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Abstract

We present DISCOSENSE, a benchmark for
commonsense reasoning via understanding a
wide variety of discourse connectives. We gen-
erate compelling distractors in DISCOSENSE
using Conditional Adversarial Filtering, an ex-
tension of Adversarial Filtering that employs
conditional generation. We show that state-of-
the-art pre-trained language models struggle to
perform well on DISCOSENSE, which makes
this dataset ideal for evaluating next-generation
commonsense reasoning systems.

1 Introduction

Much of the recent work in commonsense reason-
ing has focused on evaluating a pre-trained lan-
guage model’s (LM) ability to predict the most
plausible ending/option given a context. Even after
devising bias reduction techniques (Zellers et al.,
2019b; Bras et al., 2020) to mitigate the effects
of annotation artifacts and make the task difficult,
state-of-the-art LMs have managed to achieve or
even surpass human performance on numerous
commonsense downstream tasks (Zellers et al.,
2019b; Sakaguchi et al., 2020; Bhagavatula et al.,
2020). Nevertheless, these LMs are still very far
from being able to perform commonsense reason-
ing as well as humans. Hence, the fact that they
have begun to ace existing benchmarks implies that
time is ripe to design a new challenging benchmark
that can reliably target their limitations.

Motivated by this observation, we present DIS-
COSENSE, a benchmark for performing common-
sense reasoning through understanding a wide va-
riety of discourse connectives. Figure 1 shows an
example taken from DISCOSENSE. As can be seen,
an example is composed of a context (e.g., “Our
waitress was very nice, but she kept on forgetting
my stuff.”) and a discourse connective (e.g., “For
example”), and the goal is to choose the most plau-
sible ending out of four options. If we ignore the
discourse connective, then all four options may

Our waitress was very nice, but she kept on forgetting
my stuff. For example

a) When I ordered the garlic shrimp, she remembered to
add my requested garlic butter.

b) She took forever to bring me my beer and fries.
c) When I told her I wanted to use the free breakfast that

was available she was not pleased.
d) For some customers, this is fine.

Figure 1: Example on commonsense reasoning with
discourse connectives. The correct (i.e., most plausible)
option is boldfaced.

seem plausible because we do not know what the
writer’s intent is. Once we consider both the con-
text and the discourse connective, then it is clear
that only option b) is plausible. The reason is that
“For example” signals an EXEMPLIFICATION rela-
tion between its arguments, and what follows the
discourse connective is expected to be an example
of the waitress keeping on forgetting the writer’s
stuff. Using commonsense knowledge, we know
that (1) “my beer and fries” is an example of “my
stuff”, and (2) her taking forever to bring the writer
stuff implies she kept on forgetting his/her stuff.

What if we replace “For example” with “How-
ever” in the example? Since “However” signals a
CONTRAST relation, options a) and d) both seem
viable. Specifically, option a) describes a situation
in which she did not forget the writer’s stuff. While
option d), unlike option a), does not describe any
example that signals a contrast, one may infer a
contrast between option d) and the context: being
forgetful is fine for some customers. Nevertheless,
option a) is arguably more plausible than option
d) and should be chosen. The reason is that for
d) to be sensible, one needs to assume that her
forgetting the writer’s stuff implies that she is in
general forgetful. Without this assumption, it may
be strange for other customers to have an opinion
on her forgetting the writer’s stuff. In general, the
most plausible option is the option that makes the
smallest number of assumptions, and/or is the most
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coherent given the context and the discourse con-
nective. Considering the commonsense knowledge
and the reasoning involved, it should not be diffi-
cult to see that this task is challenging.

Our contributions are four-fold. First, we cre-
ate DISCOSENSE, a new dataset aimed at testing
LMs’ commonsense reasoning capabilities through
discourse connectives. Second, we employ a con-
trolled text generation based adversarial filtering
approach to generate compelling negatives. Third,
we establish baseline results on DISCOSENSE with
numerous state-of-the-art discriminator models and
show that they struggle to perform well on DIS-
COSENSE, which makes our dataset an ideal bench-
mark for next-generation commonsense reason-
ing systems. Finally, we show the efficacy of us-
ing DISCOSENSE as a transfer learning resource
through sequential fine-tuning of LMs on DIS-
COSENSE followed by HELLASWAG and achieve
near state-of-the-art results on the HELLASWAG

test set. To stimulate work on this task, we make
our code and data publicly available.1

2 Related Work

In this section, we discuss related work, focusing
our discussion on the differences between DIS-
COSENSE and existing commonsense reasoning
benchmarks. In addition, we present an overview
of Adversarial Filtering, which will facilitate the in-
troduction of the Conditional Adversarial Filtering
mechanism we propose in Section 3.

Commonsense reasoning benchmarks. SWAG

(Zellers et al., 2018) and HELLASWAG (Zellers
et al., 2019b) are arguably the most prominent com-
monsense reasoning benchmarks. In SWAG, given
a partial description along with four candidate end-
ings, the task is to predict the most plausible ending.
The synthetic options (a.k.a. distractors) are gener-
ated through a process called Adversarial Filtering
(AF) (see below). HELLASWAG is an extension of
SWAG that seeks to eliminate artifacts in the gen-
erated endings. Unlike SWAG and HELLASWAG,
DISCOSENSE requires that the discourse connec-
tive be taken into account in the reasoning pro-
cess, thus increasing the number of inference steps
and potentially the task complexity. In addition,
while the examples in SWAG and HELLASWAG

come primarily from ActivityNet (a benchmark
focused on dense captioning of temporal events),

1For our code and data, see https://github.com/
prajjwal1/discosense/.

DISCOSENSE features a more diverse set of exam-
ples coming from varied domains that may only be
solved with rich background knowledge.

There are benchmarks that aim to test differ-
ent kinds of commonsense reasoning abilities, al-
though none of them focuses on reasoning over dis-
course connectives. SocialIQA (Sap et al., 2019),
for instance, focuses on social and emotional com-
monsense reasoning. ABDUCTIVE NLI (Bhaga-
vatula et al., 2020) focuses on abductive reasoning.
WINOGRANDE (Sakaguchi et al., 2020) contains
Winograd schema-inspired problems, which are
essentially hard pronoun resolution problems re-
quiring world knowledge. PIQA (Bisk et al., 2020)
examines physical commonsense reasoning. MC-
TACO (Zhou et al., 2019) and TIMEDIAL (Qin
et al., 2021) focus on temporal reasoning in com-
prehension and dialogue formats.

