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Abstract

Text analysis in the social sciences often in-
volves using specialized dictionaries to rea-
son with abstract concepts, such as perceptions
about the economy or abuse on social media.
These dictionaries allow researchers to impart
domain knowledge and note subtle usages of
words relating to a concept(s) of interest. We in-
troduce the dictionary-assisted supervised con-
trastive learning (DASCL) objective, allowing
researchers to leverage specialized dictionar-
ies when fine-tuning pretrained language mod-
els. The text is first keyword simplified: a
common, fixed token replaces any word in
the corpus that appears in the dictionary(ies)
relevant to the concept of interest. During
fine-tuning, a supervised contrastive objective
draws closer the embeddings of the original
and keyword-simplified texts of the same class
while pushing further apart the embeddings of
different classes. The keyword-simplified texts
of the same class are more textually similar than
their original text counterparts, which addition-
ally draws the embeddings of the same class
closer together. Combining DASCL and cross-
entropy improves classification performance
metrics in few-shot learning settings and social
science applications compared to using cross-
entropy alone and alternative contrastive and
data augmentation methods.1

1 Introduction

We propose a supervised contrastive learning ap-
proach that allows researchers to incorporate dic-
tionaries of words related to a concept of interest
when fine-tuning pretrained language models. It is
conceptually simple, requires low computational
resources, and is usable with most pretrained lan-
guage models.

Dictionaries contain words that hint at the sen-
timent, stance, or perception of a document (see,
e.g., Fei et al., 2012). Social science experts often

1Our code is available at https://github.com/
SMAPPNYU/DASCL.

craft these dictionaries, making them useful when
the underlying concept of interest is abstract (see,
e.g., Brady et al., 2017; Young and Soroka, 2012).
Dictionaries are also useful when specific words
that are pivotal to determining the classification of
a document may not exist in the training data. This
is a particularly salient issue with small corpora,
which is often the case in the social sciences.

However, recent supervised machine learning ap-
proaches do not use these dictionaries. We propose
a contrastive learning approach, dictionary-assisted
supervised contrastive learning (DASCL), that al-
lows researchers to leverage these expert-crafted
dictionaries when fine-tuning pretrained language
models. We replace all the words in the corpus that
belong to a specific lexicon with a fixed, common
token. When using an appropriate dictionary, key-
word simplification increases the textual similarity
of documents in the same class. We then use a
supervised contrastive objective to draw together
text embeddings of the same class and push fur-
ther apart the text embeddings of different classes
(Khosla et al., 2020; Gunel et al., 2021). Figure 1
visualizes the intuition of our proposed method.

The contributions of this project are as follows.

• We propose keyword simplification, detailed
in Section 3.1, to make documents of the same
class more textually similar.

• We outline a supervised contrastive loss func-
tion, described in Section 3.2, that learns
patterns within and across the original and
keyword-simplified texts.

• We find classification performance improve-
ments in few-shot learning settings and social
science applications compared to two strong
baselines: (1) ROBERTA (Liu et al., 2019) /
BERT (Devlin et al., 2019) fine-tuned with
cross-entropy loss, and (2) the supervised con-
trastive learning approach detailed in Gunel
et al. (2021), the most closely related approach
to DASCL. To be clear, although BERT and
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Figure 1: The blue dots are embeddings of the origi-
nal reviews and the white dots are the embeddings of
the keyword-simplified reviews from the SST-2 dataset
(Wang et al., 2018). Both reviews are positive, although
they do not overlap in any positive words used. The
reviews are more textually similar after keyword sim-
plification. Using BERTBASE-UNCASED out-of-the-box,
the cosine similarity between the original reviews is
.654 and the cosine similarity between the keyword-
simplified reviews is .842. Although there are some
issues with using cosine similarity with BERT embed-
dings (see, e.g., Ethayarajh, 2019; Zhou et al., 2022),
we use it as a rough heuristic here.

ROBERTA are not state-of-the-art pretrained
language models, DASCL can augment the
loss functions of state-of-the-art pretrained
language models.

2 Related Work

Use of Pretrained Language Models in the So-
cial Sciences. Transformers-based pretrained lan-
guage models have become the de facto approach
when classifying text data (see, e.g., Devlin et al.,
2019; Liu et al., 2019; Raffel et al., 2020), and
are seeing wider adoption in the social sciences.
Terechshenko et al. (2021) show that RoBERTa
and XLNet (Yang et al., 2019) outperform bag-of-
words approaches for political science text classifi-
cation tasks. Ballard et al. (2022) use BERTweet
(Nguyen et al., 2020) to classify tweets expressing
polarizing rhetoric. Lai et al. (2022) use BERT to
classify the political ideologies of YouTube videos
using text video metadata. DASCL can be used
with most pretrained language models, so it can
potentially improve results across a range of social
science research.

Usage of Dictionaries. Dictionaries play an im-
portant role in understanding the meaning behind
text in the social sciences. Brady et al. (2017) use a
moral and emotional dictionary to predict whether
tweets using these types of terms increase their dif-

fusion within and between ideological groups. Sim-
chon et al. (2022) create a dictionary of politically
polarized language and analyze how trolls use this
language on social media. Hopkins et al. (2017)
use dictionaries of positive and negative economic
terms to understand perceptions of the economy
in newspaper articles. Although dictionary-based
classification has fallen out of favor, dictionaries
still contain valuable information about usages of
specific or subtle language.

