
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 10236–10242
December 7-11, 2022 ©2022 Association for Computational Linguistics

Fine-Tuning Pre-trained Transformers into Decaying Fast Weights

Huanru Henry Mao
Jenni

henry@jenni.ai

Abstract

Autoregressive Transformers are strong lan-
guage models but incur O(T ) complexity
during per-token generation due to the self-
attention mechanism. Recent work proposes
kernel-based methods to approximate causal
self-attention by replacing it with recurrent for-
mulations with various update rules and fea-
ture maps to achieve O(1) time and memory
complexity. We explore these approaches and
find that they are unnecessarily complex, and
propose a simple alternative - decaying fast
weights - that runs fast on GPU, outperforms
prior methods, and retains 99% of attention’s
performance for GPT-2. We also show com-
petitive performance on WikiText-103 against
more complex attention substitutes.

1 Introduction

Autoregressive Transformers (Vaswani et al., 2017)
have demonstrated strong performance on text gen-
eration (Brown et al., 2020). The success of self-
attention in Transformers over recurrent models
(Hochreiter and Schmidhuber, 1997) can be at-
tributed to its parallelizability (Hooker, 2021) and
its effective gradient propagation over many time
steps (Ke et al., 2018). However, self-attention
has a high computation and memory cost. During
inference sampling, it consumes O(T ) time and
memory and grows linearly per token generated.

These drawbacks motivated recent work to con-
vert or fine-tune attention into recurrent formula-
tions with O(1) memory and time complexity for
auto-regressive generation. Kernel-based meth-
ods for self-attention (Tay et al., 2021) learn ap-
proximations of the exponential similarity function
using m-dimensional feature maps to reformulate
attention as a recurrent computation. They replace
attention with “unlimited capacity” with fixed-
capacity fast weights (Schmidhuber, 1992; Peng
et al., 2022), where the memory-accuracy trade-
off (Kerg et al., 2020) is controlled by m. Several

Figure 1: Plot of memory usage and execution time of
our decay rule, delta rule and attention when gen-
erating the next token at various sequence lengths on
Quadro RTX 4000. Decay and delta rule use approxi-
mately the same peak memory (overlapped in plot).

works explored different feature maps and recur-
rent formulations (i.e., update rules). Katharopou-
los et al. (2020) propose feature maps to maintain
positive outputs, while Choromanski et al. (2021);
Peng et al. (2021) carefully ensure their random
feature maps are unbiased estimates of the softmax
attention kernel. Schlag et al. (2021a); Peng et al.
(2021) propose more sophisticated update rules to
forget information in the recurrent state to improve
performance. Recently, Kasai et al. (2021) showed
that pre-trained Transformers can be fine-tuned into
a recurrent formulation using learned ReLU feature
maps with minor degradations. While promising,
it is unclear which update rules or feature maps are
critical for successful fine-tuning.

In this work, we investigate various update rule
configurations to fine-tune pre-trained Transform-
ers into RNNs for fast inference. We find that prior
proposals contain unnecessary operations, lead-
ing us to propose a simple element-wise decay up-
date rule with no feature map. We fine-tune GPT-
2 (Radford et al., 2019) into our recurrent formula-

10236



tion to demonstrate that our rule outperforms prior
methods and recovers 99% of self-attention’s per-
formance. We also show competitive performance
on WikiText-103 (Merity et al., 2017) compared to
more complex attention alternatives. Our results
support the idea (Merity, 2019; Zhai et al., 2021)
that it is unnecessary for attention alternatives to
maintain a close analogy to self-attention, and it is
more important to focus on designing an expressive
update rule.

