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Abstract
Language models (LMs) have been used in cog-
nitive modeling as well as engineering studies—
they compute information-theoretic complexity
metrics that simulate humans’ cognitive load
during reading. This study highlights a lim-
itation of modern neural LMs as the model
of choice for this purpose: there is a discrep-
ancy between their context access capacities
and that of humans. Our results showed that
constraining the LMs’ context access improved
their simulation of human reading behavior. We
also showed that LM-human gaps in context
access were associated with specific syntactic
constructions; incorporating syntactic biases
into LMs’ context access might enhance their
cognitive plausibility.1

1 Introduction

In computational psycholinguistics, human read-
ing behavior has been compared with various
complexity metrics to understand human sentence
processing (Crocker, 2007). Having historically
started from simple measures such as word length,
surprisal (− log p(word|context)) computed by
language models (LMs) has become a common
choice (Levy, 2008; Smith and Levy, 2013). On
top of this, the next question arises—which model
implementation and/or algorithm can compute sur-
prisal that successfully simulates human behavior?
In this line of research, modern neural LMs such
as Transformer (Vaswani et al., 2017) have been
analyzed with respect to their cognitive plausibil-
ity (Wilcox et al., 2020; Merkx and Frank, 2021;
Kuribayashi et al., 2021).

Despite their use in cognitive modeling, such
modern LM architectures (e.g., self-attention) are,
arguably, an unnatural choice when it comes to
human cognitive constraints; modern LM architec-
tures assume powerful, parallel access to a vast

1Our codes are available at � https://github.
com/kuribayashi4/context_limitation_cognitive_
modeling
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Figure 1: Relationship between psychometric predictive
power (PPP) of language models (LMs) and their con-
text access constraints. LMs with less context access
better simulate human reading behavior (higher PPP).
The marker color/shape indicates LM settings; colored
areas present one standard deviation of PPP.

number of context tokens, while humans might
have limited and selective context access (Hawkins,
1994; Gibson, 1998, 2000; Lewis et al., 2006).
Searching for a computational model that better
simulates human sentence processing than previ-
ously examined ones, we hypothesized that intro-
ducing such context limitations can improve LMs’
estimation of human cognitive load.

Specifically, as a starting point, we applied an
n-gram-ification trick to neural LMs mimicking
loading for long context access (locality effects)
and compared their surprisal with human reading
behavior data. Despite the simple context limita-
tion design, our experiments with 280 settings (40
LM settings×7 noise patterns) showed that the ad-
vantage of a shorter context was consistent among
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Neural model architecture Data size Training
steps

Tokenization Syntactic supervi-
sion

Context
length

Goodkind and Bicknell (2018); Aurnham-
mer and Frank (2019); Wilcox et al. (2020);
Hao et al. (2020); Merkx and Frank (2021);
Oh et al. (2021); Kuribayashi et al. (2021)

Wilcox
et al. (2020);
Kuribayashi
et al. (2021)

Kuribayashi
et al. (2021)

Wilcox et al.
(2020); Oh
et al. (2021)

Hale et al. (2018);
Yoshida et al.
(2021)

This
work

Table 1: Related studies exploring psychometric predictive power of neural models while separately controlling a
specific factor of their configuration.

LMs and typologically different languages (Fig-
ure 1). This showed that constraining the modern
LM’s context access is key to increasing their simi-
larity to the model of human reading.

Furthermore, expecting that humans’ context
limitations might be more complex than simple
distance-based erasure, we conducted exploratory
analysis of in which constructions longer/shorter
contexts were beneficial. We found that the con-
text limitation (dis)advantages were allocated in
specific syntactic constructions, suggesting that,
to build more cognitively plausible LMs, adding
syntactic biases in their context access could be
beneficial. From a psycholinguistic view, our re-
sults empirically highlight the memory account of
human sentence processing during naturalistic read-
ing (Futrell et al., 2020a).

2 Background

2.1 Human sentence processing
Humans incrementally process text and exhibit dif-
ferent processing costs (e.g., reading times) for
different tokens. Psycholinguistic theories on such
processing costs are divided between expectation-
based and memory-based perspectives.

Expectation-based theories claim that hu-
mans predict upcoming words during incremen-
tal sentence processing (Clark, 2013). Re-
cent studies have extensively analyzed this
expectation-based aspect by comparing surprisal,
− log p(word|context), to human reading behav-
ior (Hale, 2001; Levy, 2008; Wilcox et al., 2020).

On the other hand, memory-based theories have
asserted that human sentence processing is con-
strained by a limited cognitive resource (Gibson,
2000; Lewis and Vasishth, 2005; Lewis et al., 2006).
Cross-linguistic studies have reported that differ-
ent languages incur different memory decay during
reading (Konieczny, 2000; Vasishth et al., 2010;
Husain et al., 2014; Frank et al., 2016). Notably,
memory efficiency is also considered in exploring
the design (e.g., word order) and evolution of nat-

ural language (Greenberg, 1963; Chomsky, 2005;
Gibson et al., 2019; Hahn et al., 2020a,b).

Recently, Futrell and Levy (2017) and Futrell
et al. (2020a) have proposed integrating the two
theories through the concept of lossy-context sur-
prisal—next-word probabilities calculated with
noisy context should better predict human reading
behavior than with complete context. These studies
have focused on its theoretical aspects and explain-
ing a specific phenomenon (e.g., verb forgetting);
on top of this, our study demonstrates the theory’s
broad benefit in modeling naturalistic reading data.

Notably, such a simulation of human cognitive
load also contributes to achieving text readability
assessment (Ambati et al., 2016). Furthermore,
human-like agents are necessary in in silico simu-
lation studies on language evolution (Galke et al.,
2022; Rita et al., 2020; Ueda and Washio, 2021).