More closely related to DISCOSENSE are com-
monsense reasoning benchmarks that involve rea-
soning with a particular kind of relations. COPA
(Choice of Plausible Alternatives) (Roemmele
et al., 2011) focuses exclusively on reasoning with
CAUSAL relations and involves choosing the more
plausible ending out of two (rather than four) op-
tions. P-MCQA (Qasemi et al., 2021) focuses
exclusively on reasoning with PRECONDITION re-
lations: given a commonsense fact, select the pre-
condition that make the fact possible (enabling) or
impossible (disabling) out of four options. δ-NLI
(Rudinger et al., 2020), which aims to evaluate de-
fensible inference, focuses exclusively on reasoning
with the STRENGTHEN/WEAKEN relations: given
a premise-claim pair where the premise supports
the claim, generate a sentence that either strength-
ens or weakens the support. WINOVENTI (Do and
Pavlick, 2021), which is composed of Winograd-
style schemas, focuses exclusively on reasoning
with ENTAILMENT relations: given two sentences
with an entailment relation, such as ”Pete says the
pear is delicious. The pear is ”, the goal is to
fill in the blank with one of two choices (e.g., ”ed-
ible”, ”inedible”). There are two key differences
between these datasets and DISCOSENSE. First,
rather than focusing on a particular type of relation,
DISCOSENSE encompasses 37 discourse connec-
tives signaling different discourse relation types.
Second, DISCOSENSE involves reasoning with dis-
course connectives, which is more complicated
than reasoning with discourse relations. Specifi-
cally, as some connectives are sense-ambiguous
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Dataset Model Human

SWAG (Zellers et al., 2018) 91.71 88
αNLI (Bhagavatula et al., 2020) 91.18 92.9
Hellaswag (Zellers et al., 2019b) 93.85 95.6
CosmosQA (Huang et al., 2019) 91.79 94
PIQA (Bisk et al., 2020) 90.13 94.9
SocialIQa (Sap et al., 2019) 83.15 88.1
MC-TACO (Zhou et al., 2019) 80.87 75.8
WinoGrande (Sakaguchi et al., 2020) 86.64 94
ProtoQA (Boratko et al., 2020) 54.15 74.03
VCR (Zellers et al., 2019a) 63.15 85

Table 1: Status of how competitive current common-
sense reasoning benchmarks are for state-of-the-art pre-
trained language models.

(e.g., the connective ”since” may serve as a tem-
poral or causal connective (Pitler and Nenkova,
2009)), a LM will likely need to (implicitly) per-
form sense disambiguation in order to perform well
on DISCOSENSE.

There are datasets and knowledge bases where
the semantic/discourse/commonsense relations are
explicitly annotated and which can provide data
sources from which commonsense reasoning
benchmarks can be derived. Examples include
(1) the Penn Discourse TreeBank (Prasad et al.,
2008), where two sentences or text segments are
annotated with their discourse relation type, if any;
(2) COREQUISITE (Qasemi et al., 2021), which
is used to provide the commonsense facts and the
human-generated preconditions in the P-MCQA
dataset mentioned above; (3) SNLI (Bowman et al.,
2015), where each premise-hypothesis pair is an-
notated as ENTAILMENT, CONTRADICTION, or
NEUTRAL; (4) ATOMIC20

20 (Hwang et al., 2021),
which is a commonsense knowledge graph where
the nodes correspond to propositions and the edges
correspond to social/physical commonsense rela-
tions; and (5) SOCIAL-CHEM-101 (Forbes et al.,
2020), which is a collection of statements about
commonsense social judgments made given every-
day situations.

One of the motivations behind the creation of
DISCOSENSE is that state-of-the-art LMs have
managed to achieve or even surpass human perfor-
mance on various commonsense reasoning bench-
marks. Table 1 shows the best accuracies achieved
by existing LMs on 10 widely used commonsense
reasoning benchmarks and the corresponding hu-
man performance levels. As can be seen, existing
LMs have managed to achieve an accuracy of more
than 80% on eight of these benchmarks.

Context +
Discourse Marker

Option 1

Option 2

Option 3

Option 4

Discriminator LM

Option 2

Generator LM
Context +

Discourse Marker

Option 1

New Option 2

Option 3

Option 4

Repeat the process until convergence

Replace easiest option 
 with the new adversarial option

Find easiest 
 option

Figure 2: Components of Adversarial Filtering.

Adversarial filtering (AF). Originally proposed
by Zellers et al. (2018), AF aims to create examples
that would be difficult for models to solve, specif-
ically by replacing the easy options in correctly-
solved examples with difficult ones. As shown
in Figure 2, AF has three components: data (i.e.,
examples with multiple options, one of which is
correct), a discriminator LM (a classifier that is
used to solve each example) and a generator LM
(a model that generates new options for an exam-
ple). In each AF iteration, the discriminator LM is
trained on the training set and used to solve each
example in the test set. If a test example is incor-
rectly solved (i.e., the discriminator LM chooses
the wrong option), the example is deemed suffi-
ciently difficult and no change is made to it. On
the other hand, if a test example is correctly solved,
then AF seeks to increase its difficulty by replacing
the easiest option (i.e., the generated option that
the discriminator LM classifies with the highest
confidence) with a new option generated by the
generator LM. Training a new discriminator LM
in each AF iteration ensures that the dataset is not
just adversarial for one LM but a class of LMs,
as training different instances of the same type of
LMs results in models that have differently learned
linguistic representations. This process is repeated
on all correctly classified examples in the test set
until the performance on the test set converges.

3 DISCOSENSE

3.1 Task Description

DISCOSENSE aims to measure the commonsense
inference abilities of computational models through
the use of discourse connectives. The correct end-
ings can be obtained after understanding the pur-
pose of the given discourse connectives. Given a
context c “ ps, dq, which is composed of a contex-
tual sentence s and a discourse connective d as well
as a set of four options O “ to1, o2, o3, o4u, the
task is to predict the most plausible ending oi P O.
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Data DISCOSENSE DISCOSENSE
Source Train Test

DISCOVERY Train Bottom 7% -

DISCOVERY Validation - 100%
DISCOFUSE train Top „54k -

w/ DC

Table 2: Data sources for DISCOSENSE and its com-
position before human verification. DC refers to those
samples in DISCOFUSE that are concerned with the dis-
course connective phenomenon.