2 Background and Related Work

2.1 Kernel-based Self-Attention
Kernel-based approximations (Katharopoulos et al.,
2020; Choromanski et al., 2021; Kasai et al., 2021)
to self-attention reorders computation such that a
typical O(Td) (per token) memory and time com-
plexity attention becomes O(dm) for T time steps,
dimension d and feature size m. Given input to
the attention layer xt ∈ Rd×1 and learned weight
matrices W∗, the causal self-attention (Vaswani
et al., 2017) for query qt = Wqxt ∈ Rd×1, key
kt = Wkxt ∈ Rd×1 and value vt = Wvxt ∈ Rd×1

is defined as:

yt =

t∑

j

sim(kj , qt)∑t
i sim(ki, qt)

vj

sim(x, y) = exp(x⊺y/
√
d)

(1)

Kernel-based methods propose an approximation
to the exponential similarity function s̃im(x, y) =
ϕ(x)⊺ϕ(y) via a m-dimensional kernel feature map
ϕ : Rd −→ Rm. This approximation enables us to
rewrite Eq. 1 as

yt =

∑t
j vjϕ(kj)

⊺ϕ(qt)∑t
i ϕ(ki)

⊺ϕ(qt)
(2)

due to the associative property of matrix multipli-
cation. This lends itself to a recurrent formulation
with state St ∈ Rd×m and normalizer zt ∈ R1×m

that can be computed at every time step:

St = St−1 + vtϕ(kt)
⊺, zt = zt−1 + ϕ(kt)

⊺ (3)

The state recurrence resembles fast weight additive
outer products (Schmidhuber, 1992). Finally, the
output is computed by normalizing against ztϕ(qt),
which we refer to as attention normalization:

yt =
Stϕ(qt)

ztϕ(qt)
(4)

2.2 Update Rules
Because Eq. 3 is an additive update rule, it is
unable to forget past memories. This can over-
whelm the fixed state capacity and lead to poor
performance. Peng et al. (2021) proposes a gated
rule similar to gated RNNs (Chung et al., 2014) to
decay old information and induce a recency bias:

St = gtSt−1 + (1− gt)vtϕ(kt)
⊺

zt = gtzt−1 + (1− gt)ϕ(kt)
⊺ (5)

where gt = σ(Wgxt) ∈ R is a learned scalar gate
that determines how much new information over-
writes existing information. They also analogously
modify the attention normalizer to incorporate gt.
This rule is problematic as it overwrites all state
elements equally without fine-grained control.

Schlag et al. (2021a) proposes improving Eq. 5
using a Fast Weight Programmer (Schmidhuber,
1992) delta rule to forget values associated with
the current write key by removing the associated
value before adding the new value:

St = St−1 − gtSt−1ϕ
′(kt)ϕ′(kt)⊺ + gtvtϕ

′(kt)⊺

(6)
where gt is a scalar that defines the extent to
which the new value replaces the old value. To
stabilize training, Schlag et al. (2021a) applies
sum normalization to feature maps to enforce
the outputs to have components that sum to 1
(i.e., ϕ′(kt) = ϕ(kt)/

∑d
j ϕ(kt)j). This normaliza-

tion is applied to both key and query, and the out-
put is computed as yt = Stϕ

′(qt)/ztϕ′(qt). Schlag
et al. (2021a) showed that dropping attention nor-
malization (i.e., yt = Stϕ

′(qt)) works just as well
and is redundant when combined with sum normal-
ization.

2.3 Kernel Feature Map
One motivation for kernel-based methods is to
closely approximate self-attention. Peng et al.
(2021) proposes Random Feature Attention (RFA),
which uses random feature maps to produce unbi-
ased estimates of the exponential sim(x, y) func-
tion. Choromanski et al. (2021) proposes FAVOR+,
a random feature map with lower variance. In-
stead of rigorously approximating self-attention,
several proposals aim simply to maintain positive
outputs motivated by the positivity of attention
weights. Katharopoulos et al. (2020) proposes
the ϕ(x) = ELU(x) + 1 (Clevert et al., 2016)
feature map. Schlag et al. (2021a) proposes De-
terministic Parameter-Free Projection (DPFP), a

10237



feature map that expands m without introducing
additional learned parameters. Kasai et al. (2021)
proposes using a simple learned ReLU feature map
ϕ(x) = ReLU(Wϕx + bϕ) that introduces addi-
tional parameters and showed better performance
than ELU and RFA. In this work, we use this ReLU
feature map as a baseline for its strong language
model fine-tuning results.