2.2 Cognitive plausibility of LMs

Surprisal from certain LMs could predict human
reading behavior well; thus, what type of LM does
better simulate human reading behavior? LM-
based analyses have typically explored inductive
biases, such as LM architecture (Table 1). We focus
on context limitation as an alternative factor.

Studies comparing the cognitive plausibility of
LM architectures also addressed, albeit implic-
itly, context access abilities (Aurnhammer and
Frank, 2019; Merkx and Frank, 2021). For exam-
ple, simple recurrent neural networks assume rela-
tively weak context access, whereas Transformer
LMs (Vaswani et al., 2017) assume stronger ac-
cess than those (Michaelov et al., 2021; Merkx
and Frank, 2021). In addition, studies contrasted
count-based n-gram LMs and neural LMs (Wilcox
et al., 2020; Hao et al., 2020; Goodkind and Bick-
nell, 2018); however, (i) count-based versus neural-
based estimation and (ii) partial versus full context
access were not distinguished. By contrast, we
fixed the architectures and investigated the exact
effect of context access with input deletion.
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3 Methods

We investigate how human-like neural LMs be-
come with more or less context at their input.
Specifically, we measured the psychometric pre-
dictive power (PPP) of lossy-context LM surprisal
for gaze duration modeling. In the following sec-
tions, we describe each measure in detail.

3.1 Psychometric predictive power

In this study, the cognitive plausibility of a model
θ is measured via the similarity between its sur-
prisal and human gaze duration across words based
on surprisal theory (Smith and Levy, 2013; Levy,
2008). Here, the surprisal of a word computed by
a model θ, − log pθ(word|context), is compared
with the corresponding word’s gaze duration.

Specifically, we measured the psychometric
predictive power (PPP) of surprisal values by
fitting two nested linear mixed-effects regression
models that predict gaze duration, one with sur-
prisal features and the other without. Here, the per-
token difference in their log-likelihoods (∆LogLik;
LogLik with surprisal minus LogLik without sur-
prisal) denotes PPP, following Goodkind and Bick-
nell (2018). The larger the PPP (∆LogLik), the
more useful the surprisal for modeling gaze dura-
tion, i.e., the model computes surprisal well corre-
lating with human behavior. See Appendix A for
detailed features used in regression modeling.

3.2 Lossy-context surprisal

Instead of the full-context surprisal, we inves-
tigate the PPP of surprisal conditioned by lim-
ited context − log pθ(word|lossy_context) to ex-
plore the cognitive plausibility of context-limited
LMs (Futrell et al., 2020a). The lossy-context sur-
prisal of the symbol wi given its preceding context
c<i = [w0, · · · , wi−1] is defined as follows:

Ilossy(wi, c<i, f)

= − log pθ(wi|<s> ◦ f([w0, · · · , wi−1])) , (1)

where θ denotes left-to-right LMs, <s> denotes the
beginning of a sequence, ◦ is a concatenation func-
tion, and f represents a noise function. The noise
function controls the LMs’ access to contextual
information by deleting the input of LMs with a
particular pattern. For example, if f is leaving only
the last two symbols, Ilossy corresponds to surprisal
from 3-gram LMs, and if f is an identity function,
Ilossy corresponds to unmodified surprisal.

Data sentLen contextLen wordLen

DC 17.8±11.7 13.0±10.1 1.3±0.7
BE 7.9±5.3 6.0±4.6 3.4±2.3

Table 2: Statistics of all the sentences in each corpus.
The values present mean±standard deviation; sentLen
denotes the number of words in a sentence, contextLen
denotes the number of preceding words within the same
sentence for each word, and wordLen denotes the num-
ber of subwords in each word.

Gaze duration is typically annotated in larger
spans such as words, while LMs’ input is at the
smaller levels (i.e., subwords). The lossy-context
surprisal of a span s = [wl, wl+1, · · · , wm] (0 ≦
l < m) was calculated as the cumulative surprisal
of its constituent subwords:

Ilossy(s, c<l, f) =

m∑

j=l

Ilossy(wj , c<j , f) . (2)

N -gram surprisal. As a starting point, based
on the assumption about human working memory
that distant context is hard to access (Lewis et al.,
2006), we explored surprisal given by LMs condi-
tioned on n− 1 preceding words (not subwords);
henceforth, this surprisal is referred to as n-gram
surprisal (a special case of lossy-context surprisal).
In Appendix B, we also explored a probabilistic ver-
sion of the noise inspired by Futrell et al. (2020a),
yielding consistent conclusions with our experi-
ments using n-gram surprisal.

3.3 Gaze duration
Gaze duration data were modeled by lossy-context
surprisal. To explore the cross-linguistic consis-
tency of our results, we used two typologically
different languages, English and Japanese; their
difference is introduced in the later paragraph.

Data. For English, we used the Dundee Corpus
(DC) (Kennedy et al., 2003). As its Japanese coun-
terpart, we used BCCWJ-EyeTrack (BE) (Asa-
hara et al., 2016). In both corpora, first-pass
gaze duration information was used. The aver-
age sentence/context lengths are shown in Table 2.
Note that while the English gaze duration annota-
tion is typically attached to space-separated words,
Japanese gaze duration annotation is attached to
each phrasal unit (bunsetsu; henceforth, “word”);
Japanese “words” contain more subwords than En-
glish words. Following Goodkind and Bicknell
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(2018), we excluded outliers such as words with
special characters (details in Appendix C). We used
212,649 data points from DC and 9,217 from BE.