3.2 Dataset Creation
To assemble DISCOSENSE, we focus on source
datasets that contain two sentences connected
through a discourse connective. Specifically, we
use two peer reviewed academic datasets, DISCOV-
ERY (Sileo et al., 2019) and DISCOFUSE (Geva
et al., 2019). In DISCOVERY, each sentence is com-
posed of two sentences connected via a discourse
connective for the purpose of learning joint sen-
tence representations with discourse connectives.
DISCOFUSE, on the other hand, is assembled for
the task of sentence fusion (i.e., joining several
independent sentences into a single coherent sen-
tence). We only consider those examples where a
discourse connective is needed for sentence fusion,
and include in DISCOSENSE the fused sentences
in the Wikipedia2 split of DISCOFUSE. Since these
datasets contain sentences from Common Crawl3

and Wikipedia articles, DISCOSENSE is diverse
in the topics it covers. Importantly, since by con-
struction the discourse connective is crucial in solv-
ing the underlying tasks (i.e., sentence represen-
tation learning and sentence fusion), the crucial
role played by the discourse connectives in these
sentences makes them suitable for our use case. De-
tails of how the DISCOVERY and DISCOFUSE sen-
tences are used to create DISCOSENSE are shown
in Tables 2 and 3.

3.3 Generating Options
Next, we describe how we generate challenging
options for DISCOSENSE using an improved ver-
sion of AF that we call Conditional Adversarial
Filtering (CAF). CAF follows the AF procedure in
Figure 2, only differing from AF in terms of (1) the
generator LM (Section 3.3.1), (2) the discriminator
LM (Section 3.3.2), and (3) how the generator LMs
are used to generate options (Section 3.3.3).

2https://en.wikipedia.org/
3https://commoncrawl.org/

Data Generator LM

DISCOVERY Train last 93%
DISCOVERY Test 100%

Table 3: Data used to train the generator LMs in Condi-
tional Adversarial Filtering.

3.3.1 Conditional Generator LM
Pre-training does not explicitly teach how impor-
tant a particular token or text span is in contributing
to the semantics of a sentence. Hence, to be able
to generate sentences that are coherent with not
only the context but also the discourse connective,
we propose to use Controllable Text Generation,
which aims to provide a more granular control over
how generation happens to match a particular at-
tribute. In the context of Transformer-based LMs,
there are two lines of research on controllable text
generation. One examines how to steer genera-
tion by fine-tuning an extra set of parameters while
keeping the base (unconditionally trained) model
fixed (Dathathri et al., 2020; Qin et al., 2020; Zhang
et al., 2020; Krause et al., 2020), while the other in-
volves conditionally training a generative model on
a control variable to generate text w.r.t. a prompt
prefix. We adopt the latter approach, extending
CTRL (Keskar et al., 2019) to explicitly steer gen-
eration w.r.t. discourse relations by using discourse
connectives as control codes, as described below.

Training. The input to CTRL is as follows:

input: rds ` rcontexts ´ label: rendings
where d is a discourse connective. Specifically,
each input context for CTRL is prepended with a
connective, and the training task for CTRL is to
learn the conditional distribution ppe|d, contextq
over possible endings e. The predicted ending is
then compared with the human generated ending
to compute loss. Since the original CTRL model
is pre-trained with control codes suitable for open-
ended text generation, we fine-tune CTRL on the
portion of DISCOVERY shown in Table 3 using all
the 174 connectives present in the selected splits.
Comparing Tables 2 and 3, we can see that the data
the generator LM is fine-tuned on is not part of
DISCOSENSE. Doing so ensures that the endings
generated by the generator LM are different from
the ground truth (i.e., the human written endings).

Decoding. We use Nucleus sampling (Holtzman
et al., 2020) for generating options for the training
set with the value of p set to 0.7, which means the
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weights of the tail of the probability distribution are
ignored (i.e., tokens with a cumulative probability
mass of less than 0.3 are left out). Additionally, we
use a length penalty of 0.8 to restrict the length of
the generations to match the average length of the
ground truth to avoid the induction of length bias.

Efficacy of conditional generation. Recall
that we propose the use of conditional generation,
specifically the use of discourse connectives as con-
trol codes, in our generator LM because of our
hypothesis that the resulting LM would generate
options that are more compliant with the purpose
of the discourse connective. To test this hypothesis,
we compare the text generation capability of CTRL

with that of GPT2-XL, a model that is trained un-
conditionally and has nearly the same number of
parameters (1.6B) as CTRL, under the same evalu-
ation setting. Specifically, both LMs are fine-tuned
on the same data (see Table 3) using the same ma-
chine (a 2x Quadro RTX 8000 with a batch size of
24). The only difference between them lies in the
format of the training examples: in CTRL the dis-
course connective is used as the control code and
therefore precedes the context, whereas in GPT2-
XL, the discourse connective follows the context.

The two LMs are then independently applied to
generate exactly one option for each example in the
DISCOVERY validation set. CTRL achieves a much
lower perplexity than GPT2-XL (2.39 vs. 2.53),
which suggests that conditional training improves
the quality of the generated sentences.

3.3.2 Discriminator LM
We use ROBERTA-LARGE (Liu et al., 2019) as the
discriminator LM, which takes the context, the dis-
course connective, and the four endings as input
and predicts the most plausible ending. This LM
is trained on the randomly shuffled training split of
DISCOSENSE and applied to the DISCOSENSE test
set to get the confidence scores associated with its
predictions.

3.3.3 Generating Options
Next, we describe how we generate options for the
examples in DISCOSENSE. Recall that each ex-
ample contains one of 174 discourse connectives.
Rather than generating options for examples that
contain any of these 174 connectives, we select 37
discourse connectives and generate options only
for examples that contain one of them. The con-
nectives that are discarded are primarily those that
impose few constraints on the endings to be gen-

although in other words particularly
as a result in particular rather
by contrast in short similarly
because of this in sum specifically
because of that interestingly subsequently
but instead thereafter
consequently likewise thereby
conversely nevertheless therefore
for example nonetheless though
for instance on the contrary thus
hence on the other hand yet
however otherwise
in contrast overall

Table 4: Discourse connectives present in DIS-
COSENSE.

erated given the context according to preliminary
experiments. For instance, the connective “and” is
discarded because numerous endings are equally
plausible. Similarly for connectives that signal
a temporal relation (e.g., “before”, “after”): they
also tend to allow numerous equally plausible end-
ings, as can be seen in examples such as “John
went to eat lunch after [ending]”. The 37 connec-
tives that we end up choosing are shown in Table 4.
These connectives are less likely to yield options
that look equally plausible to human annotators
and which are indicative of different kinds of dis-
course relations, such as EXEMPLIFICATION (e.g.,
“for instance”), CONCESSION (e.g., “although”),
COMPARISON (e.g., “in contrast”), and CAUSAL

(e.g., “as a result”). 94k examples in DISCOSENSE

contain one of the 37 connectives.