3 Decay Update Rule

We propose the decay update rule, which replaces
the self-attention mechanism in Transformers with
decaying fast weights (Ba et al., 2016) that evolves
with linear dynamics. We modify the additive up-
date rule (Eq. 3) by adding a low-rank decay matrix
Gt ∈ (0, 1)d×m to forget information.

St = Gt ⊗ St−1 + vtϕ(kt)
⊺

Gt = σ(Wzxt + bz)σ(Wfxt + bf )
⊺ (7)

where Wz ∈ Rd×d, Wf ∈ Rm×d, bz ∈ Rd and
bf ∈ Rm are newly added parameters. The sigmoid
activation σ in Gt bounds the output values to en-
sure1 stable linear recurrent dynamics (Miller and
Hardt, 2019). We initialize bz, bf via Uniform Gate
Initialization (Gu et al., 2020), then re-scale pre-
trained weight Wv by 1−σ(bz). This re-scaling pre-
vents initial iterations from numerical overflows.

Our rule is based on the gated rule (Peng et al.,
2021) and gated fast weights (Schlag and Schmid-
huber, 2017). Unlike the gated rule, our gate Gt

is a learned matrix and not a scalar, which en-
ables more control when decaying St as feature
size m increases. Compared to Schlag and Schmid-
huber (2017); Peng et al. (2021), we do not gate
the vtϕ(kt)

⊺ term as it did not bring performance
gains given our initialization scheme. Unlike the
delta rule (Schlag et al., 2021a,b), our rule is a
pure element-wise operation, where state dimen-
sions m do not mix (Laurent and von Brecht, 2017;
Chen, 2017). This can enable more efficient paral-
lelization on GPU (Lei, 2021) (Fig. 1).

Finally, we choose a linear projection feature
map and remove attention normalization (Schlag
et al., 2021b) and its associated vector zt from Eq.
4.

ϕ(x) = Wϕx, yt = Stϕ(qt) (8)

In practice, this feature map can be subsumed into
Wk,Wq (Kasai et al., 2021) and is equivalent to the
identity function (i.e., no feature map).

1Without sigmoid, training diverges.

3.1 Implementation Efficiency
During per-token generation, our proposal has the
same O(dm) time and memory complexity as prior
kernel-based methods instead of the O(Td) require-
ment of self-attention. Fig. 1 illustrates the prac-
tical benefits of delta and decay rules versus self-
attention during generation. For training, we devel-
oped a memory-efficient CUDA kernel2 that avoids
materializing outer product matrices in memory,
similar to Katharopoulos et al. (2020). However,
we must store S for backpropagation due to the ad-
dition of Gt in Eq. 7, which makes the computation
non-reversible (MacKay et al., 2018). Thus, train-
ing consumes O(Tdm) memory and O(T ) parallel
time. In practice, our implementation consumes
less memory than self-attention when m ≪ T .
This implies that for memory-bound training, delta
may be more favorable than our decay rule despite
having a slower run-time. We note this trade off
for practitioners to consider and leave memory op-
timizations for future work.

4 GPT-2 Fine-Tuning Experiments

We perform fine-tuning experiments to speed up ex-
isting pre-trained Transformers in a similar setting
to Transformer-to-RNN (T2R) (Kasai et al., 2021).
We choose GPT-2 small (Radford et al., 2019) as
our candidate model to fine-tune, as it has a direct
scale-up to large models such as GPT-3 (Brown
et al., 2020). To facilitate reproducibility on pub-
licly available datasets, we first fine-tune GPT-2
on The Pile (Gao et al., 2020) - a large general
corpus of text. This fine-tuned GPT-2 serves as our
baseline target model (14.5 PPL, Table 2). When
replacing self-attention, we simply swap the layer
with a new recurrence formulation. Following Ka-
sai et al. (2021), the entire model is fine-tuned.

We explore different update rules by fine-tuning
the target GPT-2 (Eq. 1) model into add (Eq. 3),
gated (Eq. 5), delta (Eq. 6)3 and our proposed
decay rule (Eq. 7). In all settings, we hold state
capacity m = 4 constant for fair comparison. As
a baseline, we train all rules with ReLU feature
maps (Kasai et al., 2021) and attention normaliza-
tion. For attention normalization, Eq. 5 is used for
the gated rule and Eq. 3 is used otherwise. We sub-
sequently ablate attention normalization and ReLU

2Our optimized CUDA kernels are available at https:
//github.com/jenni-ai/T2FW.