Cross-linguistic analysis. English and Japanese
sentence structures differ in their branching direc-
tions; while English word order (SVO) has mixed
directionalities of head-initial and head-final de-
pendencies, Japanese word order (SOV) strongly
prefers head-final, left-branching constructions.
The dependency structures of the sentence “the dog
wagging its tail eats fish on the desk.” in English
and Japanese are contrasted below:2

(1) The dog wagging its tail ate fish on the desk.

(2) 尻尾を 振る 犬が 机の 上で 魚を 食べた。
tail wagging dog on desk fish ate

Such an asymmetry of structure has been re-
ported to incur different memory biases for sen-
tence processing (Konieczny, 2000; Nakatani and
Gibson, 2008; Vasishth et al., 2010; Futrell et al.,
2020a). Thus, we included typologically different
languages in our experiments.

4 Language models

We used two types of neural LMs for lossy-context
(n-gram) surprisal computation: (i) Wiki-LMs and
(ii) pretrained OpenAI GPT-2s (Radford et al.,
2019). Their hyperparameters are shown in Ap-
pendix D. Notably, using neural LMs makes the
comparison of long-context and short-context LMs
computationally tractable.3

4.1 Wiki-LMs

Model settings. We used three variants of unidi-
rectional neural LM architectures: LSTM-xs-Wiki
(27M parameters) (Hochreiter and Schmidhuber,
1997), GPT2-xs-Wiki (29M), and GPT2-md-Wiki
(335M) (Vaswani et al., 2017). We trained each
LM with three different random seeds using the
Fairseq toolkit (Ott et al., 2019).

In both English and Japanese settings, the input
is split into subwords with byte-pair encoding (Sen-

2For simplicity, some functional words (e.g., “the,” “を”)
are merged into a single node.

3For example, if we use count-based LMs (Heafield et al.,
2013), even a single 5-gram Japanese LM took 27GB in model
size.

... <b> _was _also _the _first _hotel _in _Westchester
_County . <b> _on _4 _March _1990 _with _a _concert
_performed _by _Ell a _Fitzgerald _at _the _Royal _Al-
bert _Hal <b> _the _Har row <b> _On _the _night _of
_the _31 _May _/ _1 _June _1941 _he <b> ...

Table 3: An example of the modified training data,
where sub-sequences (with the same color) sampled
from the original corpus were randomly patched. The
special token (<b>) indicates the break of contextual
dependence between before and after.

nrich et al., 2016).4 Specifically, for the Japanese
data, we adopted two-stage segmentation to ensure
that multiple subwords compose a Japanese word
defined in a commonly used corpus (e.g., BE).5

That is, text was segmented in advance into mor-
phemes (Maekawa et al., 2014), and then a subword
tokenizer was applied to the morpheme-separated
texts. Details are in Appendix D.

Training data. For English, the training data
were approximately 4M sentences from the
WikiText-103 dataset (Stephen et al., 2016), and
for Japanese, the data were 4M sentences from
Wikipedia and news articles (approximately 0.5GB
data size in both English and Japanese). The sen-
tence order was shuffled, and duplicated sentences
were excluded.

Mitigating training-inference mismatches.
During n-gram surprisal computation, LMs
must predict the upcoming words with limited
context from the middle of a sentence, while such
a prediction is rarely enforced during ordinal
document-level training. Such a training-inference
mismatch could lead to confusion on whether our
results stem from the LM-human gap or biases
from the training/inference mismatch.

To handle such a potential mismatch, we mod-
ified the LM training data to make the language
modeling task more like n-gram one. Specifically,
we randomly split original sentences into smaller
chunks of various lengths and randomly patched
them by inserting a special token <b> in between
the chunks (see Appendix E for the detailed pro-
cess). Table 3 shows an example. In this modi-

4Note that there is some debate on the cognitive plausibility
of subwords (Oh et al., 2021; Anonymous, 2022); we consider
this issue to be out of the scope of this study.

5This procedure is common practice in Japanese NLP. See
https://github.com/himkt/awesome-bert-japanese.
We used Mecab (Kudo, 2006) with a unidic dictionary
(https://unidic.ninjal.ac.jp/) for morphological
analysis.
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Input length
Lang. Model full 20 10 7 5 3 2 ∆

En

GPT2-xl 5.6 5.7 5.6 5.8 6.2 6.8 7.4† 1.8
GPT2-lg 5.9 6.0 6.0 6.0 6.4 7.1 7.5† 1.6
GPT2-md 5.8 5.9 5.9 5.9 6.2 6.8 6.7† 0.9
GPT2-sm 6.9 7.0 6.9 6.9 7.1 7.5 7.6† 0.7
GPT2-md-Wiki 5.9 5.9 5.9 6.0 6.1 6.3 6.5† 0.6
GPT2-xs-Wiki 7.1 7.1 7.1 7.1 7.1 7.0 7.1 0.0
LSTM-xs-Wiki 7.4 7.4 7.4 7.3 7.4 7.4 7.5 0.1

Ja
GPT2-md-Wiki 8.1 8.1 8.3 8.6 8.4 9.3 10.0† 1.9
GPT2-xs-Wiki 10.7 10.7 10.8 11.0 10.8 12.5 12.8† 2.1
LSTM-xs-Wiki 10.6 10.6 10.6 10.7 10.6 11.8 11.9† 1.3

Table 4: Average PPP of n-gram surprisal; for example, the input length of 2 corresponds to the PPP of surprisal
computed by the neural LMs that take only the 2-gram context as input. For readability, values are multiplied by
1000. The 2-gram PPP with † is significantly higher than its corresponding full-context PPP. The ∆ column shows
the PPP gain from the full context to 2-gram context surprisal in each LM setting.

fied corpus, LMs must predict upcoming words by
severely limited usable context especially in the
data points immediately after the special tokens.
When computing n-gram surprisal, the <b> token
is set instead of <s> in Eq. 1. Note that this modifi-
cation does not change the total corpus size.