To generate the options for these 94k sentences,
we begin by training 20 generator LMs on a ran-
domly shuffled order of the generators’ training
data (see Table 3) and then inserting them into a
circular queue. Although the underlying data is
the same, random shuffling ensures that the learned
representations of these 20 models are different.
Since each example needs to have 3 synthetic op-
tions, we use the first 3 generator LMs from the
circular queue to generate the initial options for
each example. After that, we begin CAF. In each
CAF iteration, we (1) train the discriminator LM
(see Section 3.3.2) on the DISCOSENSE training
set for 4 epochs and use it to filter out the options
deemed as easiest by the discriminator LM; and (2)
use the next generator LM in the circular queue to
generate the options for the examples whose easi-
est option is removed by the discriminator LM. In
other words, a different discriminator LM is used
in each CAF iteration, and a generator LM in the
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DiscoSense

# Context Answer
tuples

train 9299
test 3757
total 13056

Statistics Train / Test

Average
#
tokens

context 22.08 / 22.51
answers (all) 18.62 / 18.92
answers (correct) 16.94 / 18.18
answers (incorrect) 18.51 / 18.5

Unique
#
tokens

context 32577 / 16858
answers (all) 43992 / 27406
answers (correct) 26836 / 15078
answers (incorrect) 41158 / 25900

Table 5: Data statistics for DISCOSENSE.

circular queue is used once every 20 CAF itera-
tions. CAF is run separately for the DISCOSENSE

training and test sets. After running CAF for ap-
proximately 150 iterations, the average accuracy
of a discriminator LM decreased from 86–90% to
34% on the DISCOSENSE test set.

3.3.4 Other Implementation Details
For the models we use in CAF, we obtain the
pre-trained weights and the implementations from
Hugging Face Transformers (Wolf et al., 2019).
These models are trained using the AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a learn-
ing rate of 2e´5. The training of each generator
LM is performed on a 2x Quadro RTX 8000 with
a batch size of 24 and typically lasts for 3 days.
The training of a discriminator LM is performed on
a RTX 3090 with a batch size of 16 and typically
lasts for 5–6 hours.

3.4 Human Verification

Next, we perform human verification of the exam-
ples for which we have generated options. The
verification proceeds in two steps. In Step 1, we
ask three human verifiers to independently identify
the correct option for each example, removing an
example if at least one person fails to identify the
correct option. We repeat this process until the
number of examples that survive this verification
reaches 13,056.4 In Step 2, we ask three human
verifiers not involved in Step 1 to independently
identify the correct option for each of the 13,056
examples verified in Step 1. We compute for each
verifier the accuracy of choosing the correct option
and use the average accuracy as the human perfor-

4This is the maximum number of examples we can verify
given budgetary constraints.
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Figure 3: Distribution of examples over discourse con-
nectives in DISCOSENSE.

mance on DISCOSENSE. Appendix A contains the
details on how the human verifiers are recruited
and the annotation instructions we present to them.

3.5 Dataset Statistics

Statistics on DISCOSENSE are shown in Table 5,
in which we report the average number of tokens
in (1) the context, (2) the ground truth and (3) the
generated endings. The number of unique tokens
provides a rough characterization of the richness of
the vocabulary. In addition, we report the distribu-
tion of the examples over the discourse connectives
in DISCOSENSE in Figure 3.

4 Evaluation

4.1 Baseline Systems

Our baselines are composed of prominent LMs
with different kinds of Transformer architectures.
First, we consider models that are pre-trained in a
BERT-like fashion and share architectural similari-
ties, including the base and large variants of BERT

(Devlin et al., 2019) and ROBERTA (Liu et al.,
2019), as well as ALBERT-XXLARGE-V2 (Lan
et al., 2020). As an extension, we select LONG-
FORMER BASE, which is pre-trained in the same
manner as ROBERTA but has a sparse attention
matrix.5 From the autoregressive/decoder based
networks, we experiment with XLNET LARGE

(Yang et al., 2019), which maximizes the learn-
ing of bidirectional contexts and GPT2-XL. For

5Some endings are longer than the others. The use of
LONGFORMER allows us to see whether a sparse attention
matrix can better exploit the length of an ending than other
models.
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Model Accuracy / std

Random Guess 25.0
BERT-BASE (110M) 32.86 / 0.45
BERT-LARGE (336M) 34.25 / 1.04
ROBERTA-BASE (125M) 34.11 / 0.45
ROBERTA-LARGE (355M) 34 / 0.2
ALBERT-XXLARGE-V2 (223M) 50.91 / 1.44
LONGFORMER BASE (435M) 35.29 / 0.77
XLNET LARGE (340M) 36.71 / 0.77
FUNNEL-TRANSFORMER-XL (468M) 35.22 / 1.94
ELECTRA-LARGE 65.87 / 2.26
Human Performance 95.40 / 0.20

Table 6: Accuracies (best results obtained among 8
epochs when averaged over 5 runs with random seeds)
of the LMs on the DISCOSENSE test set.

models trained with a different pre-training objec-
tive, we experiment with ELECTRA-LARGE (Clark
et al., 2020) and FUNNEL-TRANSFORMER-XL
(Dai et al., 2020), the latter of which is pre-trained
in a similar manner as ELECTRA-LARGE.

We obtain the implementations of these LMs
from Hugging Face Transformers. We fine-tune
them on the DISCOSENSE training set using a 4-
way cross-entropy loss in the same way as the dis-
criminator LMs in CAF are trained (see Section
3.3.4) and evaluate them on the test set.

4.2 Results and Discussion

Results on the test set, which are expressed in terms
of accuracy, are shown in Table 6. A few points
deserve mention.