3Following Schlag et al. (2021a), we apply sum normaliza-
tion to the delta rule. We also initialize gt ≈ 0.007 to a small
value. Without these changes, the model diverges.

10238

https://github.com/jenni-ai/T2FW
https://github.com/jenni-ai/T2FW


Rule Baseline Norm ✗ ϕ ✗

Add 22.6 * 20.0
Delta 21.6 20.1 *
Gated * 19.7 17.1
Decay N/A 18.8 17.1

Table 1: Perplexity (PPL) of different update rule config-
urations on The Pile validation set. Baseline uses both
attention normalization and ReLU feature maps. Norm
✗ means we removed normalization from the baseline.
ϕ ✗ means we removed both ReLU feature maps and
normalization from the baseline. * indicates divergence.

Rule m PPL
GPT-2 - 14.5
Local Attention - 19.4
Gated 16 16.8
Decay 16 16.1
Gated 32 16.4
Decay 32 14.6

Table 2: Update rules on The Pile validation set as m
increases. No normalization or feature maps are used.

feature maps (to no feature map) to analyze their
effects.

4.1 Results

4.1.1 Normalization Ablation
We first ablate each update rules’ proposed at-
tention normalization method to test its effects
(Baseline vs Norm ✗ in Table 1). Peng et al.
(2021)’s modification of attention normalization
(Eq. 5) causes the gated rule to diverge, likely due
to division by small zt values. Without normal-
ization, the gated rule trained with better stabil-
ity. Our results indicate that only the additive rule
with ReLU feature maps requires normalization to
converge. Otherwise, normalization is redundant,
corroborating Schlag et al. (2021a)’s findings.

4.1.2 Feature Map Ablation
We remove attention normalization on all rules, and
further investigate if positive feature maps are nec-
essary (ϕ ✗ in Table 1). For each rule, we replace
the ReLU feature map (Kasai et al., 2021) with a
linear projection (i.e., no feature map). This simpli-
fication improves performance for all rules4 except
the delta rule, which diverges. Our results suggest
that positive feature maps are only necessary when

4For the additive rule, we re-scaled the pre-trained value
weights Wv by 1/512 to prevent initial iteration overflow.

Model Memory Test (0) Test (480)
Base - 20.5 19.0
†Linformer 2× 64 27.2 30.7
†ABCMLP 2× 32 21.9 20.5
Decay 32 22.1 20.7
Decay 64 21.9 20.5

Table 3: Comparison under Baevski and Auli (2019)
setting on WikiText-103 test set with context sizes 0 and
480. † results are from Peng et al. (2022), which stores
both key and value vectors, doubling the memory size.
We do not compare with memory size ABCMLP 2× 64
as it effectively stores 128 vectors.

using attention or sum normalization to avoid small
divisors during normalization. To verify this, we
also trained the additive rule with normalization
but no feature map and it diverged.

4.1.3 Update Rule Comparison
When comparing update rules under their best con-
figuration (Table 1), the delta rule performs the
worse. Surprisingly, under its best configuration,
the simple additive rule outperforms the delta rule.
This could be due to a lack of stable recurrent dy-
namics (Chen, 2017) during the fine-tuning setting.
Both the gated and decay rules outperform other
rules in all configurations under m = 4.

4.1.4 Scaling to Larger m

Finally, we explore if we can increase state capac-
ity m to close the performance gap with GPT-2
baseline (Table 2). We also compare against local
attention (window size 32), which is regarded as
a strong baseline (Xiong et al., 2022). We train
larger state capacity variants of the decay and gated
rule where m = {16, 32}. Our results show that
the decay rule scales to better performance relative
to the gated rule as m increases. At m = 32, our
decay rule recovers 99% of GPT-2’s performance.

