao et al., 2022)† 29.00 53.94 35.43 58.88 39.16 64.56 46.83
Prog. Lrn. - ViT-B/32 (Zhao et al., 2022)† 33.60 58.90 39.45 61.78 43.96 68.33 51.01

Table 3: Results for Image Retrieval with Text Feedback (IRTF) on Fashion IQ (Wu et al., 2021). † refers to
concurrent work on fashion vision-language pre-training.

We use a simple and lightweight procedure for
the rel function. We extract the first sentence from
Tref and Ttgt, and perform part-of-speech tagging.
We filter out all tokens that do not function as
nouns and adjectives in the caption, as well as all
tokens that occur less than 500 times over the en-
tire dataset. This leaves us with a noisy list of
“attributes” for each image.

Next, we remove tokens that overlap between
reference tokens and target tokens. This step re-
moves some of the redundancy (at the token level)
between the reference and target captions, as rel-
ative captions would not need to mention aspects
in the target image that are unchanged from the
reference image.

We use the remaining reference tokens and target
tokens to fill a randomly selected template of the
form “change <ref_tokens> to <tgt_tokens>,”
“<tgt_tokens> instead of <ref_tokens>,” etc.
While our goal is not to produce fully grammatical
or complete relative captions, we found most con-
structed sentences are meaningful, as exemplified
in Figure 3. More importantly, they are effective at
improving pre-training.

3.3.1 Bootstrapping with Relative Caption
Generations

The RCLM pre-training task enables the model to
produce relative captions given two images. This
gives us the ability to sample new relative captions
at training time as a form of data augmentation. We
use nucleus sampling (with p = 0.9) to generate
more diverse relative captions. Functionally, this
step connects the Relative Captioner mode and the
Fuser mode of our architecture.

4 Experiments

In this section, we provide the details of our pre-
training dataset and downstream fashion tasks. Im-
plementation details are given in Appendix A.

4.1 Datasets
Our pre-training dataset is comprised of image-text
pairs from five fashion datasets: FACAD (Yang
et al., 2020), Fashion-Gen (Rostamzadeh et al.,
2018), Fashion200K (Han et al., 2017), Shop-
ping100k (Ak et al., 2018), and DeepFashion (Liu
et al., 2016). Each of these datasets contains data
sourced from fashion catalogues. In total, our pre-
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Method Category Subcategory
Acc. F1 Avg. Acc. F1 Avg.

ImageBERT
(Qi et al., 2020)

90.77 69.9 80.3 80.11 57.5 75.0

FashionBERT
(Gao et al., 2020)

91.25 70.5 80.9 85.27 62.0 77.9

OSCAR
(Li et al., 2020)

91.79 72.7 82.2 84.23 59.1 78.5

Kaleido-BERT
(Zhuge et al., 2021)

95.07 71.4 83.2 88.07 63.6 79.7

FaD-VLP (Ours)
[w/o CLIP init.]

97.90 89.3 93.6 93.53 83.2 91.4

FaD-VLP (Ours) 98.32 89.5 93.9 93.37 83.2 91.5

Table 4: Results for Category / Subcategory Recognition
(CR / SR) on Fashion-Gen (Wu et al., 2021).

training dataset consists of 1.4M image-text pairs,
with the breakdown as listed in Table 1. Further
description is given in Appendix A.

Following Gao et al. (2020) and Zhuge et al.
(2021), we use the Fashion-Gen dataset for our
cross-modal retrieval, captioning, and multimodal
categorization tasks. We use Fashion IQ (Wu et al.,
2021) for our image retrieval with text feedback
task and our relative captioning task. Fashion IQ
contains 18K (reference image, text feedback, tar-
get image) training triplets and 6016 validation
triplets over three categories: Dress, Shirt, and
Toptee. Each (reference image, target image) pair is
human-annotated with two relative captions, which
are concatenated together (Wu et al., 2021).