First, all baselines perform better than random
guess (row 1). This implies that while CAF is used
to remove easy options, there may still be artifacts
in the data that could be exploited by the LMs.

Second, models sharing a similar pre-training
objective as that of BERT, such as ROBERTA and
LONGFORMER, are among the worst baselines. A
similar trend is observed with XLNET. Although
ALBERT has the Masked Token Prediction task
in its pre-training objective, its architectural dif-
ferences (i.e., larger hidden states and parameter
sharing) and its Sentence Order Prediction objec-
tive seem to help it learn inter-sentence coherency
properties better than its BERT counterparts.

Third, pre-training appears to play a predomi-
nant role in our task. While the BERT family of
models are trained with the masked-LM objective,
the pre-training objective of ELECTRA (the best
baseline) is designed to determine if a token in
a human-written sentence has been replaced by a
generator. We speculate that ELECTRA’s superior
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Figure 4: Error rate of ELECTRA on each discourse
connective in the DISCOSENSE test set.

performance can be attributed to the fact that its pre-
trained knowledge of discriminating between syn-
thetic and human generated tokens transfers well
to the task of discriminating between synthetically
generated sentences and human written sentences
in DISCOSENSE.6 Nevertheless, the fact that it
only achieves an accuracy of 65.87% is indicative
of the challenges DISCOSENSE has for existing
LMs. Note that this accuracy is much lower than
those achieved by LMs on many commonsense rea-
soning benchmarks (see Table 1). These results
suggest that DISCOSENSE is a challenging bench-
mark for state-of-the-art LMs.

Finally, we report human performance in the last
row of Table 6. Details of how these numbers are
obtained are discussed in Section 3.4. As can be
seen, the accuracy achieved by the best baseline,
ELECTRA, lags behind that of humans by nearly
30% points.

4.3 Quantitative Error Analysis

We perform a quantitative error analysis of our
best-performing model, ELECTRA. Specifically,
we compute for each discourse connective the per-
centage of examples in the DISCOSENSE test set
that are misclassified by ELECTRA, with the goal
of gaining a better understanding of the discourse
connectives that are perceived as easy as well as
those that are perceived as difficult as far as com-
monsense reasoning is concerned.

Results are shown in Figure 4. As we can see,

6While FUNNEL TRANSFORMER employs the same pre-
training strategy as ELECTRA, we speculate that the pooling
mechanism it uses to compress hidden states offsets the bene-
fits it receives from its pre-training strategy on this task.
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the misclassification rates are highest for those dis-
course connectives that express contrast (e.g., “oth-
erwise”, “however”, “but”, “although”). A plausi-
ble explanation for this result is that it is often hard
to anticipate what a human would have in mind if
they are trying to indicate the opposite of what they
mean to say. On the other hand, the model finds
it easy to predict sentences where the discourse
connective signals compliance and exemplification
(e.g., “similarly”, “likewise”, “hence”, “because of
that”, “for example”).

4.4 Qualitative Error Analysis

To better understand the mistakes made by ELEC-
TRA, we manually inspected 100 randomly selected
examples that are misclassified and identified four
major reasons why they are misclassified.

1. Less plausible endings. This category con-
tributes to 21% of the errors where the model
chooses a less plausible ending. Choosing a less
plausible option could be associated with a partial
understanding of the context or unwarranted as-
sumptions. In Example 1 of Figure 5, the model
makes the assumption that whatever is applicable
to grass is also applicable to trees. However, the
option it ends up picking is non-factual in nature
because of the phrase “7000 years ago”.

2. Abstract associations. 14% of the errors are
made due to the formation of abstract associations
between concepts. The model seems to rely on
certain spans of context for classification rather
than understand the semantics in its entirety. In
Example 2 of Figure 5, the model seems to wrongly
associate “energy dense nutrients” with “obesity”
and fails to understand that the context is discussing
the correlation between nutrient deficit diet and
people belonging to lower income groups.

3. Complex Context Understanding. 23% of
the examples are misclassified due to the fact that
a deeper than usual reasoning is needed to under-
stand the context. In Example 3 of Figure 5, we
see that the context is about something weighing
on a mind, indicating that the author may be faced
with a pressing situation. The connective “but” in-
dicates that while the situation being dealt with is
problematic or stressful, the author would still pur-
sue it, making option c) the most plausible. Here,
the model fails to understand what it means to have
something weighing on mind and what that can

1) Although the grasses were only a moment old, they
appeared as if they were months old. Likewise

a) Similar phenomena occurred with the ancient trees
around the earth 7,000 years ago.
b) The dinosaurs were not billions of years old.
c) Several seeds were found encased within stems that are
several months old, but they seemed quite fresh and alive.
d) The trees, although only a day old when they
sprouted forth, were nevertheless like trees years old
as they were fully grown.

2) Low income people are less likely to consume a
healthy diet than wealthier people, and energy dense
nutrients poor diets are preferentially consumed by
persons of lower socioeconomic status. Consequently

a) Nutrients associated with these diets may be potentially
contributing to obesity and diabetes.
b) Metabolic syndrome is primarily related to obesity.
c) Their health is at greater risk from diet related ill-
ness.
d) A great number of persons suffering from obesity re-
lated diseases receive inadequate nutritional care.

3) It weighs on a mind, all this but

a) You have to live it if you want to know whats on it.
b) All that means in practice.
c) It does make me want to back up and ask even big-
ger questions.
d) In a kind of perverse way, I don’t really feel sad.

Figure 5: Examples misclassified by ELECTRA (mis-
classified options in pink; ground truths in green).

make a person do, in this case, “ask bigger ques-
tions”.

4. Lack of understanding of the discourse con-
nective. In many cases it is difficult to pinpoint
the reason why an example is misclassified. Hence,
if a misclassified example is not covered by any of
the first three categories, we attribute the mistake to
a lack of understanding of the discourse connective.
This category contributes to 42% of the errors.

4.5 Role of Context and Discourse connective

To better understand the role played by the context
and the discourse connective in a LM’s reasoning
process, we conduct two ablation experiments. In
the first experiment, we remove the discourse con-
nective, so only the context and the endings are
available to the LMs. In the second experiment,
we strip the context and the discourse connective,
exposing only the endings to the LMs.