We trained the Wiki-LMs using this modified
data. In Section 5.1, we ablated the effect of this
training modification and showed that such careful
training makes the short-context advantage clearer.

4.2 Pretrained GPT-2s

To investigate large-scale LMs typically devel-
oped in NLP, we additionally used four variants
of pretrained English OpenAI GPT-2s (Radford
et al., 2019): GPT2-sm (117M params.), GPT2-md
(345M), GPT2-lg (774M), and GPT2-xl (1558M).
The input was split into subwords by their pre-
trained tokenizer with a vocabulary size of 50,257.
The training data were 40GB of web texts. The
potential training-inference mismatch is not han-
dled in the GPT-2 experiments due to the high re-
training cost; this point is partially addressed in
Section 5.1. Note that we did not use Japanese ver-
sions of pretrained GPT-2s since available models6

have a tokenizer that is inconsistent with the BE
annotation; 16.4% of word boundaries in the BE
were not separated by their pretrained tokenizer.

6https://huggingface.co/rinna/
japanese-gpt2-small

5 Experiments

Our experiments demonstrate how limiting con-
text access improved the PPP in LMs, i.e., their
surprisal becomes a more effective predictor for
human gaze duration (Section 5.1). As described
in Section 3.2, we applied distance-based noise
to the input (i.e., computing n-gram surprisal). A
potential training-inference mismatch bias is han-
dled (Section 5.2). Furthermore, we explored the
connection to existing studies (Section 7.2).

Settings. We measured the PPP of 40 LMs ({3
Wiki-LMs}×{3 seeds}×{2 languages}×{2 train-
ing settings}+{4 OpenAI GPT-2s}) with seven
noise patterns. Specifically, we explored the
{2, 3, 5, 7, 10, 20}-grams and full settings for each
LM, where full refers to using the entire sentence
(w0 to wi−1) as context. Note that only intra-
sentential context is used as the main focus of this
study is sentence-level syntactic processing.

5.1 PPP and input length

Shorter context improved or did not decrease
human likeness. The PPP of n-gram surprisal
in relation to input length n is shown in Figure 1
and Table 4. The English results show that using a
shorter context improved (OpenAI GPT-2s) or did
not hurt (Wiki-LMs) their human likeness. Notably,
we also conducted experiments using probabilis-
tic versions of the noise in Appendix B, yielding
consistent results.

Note that the tininess of the values in Figure
1 and Table 4 (e.g., 0.0074 v.s. 0.0056 in GPT2-
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Figure 2: Increase in PPP (from the full-gram to 2-gram
settings) in each model type (ordered by their parameter
size). The bar colors correspond to those in Figure 1.

xl) does not imply that the difference is valueless,
but this is just because the score is divided by
the number of data points (e.g., 212,649 in the
Dundee corpus) to facilitate inter-corpora compar-
ison. As a statistical test, we compared the by-
token squared residual errors from 2-gram models
with those from full-context models using paired
permutation tests (p=0.05). The short context, 2-
gram models had significantly smaller fitting errors
than the full context models (p < 0.001) in using
relatively large LMs (GPT2-md-Wiki, GPT2-sm,
GPT2-md, GPT2-lg, and GPT2-xl); smaller LMs
(LSTM-xs-Wiki, and GPT2-xs-Wiki) have no sig-
nificant differences (p ∼ 0.4).

Notably, we also observed that larger GPT-2s
have less human-like behavior in the full setting
(right-most column in Table 4). This trend was
weakened by introducing our context limitation.

Cross-linguistic consistency. Figure 1 and Ta-
ble 4 also show the cross-linguistic generality of
the short context advantage. The short context was
more clearly favored in Japanese than in English.
Using the same method as the English experiments,
we performed the significance tests; 2-gram models
exhibited smaller fitting errors (p ∼ 0.001) in all
the Japanese LM settings. The language-dependent
differences are further investigated in Section 6.

The larger the LM, the greater the increase
in PPP when limiting context access. Figure 2
shows the PPP increase in each LM class by context
limitation (PPP at 2-gram minus PPP at full-gram).
The bars were ordered by the model parameter size
(small −→ large). We found a clear trend that larger
LMs become human-like by a larger margin be-
cause of context limitation; larger full-context LMs
deviate more from human-like context access.

We statistically tested whether the gain by con-
text limitation (full-context v.s. bigram) was larger
in the largest LMs (GPT2-md in Japanese and
GPT2-xl in English) than in the smallest LMs
(LSTM-xs). Specifically, we compared the by-
token decrease in squared residual errors; the large
model exhibited a larger error decrease than the
small model (p = 0.024 < 0.05 in Japanese, and
p < 0.001 in English). In addition, the rank corre-
lation between model size and PPP gain by context
limitation was 0.50 in Japanese and 0.96 in English.

General effectiveness of surprisal. Note that, in
all the LMs, the PPP scores (equivalent to ∆logLik)
were significantly higher than 0 with the chi-square
test (p < 10−31 even in the worst case); surprisal
was an effective factor as existing studies reported.
On top of this, we newly showed that their effect
size differs due to the context limitation levels.

5.2 Does the potential training-inference
mismatch bias our results?

Vanilla LMs slightly underestimate the short-
context advantage. We additionally trained Wiki-
LMs (LSTM-xs-Wiki, GPT2-xs-Wiki, and GPT2-
sm-Wiki) without the data modification handling
the training-inference gap (Section 4.1) (hence-
forth; vanilla LMs). Figure 3 shows the results
of the models with and without the training modi-
fication. The vanilla LMs slightly underestimated
the short-context advantage; the PPP of 2-gram
surprisal improved when we adopted the modified
training. That is, mitigating the train-inference
gap made clearer the trend that context limitation
increases PPP. Carefully training n-gram neural
LMs could be a way to create more human-like
computational model.