4.2 Downstream Tasks

We fine-tune the pre-trained model on 7 down-
stream tasks, which are defined as follows.
Image-to-Text Retrieval (ITR) and Text-to-
Image Retrieval (TIR). Given a gallery ΘI,T of
fashion image-text pairs (I, T ), and a query image
Iq (or query text Tq), retrieve the corresponding
text Tq (or image Iq). We train these tasks with the
CMC loss.
Image Retrieval with Text Feedback (IRTF).
Given a gallery ΘI of fashion images I , a refer-
ence image Iref, and a relative caption Trel, retrieve
the target image Itgt that most closely applies Trel

to Iref. We train this task with the HMC loss.
Category Recognition (CR) and Subcategory
Recognition (SR). Given an image Iq and a list
of categories (or subcategories) C, predict the
category (or subcategory) c into which Iq falls.
Example categories include {SNEAKERS, JEANS}
and and example subcategories include {SILKS &
CASHMERES, HEELED SANDALS}. We train these

Method B M R C Sum

FashionBERT
(Gao et al., 2020)

3.3 9.8 29.7 0.3 45.8

OSCAR
(Li et al., 2020)

4.5 10.9 30.1 0.31 48.6

Kaleido-BERT
(Zhuge et al., 2021)

5.7 12.8 32.9 0.33 54.7

FaD-VLP (Ours)
[w/o CLIP init., PT]

29.3 28.6 54.5 1.41 126.6

FaD-VLP (Ours)
[w/o PT]

31.0 29.6 55.8 1.55 131.9

FaD-VLP (Ours) 31.1 29.7 56.0 1.56 132.4

Table 5: Results for Image Captioning (IC) on Fashion-
Gen (Rostamzadeh et al., 2018).

Method B M R C Sum

Decoder Baseline 13.2 17.3 38.9 0.7 76.5
w/o CLIP init, Triplet
PT, Pair PT

13.3 17.4 39.0 0.71 76.7

w/o Triplet PT, Pair PT 13.4 17.6 39.2 0.73 77.5
w/o Triplet PT 13.8 18.4 39.6 0.78 79.5
FaD-VLP (Ours) 14.5 18.6 40.8 0.8 82.0

Table 6: Results for Relative Image Captioning (RIC)
on Fashion IQ (Wu et al., 2021).

tasks with categorical cross entropy loss.
Image Captioning (IC). Given a fashion image Iq,
generate a descriptive caption Tq. We train with
the ICLM loss.
Relative Image Captioning (RIC). Given a refer-
ence image Iref and a target image Itgt, generate a
text Trel describing Itgt relative to Iref. We train this
task with the RCLM loss.

Evaluation Metrics For ITR, TIR, and IRTF, we
follow prior work (Kim et al., 2021; Zhuge et al.,
2021) and evaluate the retrieval performance using
Recall@K, or the percentage of queries for which
the correct target is retrieved within the top K re-
sults. For CR and SR, we follow (Zhuge et al.,
2021) and report accuracy and the macro-F1 score
over all categories (or subcategories). For IC and
RIC, we report BLEU-4 (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), ROUGE-L
(Lin, 2004), and CIDEr (Vedantam et al., 2015), ab-
breviated B, M, R, and C respectively; C is rescaled
from 0–10 to to 0–100 before calculating the ag-
gregate Sum metric. In our ablation study (Table
7), we use the aggregate metrics for each task.

5 Results & Discussion

This section describes our results on our down-
stream tasks and an ablation study.
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CLIP CMC ICLM HMC RCLM Boot Sum IRTF ITR TIR CR SR IC RIC