5 WikiText-103 Fine-Tuning Experiments

We perform a similar experiment to fine-tune a pre-
trained Transformer into our decay rule with m =
{32, 64} on the WikiText-103 (Merity et al., 2017)
language modeling dataset. We fine-tune from the
publicly available checkpoint from Baevski and
Auli (2019) (Base) by swapping attention with our
decay rule and tuning the entire model, with sim-
ilar hyperparameters as Peng et al. (2022). We
compare against recently proposed self-attention
approximations including a causal variant of Lin-

10239



former (Wang et al., 2020) and Attention with
Bounded Memory Control (ABCMLP) (Peng et al.,
2022) evaluated under the same setting of 0 and
480 token context sizes on the WikiText-103 test
set. Our method is simpler than these approaches
and performs competitively5 under similar state
memory sizes (Table 3).

6 Limitations

To compare update rules, our experiments use the
simple feature map from Kasai et al. (2021) for all
rules. However, we acknowledge that some of these
rules are jointly proposed with their feature maps,
which may be required for good performance. For
example, when training Peng et al. (2021)’s gated
rule (baseline), we attempted various initialization
schemes and tried adding small constants to the
normalization divisor to help the model converge.
However, none of our efforts worked. We note
that Peng et al. (2021)’s original proposal of the
gated rule does not use the more recently proposed
learned ReLU feature maps (Kasai et al., 2021),
which may be incompatible with their original pro-
posal. Similarly, Schlag et al. (2021a)’s delta rule
was also proposed along with their feature map.
Our results suggest that their proposed update rules
may not be robust to alternative feature maps or the
fine-tuning setting.

The majority of our experiments are performed
on The Pile with GPT-2 and assumes a large dataset
pre-training setup. While this setup is typical of
many NLG applications, it may not generalize
to settings without a large dataset, such as low-
resource NLP settings. In these cases, more com-
plex approaches may provide better inductive bi-
ases than our simple approach.

Our work focuses on the specific case of fine-
tuning pre-trained auto-regressive Transformer lan-
guage models into fast recurrent variants for in-
ference applications. However, we do not explore
training these models from scratch or on differ-
ent architectures. It may be the case that our ap-
proach only works in the fine-tuning setting and
that self-attention pre-training is required (Kasai
et al., 2021).

Our work also exclusively focuses on language
modeling and does not consider evaluation on
downstream tasks. While language modeling per-
formance typically correlates to downstream task

5Linformer and ABC are trained from scratch, while our
work focuses on the fine-tuning setting.

performance (Brown et al., 2020), future work
should further validate our proposal on these prac-
tical areas of interest.

Finally, as mentioned in Sec. 3.1, our proposed
update rule requires more memory (i.e., O(Tdm))
than the add and delta rule (i.e., O(Td)) during
training. This may lead to memory issues when
training state sizes with larger m, in which the delta
rule may be preferred over the decay rule. Future
work should explore extensions of our approach
with better space complexity.

7 Ethical Considerations

Our work uses datasets crawled from the public
web, including WikiText-103 (Merity et al., 2017)
and The Pile (Gao et al., 2020) and may contain
sensitive information or contain undesirable biases.
We refer readers to the dataset descriptions from
their respective papers for details.

Our work focuses on improving the inference
speed of generating from language models by
fine-tuning pre-trained models, which may ben-
efit downstream applications that require the de-
ployment of language models. Our work does not
explore the issues of bias and disinformation in
language models nor specifically aims to mitigate
these issues. Our models will likely exhibit the
same biases and issues that large language models
exhibit (Brown et al., 2020). Practitioners who de-
ploy models with our proposal should not assume
our method mitigates these issues. Text sampled
from these models may contain offensive content
and biases and we advise practical uses of these
models to involve some form of human supervi-
sion.

References
Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z

Leibo, and Catalin Ionescu. 2016. Using fast weights
to attend to the recent past. Advances in Neural
Information Processing Systems, 29.

Alexei Baevski and Michael Auli. 2019. Adaptive input
representations for neural language modeling. In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

10240

https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ


Minmin Chen. 2017. Minimalrnn: Toward more in-
terpretable and trainable recurrent neural networks.
arXiv preprint arXiv:1711.06788.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamás
Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, David Benjamin Be-
langer, Lucy J. Colwell, and Adrian Weller. 2021.
Rethinking attention with performers. In 9th Inter-
national Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence mod-
eling. In NIPS 2014 Workshop on Deep Learning,
December 2014.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2016. Fast and accurate deep network
learning by exponential linear units (elus). In 4th In-
ternational Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800gb dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027.