6 Analyses

In our experiments, we merely deleted distant con-
texts regardless of linguistic factors. However, this
design is somewhat counter-intuitive in the sense
that humans are assumed to completely forget the
distant context during reading. To gain insights
into a more sophisticated noise design to fill the
LM-human gap, we observed in which construc-
tions longer/shorter contexts improved simulation
of human gaze duration.

6.1 Settings
Quantifying long context effect. To quantify the
long context advantage for each data point, we
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Figure 3: Reproduction of Figures 1 and 2 using LMs without training setting modifications (Section 5.1). The
results from Wiki-LMs with the modification (colored) and without the modification (gray) are overlayed. In the
line charts, the X-axis indicates input length, and the Y-axis indicates PPP. The bottom bar charts show the increase
in PPP (from full-gram to 2-gram setting) of the modified LMs.

compared the squared residual (fitting) errors of
the regression models we used to compute PPP in
Section 5. Note that the larger the squared residual
error is, the worse the model fit with the target
variable (gaze duration).

Specifically, we contrasted the two regression
models with different context access: (i) the model
with 2-gram surprisal, and (ii) the model with full
context surprisal. For each data point d, we mea-
sured the effectiveness of long context (ELC) in
explaining gaze duration. Specifically, the differ-
ence between the squared residual errors by the
regression models with 2-gram surprisal r2(d) and
full surprisal rfull(d) was computed:

ELC(d) = r2(d)− rfull(d) . (3)

Here, a high ELC value indicates that reading
times on d were better simulated with long context
(rfull(d) ↓); worse simulated with short context
(r2(d) ↑). The aim of this section is to find the data
points with a high ELC value. In the following
analyses, we used all the models from Section 5.1,
and ELC scores for each data point were averaged
across all the LMs.

Dependency structure. Human context access
has typically been discussed with respect to syntac-
tic structure (Gibson, 1998; Demberg and Keller,
2008); we first explored the interactions between
context limitation advantage and syntactic depen-
dencies. We analyzed two syntactic factors: (i)
dependency locality and (ii) dependency type,
where the dependency locality of a token denotes
how far its syntactically related preceding items

(i.e., with a direct dependency) are placed on aver-
age. An example is as follows:

(3) The boy over there had a cap.

3, nsubj

Here, the dependency locality of “had” is three;
note that the dependency direction was disregarded.

In the following analyses, we only used data
points with potential long context access, i.e., those
in the latter part of a sentence.7 After this filtering,
the average dependency locality score was 2.5 and
2.6 in the DC and BE, respectively. Manual linguis-
tic annotations were used in our analyses (Barrett
et al., 2015; Omura and Asahara, 2018).

6.2 Results

Dependency locality. We first grouped the data
points by their dependency locality and calculated
the average ELC scores for each group. Figure 4a
shows the results. Surprisingly, in the English data,
there is no advantage in considering the long con-
text for tokens with long dependencies. By con-
trast, in the Japanese data, long context access con-
tributed to simulating reading time for tokens with
a moderate (two or three) dependency length, but
not for long dependency locality. These imply that
the solution is more complex than simply using
long context for words with long dependency.

713th/7th or later words of a sentence in the DC/BE data
(20,554 words/4,051 words) were used, based on the median
of the word position in sentences (12 and 6 in the DC and BE
corpus, respectively).
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Dependency type. Does long context matter in
specific syntactic constructions? We categorized
the data points by their dependency type to their
preceding syntactically related items and calculated
the averaged ELC score for each group.8

Figure 4b shows that different dependency types
are associated with different ELC scores. For ex-
ample, the discourse type in English have relatively
larger ELC scores; long context input is necessary
to simulate its gaze duration. Figure 4b also sug-
gests that such context-favoring (with high ELC)
dependency types are different between English
and Japanese. These findings imply that the LM-
human context access gap occurred in specific
syntactic constructions in each language.

One-way ANOVA revealed that the average ELC
scores for each dependency type significantly var-
ied (p = 0.029 < 0.05 in English, p = 0.038 <
0.05 in Japanese), suggesting that the variation
of the ELC score is related to certain construc-
tions. More specifically, we compared the ELC
distribution between the categories with the high-
est and lowest average ELC scores (discourse vs.
cop in English, and advcl vs. obl) using an un-
paired t-test. The test exhibited a significant dif-
ference (p = 0.012 < 0.05 in English, and
p = 0.019 < 0.05 in Japanese). Note that if the
test is repeated for other dependency-length/type
pairs, multiple comparison problems should occur;
some counteractions, such as Bonferroni correc-
tion should be applied, and a more conservative
conclusion can be reached.

7 Discussion

7.1 Interpretations of the main results
We observed that simply deleting distant context
improved LMs’ PPP—as context decreased, LMs
became more human-like. We finally discuss sev-
eral potential interpretations of our results.

One interpretation is that our results supported
the dominance of short context access in human
sentence processing. In this sense, our findings
emphasized that explicitly incorporating principles
from the memory-based account of human sentence
processing is still necessary for simulating human
sentence processing despite the success of modern
LMs in cognitive modeling (Wilcox et al., 2020;
Schrimpf et al., 2020). Notably, there are several
other theories on human working memory; sparse

8Here, we only focus on the dependencies with more than
four distances to explore potential long context access.

JapaneseEnglish

ELC

(a) Relationship between dependency locality and the ELC
scores. The X-axis corresponds to dependency locality (e.g.,
the group “3” denotes the data points with the locality score
of three). The Y-axis denotes the ELC score for each group.