Text Data Augmentation. Text data augmenta-
tion techniques include backtranslation (Sennrich
et al., 2016) and rule-based data augmentations
such as random synonym replacements, random in-
sertions, random swaps, and random deletions (Wei
and Zou, 2019; Karimi et al., 2021). Shorten et al.
(2021) survey text data augmentation techniques.
Longpre et al. (2020) find that task-agnostic data
augmentations typically do not improve the classifi-
cation performance of pretrained language models.
We choose dictionaries for keyword simplification
based on the concept of interest underlying the clas-
sification task and use the keyword-simplified text
with a contrastive loss function.

Contrastive Learning. Most works on con-
trastive learning have focused on self-supervised
contrastive learning. In computer vision, images
and their augmentations are treated as positives and
other images as negatives. Recent contrastive learn-
ing approaches match or outperform their super-
vised pretrained image model counterparts, often
using a small fraction of available annotated data
(see, e.g., Chen et al., 2020a; He et al., 2020; Chen
et al., 2020b; Grill et al., 2020). Self-supervised
contrastive learning has also been used in natural
language processing, matching or outperforming
pretrained language models on benchmark tasks
(see, e.g., Fang et al., 2020; Klein and Nabi, 2020).

Our approach is most closely related to works on
supervised contrastive learning. Wen et al. (2016)
propose a loss function called center loss that mini-
mizes the intraclass distances of the convolutional
neural network features. Khosla et al. (2020) de-
velop a supervised loss function that generalizes
NT-Xent (Chen et al., 2020a) to an arbitrary num-
ber of positives. Our work is closest to that of
Gunel et al. (2021), who also use a version of NT-
Xent extended to an arbitrary number of positives
with pretrained language models. Their supervised
contrastive loss function is detailed in Section A.1.
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Figure 2: Overview of the proposed method. Although
ROBERTA is shown, any pretrained language model
will work with this approach. The two RoBERTa net-
works share the same weights. The dimension of the
projection layer is arbitrary.

3 Method

The approach consists of keyword simplification
and the contrastive objective function. Figure 2
shows an overview of the proposed framework.

3.1 Keyword Simplification
The first step of the DASCL framework is keyword
simplification. We select a set of M dictionaries D.
For each dictionary di ∈ D, i ∈ {1, ...,M}, we as-
sign a token ti. Then, we iterate through the corpus
and replace any word wj in dictionary di with the
token ti. We repeat these steps for each dictionary.
For example, if we have a dictionary of positive
words, then applying keyword simplification to

a wonderfully warm human drama that remains
vividly in memory long after viewing

would yield
a <positive> <positive> human drama that remains

<positive> in memory long after viewing

There are many off-the-shelf dictionaries that
can be used during keyword simplification. Table
4 in Section A.2 contains a sample of dictionaries
reflecting various potential concepts of interest.

3.2 Dictionary-Assisted Supervised
Contrastive Learning (DASCL) Objective

The dictionary-assisted supervised contrastive
learning loss function resembles the loss functions
from Khosla et al. (2020) and Gunel et al. (2021).
Consistent with Khosla et al. (2020), we project the
final hidden layer of the pretrained language model
to an embedding of a lower dimension before using
the contrastive loss function.

Let Ψ(xi), i ∈ {1, ...N}, be the L2-normalized
projection of the output of the pretrained language
encoder for the original text and Ψ(xi+N ) be the
corresponding L2-normalized projection of the out-
put for the keyword-simplified text. τ > 0 is the
temperature parameter that controls the separation
of the classes, and λ ∈ [0, 1] is the parameter that
balances the cross-entropy and the DASCL loss
functions. We choose λ and directly optimize τ
during training. In our experiments, we use the clas-
sifier token as the output of the pretrained language
encoder. Equation 1 is the DASCL loss, Equation
2 is the multiclass cross-entropy loss, and Equation
3 is the overall loss that is optimized when fine-
tuning the pretrained language model. The original
text and the keyword-simplified text are used with
the DASCL loss (Eq. 1); only the original text is
used with the cross-entropy loss. The keyword-
simplified text is not used during inference.

LDASCL = − 1

2N

2N∑

i=1

1

2Nyi − 1
×

2N∑

j=1

1i ̸=j,yi=yj log

[
exp(Ψ(xi) ·Ψ(xj)/τ)∑2N

k=1 1i ̸=k exp(Ψ(xi) ·Ψ(xk)/τ)

]

(1)

LCE = − 1

N

N∑

i=1

C∑

c=0

yi,c · log ŷi,c (2)

L = (1− λ)LCE + λLDASCL (3)

4 Experiments

4.1 Few-Shot Learning with SST-2

SST-2, a GLUE benchmark dataset (Wang et al.,
2018), consists of sentences from movie reviews
and binary labels of sentiment (positive or nega-
tive). Similar to Gunel et al. (2021), we experiment
with SST-2 with three training set sizes: N=20,
100, and 1,000. Accuracy is this benchmark’s pri-
mary metric of interest; we also report average
precision. We use ROBERTABASE as the pretrained
language model. For keyword simplification, we
use the opinion lexicon (Hu and Liu, 2004), which
contains dictionaries of positive and negative words.
Section A.3.3 further describes these dictionaries.