(1) 528.73 31.93 54.97 56.97 93.67 87.86 126.59 76.74
(2) ✓ ✓ 546.09 38.00 58.18 61.14 94.50 89.38 125.52 79.37
(3) ✓ ✓ ✓ 546.48 39.83 58.38 61.48 93.03 88.73 125.39 79.64
(4) ✓ ✓ ✓ ✓ 551.51 39.96 59.26 62.04 93.95 88.73 125.70 81.87
(5) ✓ ✓ ✓ ✓ ✓ 552.07 40.60 58.82 61.83 93.58 89.45 126.07 81.72
(6) ✓ 546.62 35.62 58.55 60.58 93.74 88.77 131.87 77.49
(7) ✓ ✓ 551.86 37.20 59.68 63.00 93.20 88.20 131.97 78.61
(8) ✓ ✓ ✓ 562.12 40.66 61.18 64.42 94.25 89.29 132.78 79.54
(9) ✓ ✓ ✓ ✓ 564.38 42.20 62.34 66.37 93.83 88.64 132.05 78.95
(10) ✓ ✓ ✓ ✓ ✓ 566.17 42.52 61.03 65.48 93.93 88.55 132.54 82.12
(11) ✓ ✓ ✓ ✓ ✓ ✓ 569.81 43.17 62.87 67.05 94.05 88.30 132.39 81.98

Table 7: Ablation on our pre-training objectives, with the aggregation metrics for each of our 7 downstream tasks
and a meta-sum. CLIP refers to CLIP initialization; CMC, ICLM, HMC, and RCLM are pre-training tasks; Boot
refers to bootstrapping.

5.1 Comparison with SOTA Models

We compare FaD-VLP to existing work on our
set of 7 downstream tasks: ITR/TIR (Table 2),
IRTF (Table 3), CR/SR (Table 4), IC (Table 5),
and RIC (Table 6). For ITR and TIR, FaD-VLP
outperforms prior methods by a large margin, in-
cluding methods with generic VLP (Li et al., 2020).
We also include zero-shot retrieval results with a
CLIP ResNet-50 encoder as a baseline. We show
results of FaD-VLP with and without CLIP visual
encoder initialization, indicating that the gain from
fashion domain-specific pre-training is amplified
when used on top of generic VLP. We see a similar
trend for IRTF, where we see a gain of +2.5 on the
Average metric when generic and domain-specific
pre-training are coupled. FaD-VLP is competitive
with state-of-the-art models on IRTF that use a
comparable ResNet-50 visual encoder (Kim et al.,
2021; Zhao et al., 2022). Zhao et al. (2022) is a
concurrent work on multistage vision-language pre-
training; while it focuses only on the IRTF task, it
shows gains of fashion-specific pre-training on top
of a CLIP visual and textual encoder, and also sees
benefits in scaling up to the larger ViT encoder.
Additionally, we illustrate the effectiveness of FaD-
VLP on another understanding task: multimodal
categorization. Results on CR and SR indicate that
the global fused representations are better for pre-
dicting categories and fine-grained subcategories
after domain-specific pre-training.

Previous methods that evaluated IC were
encoder-based: while these models, e.g., (Zhuge
et al., 2021), are evaluated on both ITR/TIR and
IC, the IC performance was suboptimal because
these methods used sequential Masked Language
Modeling predictions for generating text at infer-

ence time. Our results highlight the benefit of our
decoder-based architecture (even without CLIP ini-
tialization or domain-specific pre-training), which
is effective at ITR/TIR and IC. We see additional
gains with generic VLP and domain-specific VLP.
For RIC, we compare to a decoder baseline that
concatenates the two input image representations
and uses a single cross attention mechanism (with
a CLIP initialization on the visual encoder). The
RIC results further highlight the effectiveness of
triplet pre-training on top of paired pre-training and
CLIP initialization.

5.2 Effect of Pre-training Tasks

We conduct a thorough ablation study on the pre-
training tasks to analyze the impact of our various
pre-training objectives (Table 7).

Effect of Paired Pre-training. Our paired pre-
training tasks (CMC and ICLM) provide a clear
stepwise improvement on IRTF, ITR, TIR, and RIC
(see lines (1), (2) and (6)-(8)), while the individual
gains are less evident in the IC, CR, and SR tasks.

Effect of Triplet Pre-training. Although the
triplet pre-training tasks (HMC and RCLM) use
no additional data, we find that they provide fur-
ther improvement on top of the paired pre-training
tasks (see lines (2)-(4) and (8)-(10)). This occurs in
IRTF, where the triplet tasks lead to approximately
2 point gain, as well as ITR and TIR, where they
lead to a 3 point gain (when used on top of the CLIP
initialization). RIC also sees a gain with triplet pre-
training of above 2.3 points. There appear to be
smaller gains for IC, CR, and SR.