ELC

JapaneseEnglish

(b) Relationship between dependency type and the ELC scores.
The X-axis corresponds to the dependency type. The Y-axis
denotes the average ELC score for each group. Dependency
types for which there are more than 100 long dependencies
(locality>4) were included.

Figure 4: Relationships between syntactic factors and
the ELC scores.

allocation of elements incurring memory load (Gib-
son, 2000), hierarchical memory operations (van
Schijndel et al., 2013), and cue-based memory re-
trieval (Lewis and Vasishth, 2005). Incorporating
these perspectives into context-limited LMs could
be an interesting future direction.

Another possibility is that identifying the cause
of the LM-human gap as context limitations is
over-claiming; our study alone did not rule out
some potentially confounding factors. For exam-
ple, increasing the softmax temperature when LMs
compute the next-word distribution may induce a
similar effect to our context limitation with respect
to that both modifications make LMs less confident
about the upcoming word (if temperature matters,
the linear relationship between surprisal and cogni-
tive load may be doubted first). Further exploring
such factors will be an important investigation.

There is also a possibility that the eye move-
ment data only reflected local, shallow aspects
in human sentence processing. Similarly, Gau-
thier and Levy (2019) obtained somewhat counter-
intuitive results implying that word order is not im-
portant information in sentence processing—bag-
of-words (i.e., not word-order-aware) models fit
fMRI data surprisingly well. They concluded that
their results may stem from shortcomings of the
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measurement method along with the possibility of
humans’ good-enough processing. Exploring the
advantage of context limitation in various types of
reading behavior data and/or using other text mate-
rials (e.g., including more complex constructions)
is also a line of future research.

Is the 2-gram advantage counter-intuitive? If
the dominance of short context access in human
reading is accepted once, some readers might be
confused that the 2-gram context access sounds too
severe. Again, as a strong word frequency effect
does not deny context-dependent processing, our
results also did not decline long context access and
did not claim that the human language processing
model is 2-gram LMs. Exploring the interactions
of short- and long-context effects should be an in-
teresting investigation.

Nevertheless, such severe memory limitations
during reading might be consistent with the
memory-based explanation for the linguistic univer-
sals in sentence structures such as the preferences
toward consistent head directions, specific word
order (e.g., short-before-long order), and projective
structures (Futrell et al., 2020b). Such phenom-
ena are typically explained by the humans’ prefer-
ences toward short dependencies; here, those are
sometimes a matter of severe choices, such as the
preference for an average dependency length of 1
over 2 (Intuitively, Example (4) is preferred over
Examples (5) and (6)):

(4) A B C D E avg. dep len.=1.25

2 1 1 1

(5) A B C D E avg. dep len.=2.25

4 3
1 1

(6) A B C D E avg. dep len.=1.50

2 2 1 1

If one reasons these principles to the constraints
of humans’ cognitive resources, perhaps it makes
sense that humans conduct syntactic processing
with such a severe working memory that the imme-
diately preceding word/phrase highly explains the
cognitive load to the upcoming word.

7.2 PPP and next-word prediction accuracy

Lastly, we discuss the connection to reports on
cognitive modeling with LMs—better next-word
prediction ability of LMs indicates their better
PPP (Fossum and Levy, 2012; Goodkind and Bick-

LSTM-xs-Wiki
GPT2-xs-Wiki
GPT2-md-Wiki

GPT2-md
GPT2-lg
GPT2-xl

GPT2-sm

Context length
short

long

Model

Figure 5: Relationship between PPP and perplexity
(PPL) drawn using the English LMs targeted in Sec-
tion 5.1. Each point corresponds to each configuration
of the n-gram surprisal computation; marker color and
shape present the LM architectures, and larger markers
correspond to longer context access.

nell, 2018; Wilcox et al., 2020).9 Our results in
Section 5.1 might be conflicting with them; LMs
with relatively worse prediction accuracy (less con-
text access) exhibit better PPP. See Appendix F for
next-word prediction accuracy of LMs.

Results. In fact, there is no clear relationship be-
tween PPP and next-word prediction accuracy (per-
plexity; PPL) of the LMs used in Section 5.1 (Fig-
ure 5; Appendix G exhibits Japanese results). The
results show that LMs with nearly the same next-
word prediction accuracy could show different PPP
values. Furthermore, Pearson’s correlation between
PPP and PPL was even positive (r = 0.15). These
observations corroborated the conclusion that the
PPL alone is not a good indicator of PPP; differ-
ent means of controlling PPL (e.g., context length
vs. other factors existing studies focused on) could
show different PPP-PPL relationships.

8 Conclusions

There has been little investigation of the cognitive
plausibility of context-limited modern LMs. Our
experiments using the input-controlled neural LMs
have shown that short context LMs simulate human
reading behavior surprisingly well, emphasizing
the LM-human gap in context access. Further anal-
ysis has shown that the gap could be associated
with specific syntactic constructions; injecting syn-
tactic bias into LMs’ context access could be one
way to make LMs more human-like. This study
has also asserted that the use of a modern LM pop-
ular in NLP as-is is not always a natural choice in
cognitive modeling.

9There are also some counter-arguments (Hao et al., 2020;
Oh et al., 2021; Kuribayashi et al., 2021; Anonymous, 2022).

10429



Limitations

As discussed in Section 7, this study alone could
not comprehensively explain the cause of the LM-
human discrepancies. Nevertheless, our observa-
tion itself could advance the step toward under-
standing the relationship between human sentence
processing and computational models typically de-
veloped in NLP, which is a central theme in the long
history of artificial intelligence and the cognitive
science of language.