We compare DASCL to two other baselines:
ROBERTABASE using the cross-entropy (CE) loss
function and the combination of the cross-entropy
and supervised contrastive learning (SCL) loss
functions used in Gunel et al. (2021). We also
experiment with augmenting the corpus with the
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Loss N Accuracy Avg. Precision
CE 20 .675± .066 .791± .056

CE w/ DA 20 .650± .051 .748± .050
CE+SCL 20 .709± .077 .826± .068

CE+DASCL 20 .777± .024 .871± .014
CE+DASCL w/ DA 20 .697± .075 .796± .064

CE 100 .822± .019 .897± .023
CE w/ DA 100 .831± .032 .904± .031
CE+SCL 100 .833± .042 .883± .043

CE+DASCL 100 .858± .017 .935± .012
CE+DASCL w/ DA 100 .828± .020 .908± .012

CE 1000 .903± .006 .962± .007
CE w/ DA 1000 .899± .005 .956± .006
CE+SCL 1000 .905± .005 .960± .011

CE+DASCL 1000 .906± .006 .959± .009
CE+DASCL w/ DA 1000 .904± .004 .960± .011

Table 1: Accuracy and average precision over the SST-
2 test set in few-shot learning settings. Results are
averages over 10 random seeds with standard deviations
reported. DA refers to data augmentation, where the
keyword-simplified text augments the training corpus.

keyword-simplified text (referred to as “data aug-
mentation,” or “DA,” in results tables). In other
words, when data augmentation is used, both the
original text and the keyword-simplified text are
used with the cross-entropy loss.

We use the original validation set from the
GLUE benchmark as the test set, and we sample
our own validation set from the training set of equal
size to this test set. Further details about the data
and hyperparameter configurations can be found in
Section A.3. Table 1 shows the results across the
three training set configurations.

DASCL improves results the most when there
are only a few observations in the training set.
When N=20, using DASCL yields a 10.2 point im-
provement in accuracy over using the cross-entropy
loss function (p<.001) and a 6.8 point improve-
ment in accuracy over using the SCL loss function
(p=.023). Figure 3 in Section A.3.8 visualizes the
learned embeddings using each of these loss func-
tions using t-SNE plots. When the training set’s
size increases, the benefits of using DASCL de-
crease. DASCL only has a slightly higher accuracy
when using 1,000 labeled observations, and the dif-
ference between DASCL and cross-entropy alone
is insignificant (p=.354).

4.2 New York Times Articles about the
Economy

Barberá et al. (2021) classify the tone of New York
Times articles about the American economy as pos-
itive or negative. 3,119 of the 8,462 labeled articles
(3,852 unique articles) in the training set are la-

Loss N Accuracy Avg. Precision
L2 Logit 100 .614 .479

CE 100 .673± .027 .593± .048
CE w/ DA 100 .663± .030 .576± .058
CE+SCL 100 .614± .000 .394± .043

CE+DASCL 100 .705± .013 .645± .016
CE+DASCL w/ DA 100 .711± .013 .644± .027

L2 Logit 1000 .624 .482
CE 1000 .716± .012 .662± .030

CE w/ DA 1000 .710± .011 .656± .024
CE+SCL 1000 .722± .009 .670± .022

CE+DASCL 1000 .732± .011 .671± .025
CE+DASCL w/ DA 1000 .733± .008 .681± .021

L2 Logit Full .681 .624
CE Full .753± .012 .713± .015

CE w/ DA Full .752± .011 .708± .017
CE+SCL Full .756± .011 .723± .009

CE+DASCL Full .759± .006 .741± .010
CE+DASCL w/ DA Full .760± .008 .739± .014

Table 2: Accuracy and average precision over the eco-
nomic media test set (Barberá et al., 2021) when using
100, 1000, and all labeled examples from the training
set for fine-tuning. Except for logistic regression, re-
sults are averages over 10 random seeds with standard
deviations reported.

beled positive; 162 of the 420 articles in the test
set are labeled positive. Accuracy is the primary
metric of interest; we also report average preci-
sion. In addition to using the full training set, we
also experiment with training sets of sizes 100 and
1,000. We use the positive and negative dictionaries
from Lexicoder (Young and Soroka, 2012) and dic-
tionaries of positive and negative economic terms
(Hopkins et al., 2017). Barberá et al. (2021) use
logistic regression with L2 regularization. We use
ROBERTABASE as the pretrained language model.
Section A.4 contains more details about the data,
hyperparameters, and other evaluation metrics. Ta-
ble 2 shows the results across the three training set
configurations.

When N=100, DASCL outperforms cross-
entropy only, cross-entropy with data augmenta-
tion, and SCL on accuracy (p<.005 for all) and
average precision (p<.01 for all). When N=1000,
DASCL outperforms cross-entropy only, cross-
entropy with data augmentation, and SCL on accu-
racy (p<.05 for all) and average precision (but not
statistically significantly). DASCL performs statis-
tically equivalent to DASCL with data augmenta-
tion across all metrics when N=100 and 1000.