Effect of Bootstrapping. We additionally exper-
iment specifically with the effect of bootstrapping
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FeedbackReference

Is blue print 

with short 

sleeves 

Is blue print

Top 5 Results

Is green and 

black plaid 

Is green and 

black checked

Target

Has longer 

lace sleeves 

in white 

Is longer 

sleeved

Has an animal 

print 

Has cheetah 

print

GenerationReference Target

Is light colored 

with shorter 

sleeves 

Leopard print 

with deeper neck

Is more flair and 

smaller print 

Is shorter

Is black and 

white striped 

Is black and 

white

Is black with 

a black belt 

Is black and 

shorter

Is darker and 

shorter in length 

Is sleeveless

Ground Truth
Image Retrieval with Text Feedback Relative Image Captioning

Figure 4: (Left) Examples of the top 5 results for three examples from FashionIQ on IRTF. For each reference image
in FashionIQ, there are two pieces of text feedback. (Right) Examples of generations for three reference-target pairs
in the RIC task.

in the generation of relative captions (in which we
feed samples from the multimodal decoder in the
Relative Captioner mode to the HMC task in the
Fuser mode). We find that bootstrapping yields a
small benefit for IRTF, ITR, and TIR (see line (5)
and (11)), indicating that the global representations
may become more robust to noise when the Fuser
is trained with more diverse relative captions.

5.3 Qualitative Results

We visualize results on IRTF and RIC in Figure 4.
These examples illustrate the trained model’s abil-
ity to handle some compositional changes (e.g.,
adding a blue print as well as short sleeves). They
also illustrate the model’s ability to handle changes
to certain mentioned attributes while not changing
unmentioned attributes; for example, adding a blue
print and short sleeves does not alter the length
of the dress. Retrieving the target item in the top
results is still challenging since the text may not
sufficiently describe the target image (e.g., there are
multiple white tops with lace sleeves) and because
of the fine-grainedness of the changes described
(e.g., only the sleeves should be lace). The RIC
task is similarly challenging because there are mul-
tiple axes along which two images can differ, and
often the ground truth may describe only one (e.g.,
“is sleeveless”). Compared to the ground truth rel-
ative captions, the model tends to generate more
concrete relative captions (e.g., involving color or
relative length) rather than less concrete descriptors
(e.g., “more flair”).

6 Conclusion

Our work introduces a novel fashion-specific pre-
training framework based on weakly-supervised
triplets, constructed from paired fashion image-text
data, and flexible decoder-based model architecture
capable of both retrieval and captioning tasks in
fashion. Our approach outperforms baselines on
a diverse set of fashion tasks and highlights the
value of fashion-specific pre-training, as well as
the promise of triplet-based pre-training.

Limitations

Although fashion is a huge global industry, our ex-
periments have been limited primarily to Western
fashion styles with English language descriptions.
It is likely that other clothing types contain prop-
erties that affect the performance of our method
(e.g., different categories of attributes and differ-
ent degrees of variation between products) and that
other languages are less amenable to our token-
wise method for constructing relative captions. Ad-
ditionally, while this system sees gains from pre-
training, corresponding limitations arise as well:
we require several GPUs to pre-train FaD-VLP and
to fine-tune it on our downstream tasks. Building
smaller, more resource-efficient models with the
same performance is an open question. We discuss
broader limitations in the following section.

Broader Impact

Our model is motivated by e-commerce appli-
cations, and demonstrates good performance on
benchmarks, but it is not suitable for deployment
or commercial use in its current form. It likely car-
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ries biases present in its training data: the texts in
its pre-training dataset were sourced from human-
provided descriptions, the human models are from
shopping catalogues, and the distribution of fash-
ion items in the datasets reflect societal stereotypes
and expectations about characteristics such as gen-
der. The technology presented in this paper could
be used to support interactive shopping assistants,
which have the potential to help users locate items
that match their preferences. However, style is a
personal, subjective form of self-expression, and
so further research could focus on individualizing
results to particular users.
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A Training Details

This section describes our implementation and
training details for pre-training and fine-tuning on
each downstream task.