Albert Gu, Caglar Gulcehre, Thomas Paine, Matt Hoff-
man, and Razvan Pascanu. 2020. Improving the gat-
ing mechanism of recurrent neural networks. In In-
ternational Conference on Machine Learning, pages
3800–3809. PMLR.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Sara Hooker. 2021. The hardware lottery. Communica-
tions of the ACM, 64(12):58–65.

Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama,
Gabriel Ilharco, Nikolaos Pappas, Yi Mao, Weizhu
Chen, and Noah A. Smith. 2021. Finetuning pre-
trained transformers into rnns. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event
/ Punta Cana, Dominican Republic, 7-11 November,
2021, pages 10630–10643. Association for Computa-
tional Linguistics.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
rnns: Fast autoregressive transformers with linear
attention. In International Conference on Machine
Learning, pages 5156–5165. PMLR.

Nan Rosemary Ke, Anirudh Goyal ALIAS
PARTH GOYAL, Olexa Bilaniuk, Jonathan
Binas, Michael C Mozer, Chris Pal, and Yoshua

Bengio. 2018. Sparse attentive backtracking:
Temporal credit assignment through reminding.
Advances in neural information processing systems,
31.

Giancarlo Kerg, Bhargav Kanuparthi, Anirudh Goyal,
Kyle Goyette, Yoshua Bengio, and Guillaume Lajoie.
2020. Untangling tradeoffs between recurrence and
self-attention in artificial neural networks. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Thomas Laurent and James von Brecht. 2017. A re-
current neural network without chaos. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Tao Lei. 2021. When attention meets fast recurrence:
Training language models with reduced compute. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2021, Virtual Event / Punta Cana, Dominican Repub-
lic, 7-11 November, 2021, pages 7633–7648. Associ-
ation for Computational Linguistics.

Matthew MacKay, Paul Vicol, Jimmy Ba, and Roger B
Grosse. 2018. Reversible recurrent neural networks.
Advances in Neural Information Processing Systems,
31.

Stephen Merity. 2019. Single headed attention rnn:
Stop thinking with your head. arXiv preprint
arXiv:1911.11423.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Gins-
burg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, et al. 2017. Mixed precision training.
arXiv preprint arXiv:1710.03740.

John Miller and Moritz Hardt. 2019. Stable recurrent
models. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net.

Hao Peng, Jungo Kasai, Nikolaos Pappas, Dani
Yogatama, Zhaofeng Wu, Lingpeng Kong, Roy
Schwartz, and Noah A. Smith. 2022. ABC: attention
with bounded-memory control. pages 7469–7483.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah A. Smith, and Lingpeng Kong. 2021.
Random feature attention. In 9th International Con-
ference on Learning Representations, ICLR 2021, Vir-
tual Event, Austria, May 3-7, 2021. OpenReview.net.

10241

https://openreview.net/forum?id=Ua6zuk0WRH
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
https://doi.org/10.18653/v1/2021.emnlp-main.830
https://doi.org/10.18653/v1/2021.emnlp-main.830
https://proceedings.neurips.cc/paper/2020/hash/e2065cb56f5533494522c46a72f1dfb0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e2065cb56f5533494522c46a72f1dfb0-Abstract.html
https://openreview.net/forum?id=S1dIzvclg
https://openreview.net/forum?id=S1dIzvclg
https://doi.org/10.18653/v1/2021.emnlp-main.602
https://doi.org/10.18653/v1/2021.emnlp-main.602
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Hygxb2CqKm
https://openreview.net/forum?id=Hygxb2CqKm
https://doi.org/10.18653/v1/2022.acl-long.515
https://doi.org/10.18653/v1/2022.acl-long.515
https://openreview.net/forum?id=QtTKTdVrFBB


Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber.
2021a. Linear transformers are secretly fast weight
programmers. In International Conference on Ma-
chine Learning, pages 9355–9366. PMLR.