When using the full training set, ROBERTABASE

is a general improvement over logistic regression.
Although the DASCL losses have slightly higher
accuracy than the other RoBERTa-based models,
the differences are not statistically significant. Us-

10220



ing DASCL yields a 2.8 point improvement in av-
erage precision over cross-entropy (p<.001) and
a 1.8 improvement in average precision over SCL
(p<.001). Figure 4 in Section A.4.9 visualizes the
learned embeddings using each of these loss func-
tions using t-SNE plots.

4.3 Abusive Speech on Social Media

The OffensEval dataset (Zampieri et al., 2020) con-
tains 14,100 tweets annotated for offensive lan-
guage. A tweet is considered offensive if “it con-
tains any form of non-acceptable language (pro-
fanity) or a targeted offense.” Caselli et al. (2020)
used this same dataset and more narrowly identified
tweets containing “hurtful language that a speaker
uses to insult or offend another individual or group
of individuals based on their personal qualities, ap-
pearance, social status, opinions, statements, or
actions.” We focus on this dataset, AbusEval, be-
cause of its greater conceptual difficulty. 2,749 of
the 13,240 tweets in the training set are labeled
abusive, and 178 of the 860 tweets in the test set
are labeled abusive. Caselli et al. (2021) pretrain
a BERTBASE-UNCASED model, HateBERT, using the
Reddit Abusive Language English dataset. Macro
F1 and F1 over the positive class are the primary
metrics of interest; we also report average preci-
sion. In addition to using the full training set, we
also experiment with training sets of sizes 100 and
1,000. Section A.5 contains more details about the
data and hyperparameters.

We combine DASCL with BERTBASE-UNCASED

and HateBERT. Alorainy et al. (2019) detect cyber-
hate speech using threats-based othering language,
focusing on the use of “us” and “them” pronouns.
Following their strategy, we look at the conjunction
of sentiment using Lexicoder and two dictionaries
of “us” and “them” pronouns, which may suggest
abusive speech. Table 3 compares the performance
of BERTBASE-UNCASED and HateBERT with cross-
entropy against BERTBASE-UNCASED and HateBERT
with cross-entropy and DASCL.

When N=100, BERT with DASCL outperforms
BERT on macro F1 (p=.008), F1 over the positive
class (p=.011), and average precision (p=.003);
when N=1000, BERT with DASCL outperforms
BERT on macro F1 (p=.021), F1 over the positive
class (p=.028), and average precision (p=.007).
HateBERT with DASCL performs statistically on
par with HateBERT across all metrics for N=100
and N=1000. BERT with DASCL performs sta-

Model N Macro F1 F1, Pos Avg. Precision
BERT 100 .293±.083 .334±.025 .233±.040

HateBERT 100 .513±.120 .346±.049 .303±.059
BERT

w/ DASCL 100 .427±.112 .362±.017 .284±.022

HateBERT
w/ DASCL 100 .449±.110 .345±.033 .281±.045

BERT 1000 .710±.018 .523±.034 .608±.024
HateBERT 1000 .711±.028 .512±.053 .626±.017

BERT
w/ DASCL 1000 .729±.014 .559±.032 .637±.016

HateBERT
w/ DASCL 1000 .704±.010 .501±.020 .626±.016

BERT Full .767±.008 .636±.012 .703±.006
HateBERT Full .768±.005 .630±.009 .695±.005

BERT
w/ DASCL Full .779±.010 .653±.014 .716±.005

HateBERT
w/ DASCL Full .766±.007 .623±.011 .695±.006

Table 3: Macro F1, F1, and average precision over the
AbusEval test set (Caselli et al., 2020) when using 100,
1000, and all labeled examples from the training set for
fine-tuning. Results are averages over 10 random seeds
with standard deviations reported.

tistically equivalent to HateBERT when N=100
and N=1000 on all metrics, except on F1 over the
positive class when N=1000 (p=.030).

When using the full training set, BERT with
DASCL improves upon the macro F1, F1 over the
positive class, and average precision compared with
both BERT (macro F1: p=.010; F1: p=.010; AP:
p<.001) and HateBERT (macro F1: p=.007; F1:
p<.001; AP: p<.001). Figure 5 in Section A.5.8
visualizes the learned embeddings using BERT and
BERT with DASCL using t-SNE plots.

5 Conclusion

We propose a supervised contrastive learning ap-
proach that allows researchers to leverage special-
ized dictionaries when fine-tuning pretrained lan-
guage models. We show that using DASCL with
cross-entropy improves classification performance
on SST-2 in few-shot learning settings, on classi-
fying perceptions about the economy expressed in
New York Times articles, and on identifying tweets
containing abusive language when compared to us-
ing cross-entropy alone or alternative contrastive
and data augmentation methods. In the future, we
aim to extend our approach to other supervised
contrastive learning frameworks, such as using this
method to upweight difficult texts (Suresh and Ong,
2021). We also plan to expand this approach to
semi-supervised and self-supervised settings to bet-
ter understand core concepts expressed in text.
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Limitations

We aim to address limitations to the supervised
contrastive learning approach described in this pa-
per in future works. We first note that there are no
experiments in this paper involving multiclass or
multilabel classification; all experiments involve
only binary classification. Multiclass or multilabel
classification may present further challenges when
categories are more nuanced. We expect improve-
ments in classification performance when applied
to multiclass or multilabel classification settings,
but we have not confirmed this.