Results of these experiments are shown in the
C+E column and the E column of Table 7 respec-
tively. For comparison purposes, the results ob-
tained by not removing anything are shown in the
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Model C+D+E C+E E

BERT-BASE 32.86 / 0.5 33.95 / 0.8 32.27 / 1.3
BERT-LARGE 34.25 / 1.0 33.30 / 0.6 30.29 / 0.9
ROBERTA-BASE 34.11/ 0.5 32.73 / 0.4 32.49 / 0.7
ROBERTA-LARGE 34.99 / 0.2 34.94 / 0.9 32.70 / 0.7
ALBERT-XXL 50.91/ 1.4 50.87 / 1.2 38.04 / 0.4
LONGFORMER 35.29 / 0.8 36.82 / 0.8 33.18 / 1.0
XLNET LARGE 36.71 / 0.8 36.68 / 1.1 31.87 / 0.4
FUNNEL-XL 35.22 / 1.9 34.62 / 4.9 30.76 / 4.2
ELECTRA-LARGE 65.87 / 2.3 56.75 / 0.8 43.33 / 2.2

Table 7: Accuracies (best results among 8 epochs when
averaged over 5 runs with random seeds) on the DIS-
COSENSE test set with specific pieces of information
from the input removed. D, C, and E refer to the dis-
course connective, the context and the endings respec-
tively. The numbers following ’/’ are the standard devi-
ations.

C+D+E column. As can be seen, when the dis-
course connective is removed, performance drops
for all baselines except for BERT-BASE and LONG-
FORMER, and when both the discourse connective
and the context are removed, performance drops
for all baselines. In the case of the best baseline,
ELECTRA, performance drops abruptly as informa-
tion is withdrawn (C+E: 17.91% and E: 44.27%),
thus highlighting its reliance on both pieces of in-
formation for its competitive performance. Overall,
these results suggest that reasoning over both the
context and the connective is necessary for this task.
It is worth mentioning, though, that even when both
the context and the connective are removed, all the
LMs still manage to achieve an accuracy of more
than 30%. Additional experiments are needed to de-
termine the reason why they perform considerably
better than random guess when only the endings
are given. This will most likely involve an exami-
nation of whether there are systematic differences
between the human-generated sentences and their
automatically generated counterparts.

4.6 DISCOSENSE for Transfer Learning

Next, we look at DISCOSENSE from the perspec-
tive of a transfer learning source. Specifically,
to understand whether fine-tuning a LM on DIS-
COSENSE can improve its performance on a related
dataset, HELLASWAG, we perform sequential fine-
tuning, where we fine-tune each baseline LM on
the DISCOSENSE training set followed by the HEL-
LASWAG training set (both for 4 epochs). Note that
discourse connectives are removed from the input
because HELLASWAG does not have them.

Results on the validation split of HELLASWAG

Model HS DSÝÑHS

BERT-BASE-UNCASED 38.47 40.38
BERT-LARGE-UNCASED 44.36 42.54
ROBERTA-BASE 58.21 57.00
ROBERTA-LARGE 81.50 82.34
ALBERT-XXLARGE-V2 80.97 81.47
XLNET-LARGE 76.47 76.56
ELECTRA-LARGE 86.90 91.50
FUNNEL-TRANSFORMER-XL 86.88 87.50

Table 8: Results of sequential fine-tuning on the valida-
tion split of HELLASWAG.

are shown in Table 8. Specifically, the HS column
shows the results of the baselines on HELLASWAG

and the DSÑHS shows the results of the baselines
after sequential fine-tuning. As we can see, sequen-
tial fine-tuning yields performance improvements
with almost all LMs. Notably, the improvement
is more pronounced for ELECTRA (4.3%) than for
ALBERT and the BERT-based models. One plau-
sible reason is that ELECTRA does not struggle as
much in understanding DISCOSENSE as the BERT-
based models do, and as a result, it shows a bigger
improvement, possibly benefitting from the diverse
contextual nature of DISCOSENSE.

Finally, we evaluate the sequentially fine-tuned
ELECTRA-LARGE model on the HELLASWAG test
split. The model achieves an accuracy of 90.76%,
considerably outperforming its vanilla fine-tuning
counterpart (85.75%) and only underperforming
models that have 4x (e.g., He et al. (2021), Lourie
et al. (2021)) and 32x more parameters (e.g., Lourie
et al. (2021)) and are trained on 23x more data.

5 Conclusion

Motivated in part by the fact that existing pre-
trained language models have surpassed human
performance on numerous commonsense reason-
ing datasets, we introduced DISCOSENSE, a chal-
lenging benchmark that concerns commonsense
reasoning with discourse connectives to determine
the most plausible ending of a sentence. This task
was made difficult by the synthesis of high qual-
ity complex examples, which was made possible
through coupling highly competitive conditionally
trained models for language generation with Adver-
sarial Filtering. The best performing model on DIS-
COSENSE only achieved an accuracy of 65%, sig-
nificantly lagging behind humans. This makes DIS-
COSENSE an ideal benchmark for next-generation
commonsense reasoning systems.
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Ethical Considerations

Following the guidelines in Mitchell et al. (2019),
Bender and Friedman (2018), and Gebru et al.
(2021), we believe that we have provided all the
necessary information in our description of DIS-
COSENSE. In this section, we focus on ethical
considerations.

Bias mitigation. While it may not be possible to
eliminate all of the biases that exist in a dataset, we
have certainly taken steps to mitigate biases in DIS-
COSENSE. Adversarial Filtering has been shown
to be an effective de-biasing approach to remove
annotation artifacts, and we have taken a step fur-
ther to improve this approach through conditional
text generation. In addition, to our knowledge, our
work has used more capable generators and dis-
criminators (adversarial filter) to synthesize text
in comparison to other works (Zellers et al., 2018,
2019b; Bras et al., 2020).

Human annotator information. All annota-
tors/verifiers were hired during Summer 2021 as
student workers (20-25 hours/week) with full con-
sent. All of them were undergraduate and graduate
students aged around 20-24. The group comprised
both male and female students with members be-
longing to different ethnicity, namely Asian, Cau-
casian, and Hispanic. All annotators were native
English speakers. Additional details on the selec-
tion of annotators can be found in Appendix A.1.
The annotators were compensated with a hourly
rate of 10 US dollars.