Imanol Schlag, Tsendsuren Munkhdalai, and Jürgen
Schmidhuber. 2021b. Learning associative inference
using fast weight memory. In 9th International Con-
ference on Learning Representations, ICLR 2021, Vir-
tual Event, Austria, May 3-7, 2021. OpenReview.net.

Imanol Schlag and Jürgen Schmidhuber. 2017. Gated
fast weights for on-the-fly neural program generation.
In NIPS Metalearning Workshop.

Jürgen Schmidhuber. 1992. Learning to control fast-
weight memories: An alternative to dynamic recur-
rent networks. Neural Computation, 4(1):131–139.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. 2021. Long
range arena : A benchmark for efficient transformers.
In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

Wenhan Xiong, Barlas Oguz, Anchit Gupta, Xilun Chen,
Diana Liskovich, Omer Levy, Scott Yih, and Yashar
Mehdad. 2022. Simple local attentions remain com-
petitive for long-context tasks. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL 2022, Seattle,
WA, United States, July 10-15, 2022, pages 1975–
1986. Association for Computational Linguistics.

Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen
Huang, Hanlin Goh, Ruixiang Zhang, and Josh
Susskind. 2021. An attention free transformer. arXiv
preprint arXiv:2105.14103.

A GPT-2 Experimental Details

When fine-tuning GPT-2 small on The Pile6, we
started fine-tuning from the publicly available
checkpoint provided by Hugging Face7. The

6https://pile.eleuther.ai/
7https://huggingface.co/gpt2

Pile consists of 825 GB of diverse text (English-
dominant) including stories, websites, code and
mathematical questions. It is intended for large-
scale language model pre-training. Due to the scale
of The Pile, our fine-tuning only sees a small subset
of the training set. We evaluate on the provided
validation set from The Pile.

GPT-2 small (Radford et al., 2019) has approx-
imately 124M parameters. All models are fine-
tuned with a batch size of 32 for 100,000 itera-
tions with a learning rate of 6× 10−4 and gradient
clipping of 1.0 on a single NVIDIA A100 GPU
for 13 hours. Training was performed on Pytorch
1.11. We use mixed precision training (Micikevi-
cius et al., 2017) except for computing normalizer
zt (Eq. 3), which is prone to numerical overflows.
We evaluate on the validation set every 4000 train-
ing iterations and report the best validation perplex-
ity achieved for a single run.

B WikiText-103 Experimental Details

WikiText-103 (Merity et al., 2017) is an English
dataset of articles scraped from the Good and Fea-
tured articles on Wikipedia with 103K training,
217K validation and 245K test word tokens. The
dataset is available under the Creative Commons
Attribution-ShareAlike License. Compared to The
Pile, WikiText-103 is a significantly smaller dataset
with approximately 528 MB of text. We fine-tune
starting from the checkpoint provided by Baevski
and Auli (2019)8, which has 242M parameters.

Training was performed using the Fairseq li-
brary9 on Pytorch 1.11. A few manual hyperparam-
eter searches were performed based on hyperpa-
rameters used in Peng et al. (2022), which included
adjustments to the learning rate and the choice of
optimizer. For both models, we trained with a batch
size of 26 for 100,000 iterations. We used Adam
optimizer with 4000 warm-up steps and decayed
the learning rate using a cosine schedule to 2×10−6

for the rest of the training iterations. We used a
maximum learning rate of 10−4 and gradient clip-
ping of 0.1. Training was performed on a single
NVIDIA A40 GPU for 35 hours. We report the test
perplexity achieved at the end of the training for a
single run.

8https://github.com/pytorch/fairseq/
tree/main/examples/language_model

9https://github.com/pytorch/fairseq

10242

https://openreview.net/forum?id=TuK6agbdt27
https://openreview.net/forum?id=TuK6agbdt27
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://doi.org/10.18653/v1/2022.naacl-main.144
https://doi.org/10.18653/v1/2022.naacl-main.144
https://pile.eleuther.ai/
https://huggingface.co/gpt2
https://github.com/pytorch/fairseq/tree/main/examples/language_model
https://github.com/pytorch/fairseq/tree/main/examples/language_model
https://github.com/pytorch/fairseq