Second, we have not experimented with the di-
mensionality of the projection layer or the batch
sizes. At the moment, the projection layer is ar-
bitrarily set to 256 dimensions, and we use batch
sizes from previous works. Future work aims to
study how changing the dimensionality of this pro-
jection layer and the batch size affects classification
outcomes.

Third, we have used the DASCL objective with
ROBERTA and BERT, but have not used it with
the latest state-of-the-art pretrained language mod-
els. We focused on these particular pretrained lan-
guage models because they are commonly used in
the social sciences and because of computational
constraints.

Fourth, we have not examined how the quality or
size of the dictionary may affect classification out-
comes. A poorly constructed dictionary may lead
to less improvement in classification performance
metrics or may even hurt performance. Dictionar-
ies with too many words or too few words may also
not lead to improvements in classification perfor-
mance metrics. Future work aims to study how the
quality and size of dictionaries affect the DASCL
approach.

Fifth, we have not explored how this method
can be used to potentially reduce bias in text clas-
sification. For example, we can replace gendered
pronouns with a token (such as “<pronoun>”), po-
tentially reducing gender bias in analytical contexts
such as occupation.

Lastly, we have not explored how keyword sim-
plification may be useful in a self-supervised or
semi-supervised contrastive learning setting. This
may be particularly helpful for social scientists who
are often interested in exploring core concepts or
perspectives in text rather than classifying text into
specific classes.

Ethics Statement

Our paper describes a supervised contrastive learn-
ing approach that allows researchers to lever-
age specialized dictionaries when fine-tuning pre-
trained language models. While we did not iden-
tify any systematic biases in the particular set of
dictionaries we used, any dictionary may encode
certain biases and/or exclude certain groups. This
can be particularly problematic when working with
issues such as detecting hate speech and abusive
language. For example, in the context of abusive
language, if words that attack a particular group
are (purposely or unintentionally) excluded from
the dictionaries, those words would not be replaced.
This may under-detect abusive text that attacks this
specific group.

This paper does not create any new datasets.
The OffensEval/AbusEval dataset contains sensi-
tive and harmful language. Although we did not
annotate or re-annotate any tweets, we are cog-
nizant that particular types of abusive language
against certain groups or identities may not have
been properly annotated as abusive, or certain types
of abusive language may have been excluded from
the corpus entirely.
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A Appendix

A.1 Gunel et al. (2021)’s Supervised
Contrastive Learning Objective

Equation 4 is the supervised contrastive learning
objective from Gunel et al. (2021). The dictionary-
assisted supervised contrastive learning objective in
Equation 1 is similar to Equation 4 except Equation

1 is extended to include the keyword-simplified
text.

LSCL =
N∑

i=1

− 1

Nyi − 1
×

N∑

j=1

1i̸=j1yi=yj log

[
exp(Φ(xi) · Φ(xj)/τ)∑N

k=1 1i̸=k exp(Φ(xi) · Φ(xk)/τ)

]

(4)

A.2 Examples of Dictionaries and Lexicons
Table 4 contains a sample of dictionaries across
various use cases and academic fields that can be
potentially used with DASCL. There is no partic-
ular order to the dictionaries, with similar dictio-
naries clustered together. We did not include any
non-open source dictionaries.

A.3 Additional Information for the Few-Shot
Learning Experiments with SST-2

A.3.1 Data Description: Few-Shot Training
Sets, Validation Set, and Test Set

The SST-2 dataset was downloaded using Hugging
Face’s Datasets library (Lhoest et al., 2021). The
test set from SST-2 does not contain any labels, so
we use the validation set from SST-2 as our test
set. We create our own validation set by randomly
sampling a dataset equivalent in size to the origi-
nal validation set. Our validation set and few-shot
learning sets were sampled with no consideration
to the label distributions of the original training or
validation sets.

When N = 20, there are 11 positive examples
and 9 negative examples. When N = 100, there
are 60 positive examples and 40 negative examples.
When N = 1000, there are 558 positive examples
and 442 negative examples. Our validation set has
486 positive examples and 386 negative examples.
Lastly, our test set has 444 positive examples and
428 negative examples.

A.3.2 Text Preprocessing Steps
The only text preprocessing step taken is that non-
ASCII characters are removed from the dataset.
The text is tokenized using a byte-level BPE tok-
enizer (Liu et al., 2019).