Implementation. In our model, we use a ResNet-
50 image encoder (He et al., 2016) initialized from
CLIP (Radford et al., 2021b). We initialize the text
and multimodal decoder from BERT-base (Devlin
et al., 2019), using the first 6 layers for the text
decoder and the second 6 layers for the multimodal
decoder. The dimensionality of our joint embed-
ding space is 2048. We implement our models in
PyTorch (Paszke et al., 2019) and pre-train on two
8 GPU NVIDIA A100 nodes.
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Pre-training Datasets. In the table below, we
show statistics for the 5 datasets we use in our pre-
training dataset. For datasets that are split into train
and validation, we only use the training set.

Name # Pairs # Tokens

FACAD 888K 21.15 ± 4.49
Fashion-Gen 260K 37.35 ± 14.70
Fashion200K 172K 4.84 ± 1.32
Shopping100K 100K 20.00 ± 3.99
DeepFashion 26K 53.03 ± 19.02

Table 8: Statistics for datasets in our pre-training dataset:
the number of image-caption pairs and the mean ±
std. number of tokens per caption. Token statistics are
calculated on a sample of 10K entries.

Below, we describe each dataset briefly:
FACAD (Yang et al., 2020) is a dataset of fash-
ion images and descriptions crawled from the web,
with 888K pairs in its training set.
DeepFashion (Liu et al., 2016) consists of diverse
clothing images with different annotation types.
We use the 26K images and descriptions in the
In-shop Clothes Retrieval benchmark, which is
sourced from an online catalogue. We use a con-
catenation of the color annotation and in-shop de-
scription as the caption.
Shopping100k (Ak et al., 2018) consists of 100K
pairs of fashion images and attributes that are col-
lected from meta-data on shopping websites. Each
image has at least 5 structured attributes, which
we concatenate to form a caption (e.g., t-shirt with
white color and jersey fabric and regular fit).
Fashion-Gen (Rostamzadeh et al., 2018) consists
of 260K fashion images and detailed descriptions,
annotated by professional stylists, in its training set.
The image span 48 categories and 121 fine-grained
subcategories.
Fashion200K (Han et al., 2017) consists of 172K
clothing images in its training set along with de-
scriptions from shopping websites. We exclude 15
pairs (0.0087%) that have broken image links. We
use a concatenation of the attribute annotations as
the caption.

After assembling pre-training dataset, we hold
out a random split of 3% of the data (for any vali-
dation needed on pre-training data). Our final pre-
training dataset has 1.4 million image-text pairs.

Pre-training Details. We have two pre-training
stages, one for paired pre-training and the second
for paired pre-training plus triplet pre-training; we

found the two-stage setup to be more effective than
a single stage. For both stages, we sum the appro-
priate losses. We can calculate CMC/ICLM from
a single image-text pair and HMC/RCLM from a
single triplet (with the same reference image as the
pair). For pre-training, we use the Adam optimizer
with a learning rate of 10−5. We use a batch size
of 512 split over 2 nodes with a total of 16 GPUs.
In the first stage of pre-training (paired pre-training
tasks), we train for 82K steps, taking approximately
1.5 days. In the optional second stage (paired pre-
training plus triplet pre-training tasks), we train for
55K steps, which takes another approximately 1.5
days. Our model has 1.9× 108 parameters. We use
the following preprocessing/data augmentations on
the images: resize to 224× 224 pixels with a ran-
dom crop, that has random scaling between 0.8 and
1.0 and aspect ratio between 0.75 and 1.3, along
with a random horizontal flip. We use the same
preprocessing for downstream fine-tuning.

For constructed triplets, we use |S| = 1000, and
we weight the three metrics in ∆ to have approxi-
mately equal relative weight by setting set λ1 = 1,
λ2 = 1, and λ3 = 1

16 . We use nltk (Bird et al.,
2009) for word and sentence tokenization. We sam-
ple from the following templates when construct-
ing relative captions: {modify <r> to be <t>,
<t> instead of <r>, change <r> to <t>, and
replace <r> with <t>} where <r> and <t> rep-
resent the reference and target tokens respectively
from the procedure from Section 3.3. If either <r>
or <t> is empty, we run the procedure again on the
next sentence in the reference and target captions.