Steps taken to protect annotators from harm-
ful content. All annotators were provided with
a thorough instructional training session in which
they were instructed on how to annotate the data,
how to go about the whole task, and what kind
of examples to skip. Before we shared the data,
we performed filtering of examples based on sensi-
tive/offensive keywords. After the filtering process,
we provided the annotators with a document that
contains instructions on how to annotate and how to
go about the whole task (see Appendix A.2). They
were asked to follow their own pace (the amount
of time they can spend per example). They were
asked to attempt examples that were specifically
related to commonsense reasoning tasks. Since the
aforementioned keyword-based approach for filter-
ing harmful content may not be able to identify all
harmful/offensive documents, the annotators were
provided with an opportunity to skip examples that
they would consider offensive, sensitive or chal-

lenging enough to confuse them.

Is this dataset consistent with the terms of use
and the intellectual property and privacy right
of people? The most important term of use for this
dataset is that it shall primarily be used for NLP re-
search. The source text of this dataset was obtained
from DISCOVERY and DISCOFUSE, both of which
have been there for a long time. These datasets have
been obtained from Common Crawl and Wikipedia
data, which is public information. Therefore these
data sources do not contain any information that is
non-public. We agree with the authors of DISCOV-
ERY and DISCOFUSE that these data sources do not
seem to mis-represent any community nor can be
used to identify a certain set of individual known
outside public information. Through conditional
text generation, which has been used to synthesize
commonsense knowledge text with discourse con-
nectives, we present text that is mostly suitable for
commonsense reasoning tasks, making this work
consistent with the terms of use. We believe that
our work does not have use cases that would usually
be considered out-of-bounds for NLP research.

Is there anything about the composition of
the dataset or the way it was collected and pre-
processed/cleaned/labeled that might impact fu-
ture uses? We have highlighted all the necessary
information required by the user of this dataset to
use it for their own use case. Each example has
gone through multiple rounds of screening. We do
not expect to see any risk being posed by the user
of this dataset nor any financial harm associated
with its use.

Will the dataset be distributed to third parties
outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was
created? We will open-source all the models and
data produced from this work immediately after
publication. We plan to release it on a GitHub
repository with the MIT license and also make it
available on Hugging Face Datasets.

If others want to extend/augment/build
on/contribute to the dataset, is there a mech-
anism for them to do so? We have provided all
the essential information needed by a user to extend
this work. They will have access to the data and
the models which they can use for experimentation.
We will continue to monitor the GitHub repository
to resolve issues.
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Limitations

Next, we discuss some limitations of our work.
Limitations of (Conditional) Adversarial Fil-

tering. Recall that we seek to create a challenging
commonsense reasoning benchmark by automati-
cally removing annotation artifacts7 and replacing
easy options in examples via the design and use of
Conditional Adversarial Filtering (CAF). Although
CAF is an improved version of Adversarial Filter-
ing (AF), which has been frequently used in the
last few years in the construction of commonsense
reasoning benchmarks, it is not without its limi-
tations. Specifically, how well CAF can identify
annotation artifacts and easy options and subse-
quently remove artifacts and replace easy options
with difficult ones depends on how good the dis-
criminator and the generators are. As discussed
before, while the discriminator and generators we
use in the creation of DISCOSENSE are stronger
than those used in the creation of virtually all other
commonsense reasoning benchmarks (e.g., SWAG

and HELLASWAG), these discriminator and genera-
tors are still not perfect. In particular, the fact that
the best-performing baseline, ELECTRA, achieves
an accuracy that is substantially higher than random
guess (i.e., 67% vs. 25%) is an indication that the
discriminator and generators fail to remove all an-
notation artifacts and/or replace easy options with
sufficiently difficult ones for state-of-the-art pre-
trained language models. As pre-trained language
models continue to improve, we do expect that the
family of AF approaches will become more effec-
tive. Nevertheless, moving forward, researchers
should think about whether there are alternative,
non-AF-based approaches for creating challenging
commonsense reasoning benchmarks that do not
suffer from the limitations of AF-based approaches.

Coverage of discourse connectives. While we
have taken measures to ensure that DISCOSENSE

has a good coverage of discourse connectives, there
are still many connectives that are not present in
DISCOSENSE due to the ambiguity they give rise to.
For example, having “and” does not make it clear
what the next sentence should talk about given a
context, meaning that it is likely for these connec-
tives to have many endings that are equally plausi-
ble. Given budgetary constraints, we do not want to

7An example of an annotation artifact would be that ex-
amples in a commonsense reasoning task can be solved by
a pre-trained language model using unintended artifacts that
exist in the data such as lexical overlap/similarity.

waste our human verification effort on identifying
and filtering the potentially large number of exam-
ples that contain equally plausible endings as a re-
sult of these ambiguous discourse connectives. So,
we have avoided their inclusion in DISCOSENSE

thus far. However, to fairly evaluate how good a
model is in reasoning with discourse connectives,
we should augment DISCOSENSE with ambiguous
discourse connectives in the future.

Types of reasoning. Although there is a high
coverage in the types of commonsense reasoning
DISCOSENSE aims to study (e.g., physical world
reasoning, social commonsense reasoning, numer-
ical reasoning, linguistic reasoning, temporal rea-
soning, abductive reasoning), there are other kinds
of reasoning studied within the NLP literature that
this benchmark does not aim to evaluate upon, such
as multi-hop reasoning and symbolic reasoning. It
is still not clear how adversarial approaches can be
applied to make these kinds of reasoning difficult.
We leave this component to a future work.
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A Crowdsourcing Details

We performed crowdsourcing to determine if hu-
mans are able to identify the ground truth in each
example present in the training and test sets of DIS-
COSENSE.

A.1 Selection of Annotators
We selected undergraduate and graduate student
workers primarily on the basis of relevant back-
ground knowledge and their current skill set. Since

the dataset features intricate English sentences, we
shortlisted students who are native English speak-
ers. We presented all shortlisted student workers
with a one-hour training session followed by an
evaluation test and ranked them based on their
performance on the test. We then hired the top-
performing students as our annotators and asked
them to answer each example in DISCOSENSE.
We closely monitored the progress and the per-
formance of each annotator and provided timely
feedback through virtual meetings on how his/her
way of performing annotation can be improved
by understanding the difficulties encountered by
him/her and rectifying any problems if they have
been doing the annotation in an incorrect manner.
All of the annotators were made aware of how the
annotated data would be used and its implications.
The student workers who did not perform the anno-
tation work in a satisfactory manner were replaced
by the next best performing student on the waitlist.
All student workers were paid $10/hr (Fort et al.,
2011; Cohen et al., 2016).