A.3.3 Dictionaries Used During Keyword
Simplification

We used the opinion lexicon from Hu and Liu
(2004). This lexicon consists of two dictionaries:
one with all positive unigrams and one with all
negative unigrams. There are 2,006 positive words
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Dictionary Name Type of Words or Phrases Source
Opinion Lexicon Positive/negative sentiment Hu and Liu (2004)

Lexicoder Sentiment Dictionary Positive/negative sentiment Young and Soroka (2012)
SentiWordNet Sentiment Baccianella et al. (2010)

ANEW Emotions Bradley and Lang (1999)
EmoLex Emotions Mohammad and Turney (2013)

DepecheMood Emotions Staiano and Guerini (2014)
Moodbook Emotions Wani et al. (2018)

Moral & Emotion Dictionaries Moralization and Emotions Brady et al. (2017)
Emotion Intensity Lexicon Emotion intensity Mohammad (2018b)

VAD Lexicon Valence, arousal, and dominance of words Mohammad (2018a)
SCL-NMA Negators, modals, degree adverbs Kiritchenko and Mohammad (2016a)
SCL-OPP Sentiment of mixed polarity phrases Kiritchenko and Mohammad (2016b)

Dictionary of Affect in Language Affect of English words Whissell (1989, 2009)
Spanish DAL Affect of Spanish words Dell’ Amerlina Ríos and Gravano (2013)

Subjectivity Lexicon Subjectivity clues Wilson et al. (2005)
Subjectivity Sense Annotations Subjectivity disambiguation Wiebe and Mihalcea (2006)

Arguing Lexicon Patterns representing arguing Somasundaran et al. (2007)
+/-Effect Lexicon Positive/negative effects on entities Choi and Wiebe (2014)

AEELex Arabic and English emotion Shakil et al. (2021)
Discrete Emotions Dictionary Emotions in news content Fioroni et al. (2022)

Yelp/Amazon Reviews Dictionaries Sentiments in reviews Kiritchenko et al. (2014)
VADER Sentiments on social media Hutto and Gilbert (2014)

English Twitter Sentiment Lexicon Sentiments on social media Rosenthal et al. (2015)
Arabic Twitter Sentiment Lexicon Sentiments on social media Kiritchenko et al. (2016)

Hashtag Emotion Lexicon Emotions associated with Twitter hashtags Mohammad and Kiritchenko (2015)
Political Polarization Dictionary Political polarizing language Simchon et al. (2022)

ed8 Affective language in German political text Widmann and Wich (2022)
Policy Agendas Dictionary Keywords by policy area Albaugh et al. (2013)

“Women” Terms Terms related to the category “women” Pearson and Dancey (2011)
Trump’s Twitter Insults Insults used by President Trump Quealy (2021)
Hate Speech Lexicon Hate speech Davidson et al. (2017)

PeaceTech Lab’s Hate Speech Lexicons Hate speech PeaceTech Lab (2022)
Hatebase Hate speech Hatebase (2022)
Hurtlex Hate speech Bassignana et al. (2018)

Hate on Display Hate Symbols Hate speech and symbols American Defamation League (2022)
Hate speech on Twitter Hate speech on Twitter Siegel et al. (2021)

Reddit hate lexicon Hate speech on Reddit Chandrasekharan et al. (2017)
Pro/Anti-Lynching Pro/anti-lynching terms Weaver (2019)

Grievance Dictionary Terms related to grievance van der Vegt et al. (2021)
Economic Sentiment Terms Economic sentiment in newspapers Hopkins et al. (2017)

Loughran-McDonald Dictionary Financial sentiment Loughran and McDonald (2011)
SentiEcon Financial and economic sentiment Moreno-Ortiz et al. (2020)

Financial Phrase Bank Phrases expressing financial sentiment Malo et al. (2014)
Stock Market Sentiment Lexicon Stock market sentiment Oliveira et al. (2016)

BioLexicon Linguistic information of biomedical terms Thompson et al. (2011)
SentiHealth Health-related sentiment Asghar et al. (2016)

MEDLINE Abbreviations Abbreviations from medical abstracts Chang et al. (2002)
COVID-CORE Keywords COVID-19 keywords on Twitter Lu and Mei (2022)

PSi Lexicon Performance studies keywords Georgelou et al. (2017)
Concreteness Ratings Concreteness of words and phrases Brysbaert et al. (2013)

Word-Colour Association Lexicon Word-color associations Mohammad (2011)
Regressive Imagery Dictionary Primordial vs. conceptual thinking Martindale (1975)

Empath Various lexical categories Fast et al. (2016)
WordNet Various lexical categories Miller (1995)

Table 4: A sample of dictionaries that can potentially be used with DASCL. There is no particular order to the
dictionaries, with similar dictionaries clustered together. We did not include any non-open source dictionaries.
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and 4,783 negative words. We replaced the positive
words with the token “<positive>”. We replaced
the negative words with the token “<negative>”.

A.3.4 Number of Parameters and Runtime
This experiment uses the ROBERTABASE pre-
trained language model, which contains 125 mil-
lion parameters (Liu et al., 2019). When using
DASCL, we also had an additional temperature pa-
rameter, τ , that was directly optimized. With the
hyperparameters described in Section A.3.5 and us-
ing an NVIDIA V100 GPU, it took approximately
2.1 seconds to train over 40 batches using cross-
entropy (CE) alone, 2.2 seconds to train over 40
batches using CE+SCL, and 3.3 seconds to train
over 40 batches using CE+DASCL.