B Fine-tuning Details

We provide details on our fine-tuning stage for each
downstream task below. For all tasks, we use a
batch size of 128 distributed over 4 GPUs.

ITR/TIR. We use the Adam optimizer with a
learning rate of 10−5 and fine-tune for up to 120K
steps. Fine-tuning takes approximately 20 hours.

IRTF. We use the Adam optimizer with a
warmup learning rate of 10−6 for 140 steps, fol-
lowed cosine decay from 3×10−5 over 4,100 steps.
Fine-tuning takes about 1.5 hours. In our ablation,
we found that models without pre-training take
longer to converge for this task; to strengthen our
baseline comparison, we train these for 25K steps,
which takes approximately 5 hours.
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CR/SR. We use the Adam optimizer with a learn-
ing rate of 10−5 and fine-tune for up to 81K steps.
Fine-tuning takes approximately 14 hours.

IC. We use the Adam optimizer with a learning
rate of 10−5 and fine-tune for up to 40K steps. Fine-
tuning takes approximately 7 hours.

RIC. We use the Adam optimizer with a learning
rate of 10−5 and fine-tune for up to 3K steps. Fine-
tuning takes approximately 1 hour.

C Evaluation Details

This section describes our evaluation pipeline for
the 7 downstream tasks.

ITR/TIR. We evaluate cross-modal retrieval on
Fashion-Gen (Rostamzadeh et al., 2018). We com-
pare to the results reported by Zhuge et al. (2021)
and for fair comparison, follow their evaluation
protocol, which works as follows. For each im-
age (or text) query in the evaluation set of 32,528
queries, the model is to pick the matched text (or
image) out of a sample of 101 candidates. The 101
candidates contain 1 correct match as well as 100
sampled texts (or images) from other products in
the same subcategory. If a subcategory has less
than 100 products, we sample the remaining neg-
ative examples from the same category. Since the
random sample of candidates for each query is not
released by the authors, we generate 5 random sam-
ples of candidates for our experiments and report
the average. Like Zhuge et al. (2021), we report
Recall@1, Recall@5, and Recall@10.

IRTF. We evaluate this task on Fashion IQ (Wu
et al., 2021) using the protocol laid out by the au-
thors and reused in other works (Kim et al., 2021).
For each category (Dress, Shirt, Toptee), there is a
set of evaluation queries (of size 2017, 2038, and
1961 respectively) as well as a gallery of candi-
dates (of size 3817, 6346, 5373 respectively) that
includes a correct match. We report Recall@5 and
Recall@10 on each of the three categories.

We note that there exist other evaluation
protocols for Fashion IQ (Chen et al., 2020a; Lee
et al., 2021). Some works report numbers for the
VAL protocol (Chen et al., 2020a) instead of (or
in addition to) the Original protocol, and so we
provide performance according to this protocol as
well below. We encourage future works to use the
Original protocol for consistent comparisons.

Dress Shirt Toptee AvgR@10 @50 R@10 @50 R@10 @50

37.18 64.25 34.94 61.68 42.53 71.34 51.99

CR/SR. These tasks are trained and evaluated
separately on classification into 48 categories or
121 subcategories in Fashion-Gen (Rostamzadeh
et al., 2018). We follow Zhuge et al. (2021) and
report accuracy and macro-F1 score.

IC/RIC. For IC, we evaluate BLEU-4, ME-
TEOR, ROUGE-L, and CIDEr scores using
pycocoevalcap1 following Zhuge et al. (2021).
We use the same evaluation metrics for RIC. As
Fashion IQ data contains two relative captions for
every (reference, target) pair, we predict two rel-
ative captions in RIC, and concatenate them with
“and”. We apply the same procedure to the ground-
truth relative captions before calculating the evalu-
ation metrics.

1https://github.com/LuoweiZhou/coco-caption
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