This study was scientifically motivated to under-
stand humans and language; this could sound like
less impact on engineering-oriented efforts (e.g.,
solving real-world problems accurately). However,
simulating human cognitive load during reading is
directly associated with automatic text readability
assessment. In addition, our study implies that hu-
man sentence processing could be performed with
more efficient context access than modern LMs.
This encourages the development of language pro-
cessing models with increased efficiency; this is
related to the sustainability issues, such as the envi-
ronmental impact of creating gigantic NLP models.

Ethical considerations

This study explored the relationship between the
LM-computed complexity measures and human
reading behaviors. Human subjects’ privacy infor-
mation in the eye-tracking data was anonymized.
We did not find any other ethical concerns; as a
somewhat minor point, the LMs used in our exper-
iments might be biased by the data we used (i.e.,
Wikipedia and Web data), although these follow
the commonly used settings in the NLP research.
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A Psychometric predictive power and
regression models

Psychometric predictive power refers to the sim-
ilarity between (lossy-context) surprisal and hu-
man gaze duration, calculated using a linear mixed-
effects regression (Bates et al., 2015). First, gaze
duration (GD) is modeled by the following formula:

GD ∼ surprisal+ surprisal_prev_1

+ surprisal_prev_2+ freq ∗ length
+ freq_prev_1 ∗ length_prev_1
+ screenN+ lineN+ segmentN

+ (1|article)+ (1|subj) .

(4)

Table 5 shows the descriptions for the factors
used in the above formulation. Then, a base-
line regression model without the surprisal,
surprisal_prev_1, and surprisal_prev_2
terms from Eq. 4 is trained additionally. We calcu-
lated the per-token average of the log-likelihood
difference (∆LogLik) between the two regression
models.

B Probabilistic erasure noise

Futrell and Levy (2017) and Futrell et al. (2020a)
suggested that a linear probabilistic erasure noise
(LPEN), where more distant items are more likely
to disappear as opposed to a constant cutoff point
with n-grams, might be a plausible design of input
limitations. We examined whether such a proba-
bilistic nature of noise design substantially affects
our conclusions. Within our experimental settings,
there is no substantial difference in the results re-
gardless of the probabilistic nature of noise.

Methods. To implement LPEN, we erased the
j-th nearest word in the context with a proba-
bility of min(j ∗ a, 1), here a > 0. We ini-
tially observed that erasing too close context hin-
dered human-like behavior; we also introduced
an always-present portion of the context (l near-
est words) and applied noise only on farther
words. That is, the probabilistic erasure noise
is only applied to [w0, · · · , wi−l−1]. Assuming
a = 0.25, wi−l−1 is then erased with a proba-
bility of 0.25, wi−l−2 is erased with a probabil-
ity of 0.5, and so on, while the l nearest words
to the target are left intact. We compared the
PPP of surprisal with l ∈ {2, 3, 5, 7, 10, 20} and
a ∈ {0.5, 0.25, 0.125, 0.0625}.

Context limitation did not change or improved
PPP. The results are shown in Figure 6. The

Factor Type Description

surprisal num (lossy-context) surprisal cal-
culated by LMs

GD num reading time (first pass gaze
duration)

article factor article ID
screenN int screen display order
lineN int the serial number of line the

segment is displayed
segmentN int the serial number of seg-

ment in a screen
sentN int the serial number of sen-

tence the segment belongs
to

tokenN int the position of segment in
sentence

length int number of characters
freq num geometric mean of the fre-

quencies of subword con-
stituents in a segment

subj factor participant ID

Table 5: Factor names and their description.

trends were similar to those using discrete con-
text noise (Figure 1): (i) context limitation did not
change or improved PPP and (ii) larger LMs have
larger PPP gain due to context limitation.

C Exclusion criteria for eye movement
data

We excluded outliers following Goodkind and Bick-
nell (2018). Specifically, we excluded the data
points meeting any of the following criteria in the
English experiments, and those meeting (a), (c), or
(e) in the Japanese experiments:

(a) has zero gaze duration or beyond three standard
deviations

(b) contains punctuation
(c) contains numeric characters
(d) the next segment has punctuation or numeric

characters
(e) is the first segment in a line
(f) is the last segment in a line

We included data points meeting (b) and (f) in the
Japanese data out of concern that excluding them
disregards the data points for the main verb, regard-
ing the verb-final Japanese construction (punctu-
ation is included in a bunsetsu). Note that in the
Japanese data, the first/end word in a line corre-
spond to first/end word in a sentence (sentences
are presented line by line.). Similarly, (d) substan-
tially reduces the Japanese data points, and the
inter-segment-level influence of special symbols
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LSTM-xs-Wiki
GPT2-xs-Wiki
GPT2-md-Wiki

GPT2-sm
GPT2-md

GPT2-lg
GPT2-xl

LSTM-xs-Wiki GPT2-xs-Wiki GPT2-md-Wiki

input length shortlong input length shortlong

English Japanese

Figure 6: Relationship between the strength of input noise (X-axis) and PPP (Y-axis) under the probabilistic
erasure noise settings. The results with various noise settings ( L × A where L = {2, 3, 5, 7, 10, 20} and A =
{0.5, 0.25, 0.125, 0.0625}) are summarized with respect to average input length in each setting. The marker color
and shape correspond to LM architectures.

would be less likely than in English considering
that bunsetsu is a relatively larger unit than the
English word.

D Hyperparameters of LMs

Table 6 shows the hyperparameters of Wiki-
LMs. Training each LM took approximately
three days on four GPUs (NVIDIA V100).
The hyperparameters of OpenAI GPT-2s could
be shown in https://huggingface.co/docs/
transformers/model_doc/gpt2.