A.3.5 Hyperparameter Selection and
Configuration Details

We take our hyperparameter configuration directly
from Gunel et al. (2021). For each configuration,
we set the learning rate to 1 × 10−5 and used a
batch size of 16. When using the SCL objective,
in line with Gunel et al. (2021), we set λ = 0.9
and τ = 0.3. When using the DASCL objective,
we also set λ = 0.9 and initialized τ = 0.3. We
trained for 100 epochs for all few-shot learning
settings.

A.3.6 Model Evaluation Details
The model from the epoch with the highest accu-
racy over our own validation set was chosen as the
final model for each random seed. We report accu-
racy, which is the main metric of interest with this
benchmark, and average precision. Average preci-
sion is used to summarily quantify the precision-
recall tradeoff, and is viewed as the area under the
precision-recall curve (Davis and Goadrich, 2006).
Average precision is defined as

AP =
∑

n

(Rn −Rn−1)Pn

where Pn and Rn are the precision and recall at the
nth threshold.

A.3.7 Results over the Validation Set
Table 5 reports the accuracy and the average preci-
sion over the validation set for the SST-2 few-shot
setting experiments. The validation set was used
for model selection, so the reported results over the
validation set are from the model with the highest
accuracy achieved on the validation set across the
100 epochs.

Loss N Accuracy Avg. Precision
CE 20 .680± .043 .768± .062

CE w/ DA 20 .668± .025 .729± .034
CE+SCL 20 .707± .049 .797± .060

CE+DASCL 20 .743± .016 .839± .023
CE+DASCL w/ DA 20 .700± .048 .765± .061

CE 100 .832± .015 .905± .021
CE w/ DA 100 .849± .023 .915± .027
CE+SCL 100 .848± .020 .905± .029

CE+DASCL 100 .872± .010 .942± .010
CE+DASCL w/ DA 100 .842± .020 .927± .010

CE 1000 .900± .005 .958± .010
CE w/ DA 1000 .905± .006 .959± .005
CE+SCL 1000 .904± .038 .958± .016

CE+DASCL 1000 .907± .004 .961± .011
CE+DASCL w/ DA 1000 .908± .005 .965± .008

Table 5: Accuracy and average precision over the SST-2
validation set in few-shot learning settings. Results are
averages over 10 random seeds with standard deviations
reported.

A.3.8 t-SNE Plots of the Learned Classifier
Token Embeddings for the Test Set,
N = 20

We use t-SNE (van der Maaten and Hinton, 2008)
plots to visualize the learned classifier token em-
beddings, “<s>”, over the SST-2 test set when
using the cross-entropy objective alone, using the
cross-entropy objective with the supervised con-
trastive learning (SCL) objective (Gunel et al.,
2021), and using the cross-entropy objective with
the dictionary-assisted supervised contrastive learn-
ing (DASCL) objective. These plots are in Fig-
ure 3. We see that DASCL draws embeddings of
the same class closer and pushes embeddings of
different classes farther apart compared to using
cross-entropy alone or using cross-entropy with
SCL.

A.4 Additional Information for the New York
Times Articles about the Economy
Experiments

A.4.1 Data Description: Few-Shot Training
Set, Validation Set, and Test Set

The data for the New York Times articles was
downloaded from https://dataverse.harvard.
edu/dataset.xhtml?persistentId=doi:
10.7910/DVN/MXKRDE. The test set was created us-
ing the replication files included at the link. In the
original code, there was an error with overlapping
training and test sets. We removed the duplicated
observations from the training set. Because a
single article could be annotated multiple times by
different annotators, our validation set was created

10229

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/MXKRDE
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/MXKRDE
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/MXKRDE


(a) CE (b) CE+SCL

(c) CE+DASCL

Figure 3: t-SNE plots of the classifier token embeddings on the SST-2 test set fine-tuned using a training set size of
20. The loss configuration is noted below each plot. Blue are negative examples and red are positive examples.
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using 15% of the unique number of articles in the
training data. 452 of the 1,317 labeled articles
in the validation set are labeled positive. For our
few-shot training sets, when N = 100, there were
41 positive examples. When N = 1000, there
were 363 positive examples. Our validation set
and few-shot learning sets were sampled with
no consideration to the label distributions of the
original training or validation sets.

A.4.2 Text Preprocessing Steps
The only preprocessing was removing HTML tags
that occasionally appeared in the text. The text is
tokenized using a byte-level BPE tokenizer.

A.4.3 Dictionaries Used During Keyword
Simplification

We used two sets of dictionaries during key-
word simplification. We first used Lexicoder,
downloaded from http://www.snsoroka.com/
data-lexicoder/. It is a dictionary specifically
designed to study sentiment in news coverage
(Young and Soroka, 2012). The dictionary is split
into four separate sub-dictionaries: positive words,
negative words, “negative” positive words (e.g.,
“not great”), and “negative” negative words (e.g.,
“not bad”). There are 1,709 positive words, 2,858
negative words, 1,721 negative positive words,
and 2,860 negative negative words. We replaced
positive words and negative negative words with
the token “<positive>”. We replaced negative
words and negative positive words with the token
“<negative>”.