A.2 Instructions Provided to Annotators

Below are the instructions we presented to the an-
notators during our one-hour tutorial. Each of them
received a copy of these instructions plus numer-
ous examples (one of them is shown below) at the
end of the tutorial and was given an opportunity
to ask clarification questions about the instructions
and the annotation process in general after a closer
examination of these instructions and examples.

Motivation. Academic research is an exploration
activity to solve problems that have not been
completely solved before. By this nature, each
academic research work must sit at the frontier
of the field and present novelties that have
not been addressed by prior works. Machine
Learning (specifically Deep Learning) has seen
advancements in numerous domains such as
personal assistants, machine translation, etc.
What you may have seen is a particular Machine
Learning algorithm being deployed in finished
end products, but what we do not observe are
the research challenges that were overcome
behind the scenes to get there. What you will
be involved in is one of the research tasks that is
far from being solved. You will be contributing
towards a meaningful task that has the potential
to make scientific advancements. We are dealing
with Commonsense Reasoning with regard to
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Natural Language Processing. Specifically, we are
addressing the problem of how machines can learn
to reason in the manner humans do with textual
data. This task often requires humans to make use
of the information they have acquired about our
world (e.g., how the physical world works), and
reason about what they read and how it complies
with what they already know. The reasoning
works on multiple levels: firstly we understand the
information we read, make sure we understood it
properly, and then reason through various means
about it to ensure that it makes sense with what we
know. The following quote sums it up nicely.

The brain is an abduction machine, contin-
uously trying to prove abductively that the
observables in its environment constitute a
coherent situation.

— Jerry Hobbs, ACL 2013 Lifetime
Achievement Award winner

Current Deep Learning models are very good at
picking unintended signals to arrive at the correct
answer, but this is not what we intend them to do.
For instance, if “not” is present within a sentence,
then the model might be biased towards predicting
negation even though that might not be the case.
We require them to pick the right answer through
a reasoning process that is as close to the human
reasoning process as possible. To address this task,
we need to build a dataset that aims at providing
“correct” signals to our models, and hopefully the
models can learn to reason reasonably well once
they are trained on this dataset.

High level description of the task. The task
description is straightforward.

Given a context and a discourse connective,
predict which ending is the best to the best
of your knowledge/capability.

While reading the contexts, you should under-
stand what the discourse connective is supposed to
convey. A discourse connective is a word/phrase
used to connect two sentences and reveal their rela-
tionship. Consider the following examples.

1. I am feeling hungry, as a result, I cooked
lunch.

2. Although I liked reading the book, there were

I love that he’s able to use wired as a venue for
launching future bestsellers though

a) I think the wired article is a bit too long.
b) I don’t think its a bad thing for him to do so.
c) I do agree with some of the other reviews that wired is
not a very well written book.
d) Honestly, I might have preferred the podcast of his
presentation on the topic.

Figure 6: Example taken from the DISCOSENSE train-
ing set. The correct answer is boldfaced.

some major flaws.

In these examples, the green-colored text is the
context and the discourse connective is boldfaced.
Notice how the text in orange is framed in accor-
dance with the discourse connective. For instance,
if “as a result” is present, then the ending will
most likely be about the consequence of what is de-
scribed in the context; in contrast, if “although” is
the discourse connective, then the ending needs to
take a contrasting standpoint. Hence, the discourse
connective decides what the ending needs to talk
about. We have provided a list of the discourse con-
nectives you can expect in the “Role of discourse
connectives” section. You are required to be com-
pletely familiar with the role each connective is
supposed to play.

Figure 6 shows an example you might expect in
the dataset. Any ending that violates what we know
about how the physical world works or challenges
our notions about anything in particular needs to be
discarded. You have to choose the most plausible
ending, which is the ending that is the most feasi-
ble amongst four endings. In cases where two or
more endings seem equally feasible, the following
criteria should be used.

• Any ending that seems to be indisputably cor-
rect can be regarded as the best.

• The best ending will not be inconsistent with
the context and the discourse connective.

• If all three options seem incorrect and implau-
sible and the remaining option makes the most
sense relatively, then it should be chosen since
the correct ending is the best ending by de-
fault.

• Two endings can make sense, but the ending
that is likely to be more sensible is what you
should consider as the best. For example:
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– Context: A man is singing into a micro-
phone.

– Ending 1: A man performs a song.
– Ending 2: A man is performing on stage.

Ending 2 is not incorrect but ending 1 makes
more logical sense to us as humans. In such
cases, mark what seems more logical to you.

Role of discourse connectives. Please make sure
that you understand the role of each connective.

• although: in spite of the fact that; even though

• as a result: because of something

• because of this: for the reason that

• because of that: for the reason that

• but: used for joining two ideas or statements
when the second one is different from the first
one

• by contrast: used to express difference with
something

• consequently: as a result

• conversely: introducing a statement or idea
which reverses one that has just been made or
referred to

• for example: used to introduce something

• for instance: as an example

• hence: as a consequence; for this reason

• however: used to introduce a statement that
contrasts with or seems to contradict some-
thing that has been said previously

• in contrast: used to express difference with
something

• in other words: to put it another way

• in particular: especially; specifically

• in short: to sum up; briefly

• in sum: to sum up; in summary

• instead: as an alternative or substitute

• interestingly: in a way that arouses curiosity
or interest

• likewise: in the same way

• nevertheless: in spite of that; notwithstanding;
all the same

• nonetheless: in spite of that; nevertheless

• on the contrary: conversely; used to intensify
a denial of what has just been implied or stated
by suggesting that the opposite is the case

• on the other hand: used to introduce a con-
trasting point of view, fact, or situation

• otherwise: in circumstances different from
those present or considered; or else

• overall: taking everything into account

• particularly: especially

• rather: used to indicate one’s preference in a
particular matter; preferably

• similarly: in a similar way

• specifically: in a way that is exact and clear;
precisely

• subsequently: after a particular thing has hap-
pened; afterward

• thereafter: after that time

• thereby: by that means; as a result of that

• therefore: for that reason; consequently

• though: despite the fact that; although

• thus: as a result or consequence of this; there-
fore

• yet: so far; up until the present or a specified
or implied time; by now or then
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