As for the subword tokenization used in Wiki-
LMs, we set character coverage to 0.9995. Vocabu-
lary size was set to 32,000 in English and 100,000
in Japanese, taking the rich characters and mor-
phemes in Japanese into consideration. Note that
this difference results in Japanese Wiki-LMs hav-
ing more parameters than English LMs. In the
Japanese settings, LSTM-xs-Wiki has 54M (27M
in English), GPT2-xs-Wiki has 55M (29M in En-
glish), and GPT2-md-Wiki has 404M (335M in
English) parameters.

E Mitigating training-inference gaps

As introduced in Section 4.1, we modified the
training data to augment the data points, where
LMs must predict the upcoming tokens from the
middle of a sentence with severely limited con-
text. Specifically, we first split each (i-th) sen-
tence, si = [wi

0, w
i
1, · · · , wi

n], in training data into
two sub-sequences: [<s>, wi

0, · · · , wi
k−1] and [<b>,

wi
k, · · · , wi

n]. Here, the breakpoint ki for the i-
th sentence is sampled from the uniform distri-

bution U(0, |si|). When k = 0, the former sub-
sequence is [<s>]. Then, the sub-sequences ob-
tained from the whole corpus were randomly con-
catenated to create the modified training data (e.g.,
[· · · , <b>, wc

kc+1, · · · , wc
n, <b>, wa

k+1, · · · , wa
n,

<s>, wl
0, · · · , wl

k, · · · ]). This modified data has
two characteristics: (i) there is no dependency be-
tween before and after the special tokens (<s> and
<b>), and (ii) to the <b> token, uniform prior about
the token position within the sentence is set. It
is expected that training LMs with this data and
computing the next word prediction (e.g., with the
query of [<b>, w]) enables them to adequately com-
pute the upcoming token (i) with severely limited
context and (ii) without any token position prior
for <b>.

Concretely, the lossy-context surprisal is com-
puted by the modified LMs as follows:

Ilossy(wi, c<i, f)

= − log pθ(wi|<b> ◦ f([w0, · · · , wi−1])) , (5)

Only when the <b> token corresponds to the
sentence initial position, <s> was set instead of
<b>.

F Perplexity of n-gram LMs

Perplexity (PPL): Perplexity (PPL), the in-
verse geometric mean of next-word probabilities
p(wi|w<i) in a text that consists of N symbols
(w1, w2, · · · , wN ), is a typical evaluation metric
for the next-word prediction accuracy. Given a LM
θ and context noise design f , the perplexity under
lossy-context settings is calculated as follows:
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English Japanese

23571020full words 235710full words

Figure 7: Relationship between the perplexity of n-gram LMs and input length. A monotonic relationship, the
longer context LMs use, the lower perplexity LMs exhibit, is observed. The colored areas show a 95% confidence
interval. The PPL was computed at the subword level; here, directly comparing the scale of Y-axis across languages
is non-sense due to their different segmentation (e.g., vocabulary size).

PPL =

N∏

i=0

pθ(wi|BOS ◦ f(c<i))
− 1

N . (6)

Low PPL indicates that the model and the con-
text noise yielded accurate predictions about the
upcoming signal.

Relationship between perplexity and context
length: Figure 7 shows the relationship between
the perplexity of n-gram LMs and their average
context length. The PPL values are computed with
the texts in the eye movement data. A monotonic
relationship, the longer context LMs use, the lower
perplexity LMs exhibit, is observed. This ensures
that LMs with long context actually exploit the in-
formation in the added context to accurately predict
the upcoming symbols.

G Next-word prediction accuracy and
PPP in Japanese

Figure 8 shows the relationship between PPL and
PPP in the Japanese experiments. Similar to the
results of Section 5.1, LMs with a similar PPL
value exhibited different PPP (e.g., results around
PPL=60).

LSTM-xs-Wiki
GPT2-xs-Wiki
GPT2-md-Wiki

Context length
short

long

Model

Figure 8: Relationship between PPP and perplexity
(PPL) drawn using the Japanese LMs targeted in Sec-
tion 5.1. Each point corresponds to each configuration
of the n-gram surprisal computation; marker color and
shape present the LM architectures, and larger markers
correspond to longer context access.
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Fairseq
model

architecture transformer_lm _gpt2_small
adaptive softmax cut off 50,000, 140,000
share-decoder-input-output-embed True
embed_dim 1,024
ffn_embed_dim 4,096
layers 24
heads 16
dropout 0.1
attention_dropout 0.1

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate
scheduler

type inverse_sqrt
warmup updates 4,000
warmup init lrarning rate 1e-7

Training batch size 61,440 tokens
sample-break-mode none

(a) GPT2-md-Wiki.

Fairseq
model

architecture transformer_lm_gpt
adaptive softmax cut off 50,000, 140,000
share-decoder-input-output-embed True
embed_dim 384
ffn_embed_dim 2,048
layers 8
heads 6
dropout 0.1
attention_dropout 0.1

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate
scheduler

type inverse_sqrt
warmup updates 4,000
warmup init learning rate 1e-7

Training batch size 61,440 tokens
sample-break-mode none

(b) GPT2-xs-Wiki.

Fairseq
model

architecture lstm_lm
adaptive softmax cut off 50,000, 140,000
share-decoder-input-output-embed True
embed_dim 400
hiden_size 1,024
layers 2
dropout 0.1

Optimizer
algorithm AdamW
learning rates 1e-3
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning
rate
scheduler

type inverse_sqrt
warmup updates 4,000
warmup init learning rate 1e-7

Training batch size 20,480 tokens
sample-break-mode none

(c) LSTM-xs-Wiki.

Table 6: Hyperparameters of the LMs.
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