The second dictionary we used was the 21 eco-
nomic terms from Hopkins et al. (2017). The
6 positive economic terms (in stemmed form)
are “bull*”, “grow*”, “growth*”, “inflat*”, “in-
vest*”, and “profit*”. The 15 negative economic
terms (in stemmed form) are “bad*”, “bear*”,
“debt*”, “drop*”, “fall*”, “fear*”, “jobless*”, “lay-
off*”, “loss*”, “plung*”, “problem*”, “recess*”,
“slow*”, “slump*”, and “unemploy*”. We re-
placed the positive economic words with the token
“<positive_econ>”. We replaced the negative eco-
nomic words with the token “<negative_econ>”.

A.4.4 Number of Parameters and Runtime
This experiment uses the ROBERTABASE pre-
trained language model, which contains 125 mil-
lion parameters (Liu et al., 2019). When using
DASCL, we also had an additional temperature pa-
rameter, τ , that was directly optimized. With the

hyperparameters described in Section A.4.5 and us-
ing an NVIDIA V100 GPU, it took approximately
5.7 seconds to train over 40 batches using cross-
entropy (CE) alone, 5.7 seconds to train over 40
batches using CE+SCL, and 10.7 seconds to train
over 40 batches using CE+DASCL.

A.4.5 Hyperparameter Selection and
Configuration Details

We selected hyperparameters using the validation
set. We searched over the learning rate and the
temperature initialization; we used λ = 0.9 for
all loss configurations involving contrastive learn-
ing. We used a batch size of 8 because of resource
constraints. We fine-tuned ROBERTABASE for 5
epochs.

For the learning rate, we searched over {5 ×
10−6, 1× 10−5, 2× 10−5}; for the temperature, τ ,
initialization, we searched over {0.07, 0.3}. We
fine-tuned the model and selected the model from
the epoch with the highest accuracy. We repeated
this with three random seeds, and selected the hy-
perparameter configuration with the highest aver-
age accuracy. We used accuracy as the criterion
because Barberá et al. (2021) used accuracy as the
primary metric of interest. The final learning rate
across all loss configurations was 5 × 10−6. The
final τ initialization for both SCL and DASCL loss
configurations was 0.07. We used these same hy-
perparameters when we limited the training set to
100 and 1,000 labeled examples.

A.4.6 Model Evaluation Details

During fine-tuning, the model from the epoch with
the highest accuracy over the validation set was
chosen as the final model for each random seed.
We report accuracy, which is the main metric of
interest with this dataset, and average precision.
For a definition of average precision, see Section
A.3.6.

The results in Table 2 for logistic regression us-
ing the full training set differ slightly from their
paper because of an error in overlapping training
and test sets in the original splits.

A.4.7 Additional Classification Metrics:
Precision and Recall

Table 6 contains additional classification metrics—
precision and recall—for the test set when using
100, 1,000, and all labeled examples from the train-
ing set for fine-tuning.
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Loss N Precision Recall
L2 Logit 100 .000 .000

CE 100 .646± .079 .359± .126
CE+DA 100 .656± .096 .312± .170

SCL 100 .000± .000 .000± .000
DASCL 100 .653± .044 .519± .055

DASCL+DA 100 .690± .051 .475± .093
L2 Logit 1000 .542 .160

CE 1000 .670± .028 .526± .074
CE+DA 1000 .658± .029 .527± .089

SCL 1000 .674± .017 .543± .046
DASCL 1000 .684± .032 .575± .069

DASCL+DA 1000 .682± .036 .592± .062
L2 Logit Full .689 .315

CE Full .690± .036 .663± .055
CE+DA Full .696± .033 .643± .056

SCL Full .700± .036 .652± .053
DASCL Full .709± .021 .640± .041

DASCL+DA Full .718± .031 .628± .060

Table 6: Precision and recall over the economic media
test set (Barberá et al., 2021) when using 100, 1000, and
all labeled examples from the training set for fine-tuning.
Except for the logistic regression model, results are
averages over 10 random seeds with standard deviations
reported.

A.4.8 Results over the Validation Set

Table 7 reports the accuracy, precision, recall, and
average precision over the validation set for the
economic media data. The validation set was used
for model selection, so the reported results over the
validation set are from the model with the highest
accuracy achieved on the validation set across the
5 epochs.

A.4.9 t-SNE Plots of the Learned Classifier
Token Embeddings for the Test Set

We use t-SNE plots to visualize the learned clas-
sifier token embeddings, “<s>”, over the New
York Times articles about the economy test set
when using the cross-entropy objective alone, us-
ing the cross-entropy objective with the supervised
contrastive learning (SCL) objective (Gunel et al.,
2021), and using the cross-entropy objective with
the dictionary-assisted supervised contrastive learn-
ing (DASCL) objective. These plots are in Fig-
ure 4. We see that DASCL pushes embeddings of
different classes farther apart compared to using
cross-entropy alone or using cross-entropy with
SCL.

A.5 Additional Information for the AbusEval
Experiments

A.5.1 Data Description: Few-Shot Training
Set, Validation Set, and Test Set

The data was downloaded from https://github.
com/tommasoc80/AbuseEval. Because there was
no validation set, we created our own validation
set by sampling 15% of the training set. 399 of
the 1,986 tweets in the validation set are labeled
abusive. For our few-shot training sets, when
N = 100, 17 tweets are labeled abusive. When
N = 1000, 210 tweets are labeled abusive. Our
validation set and few-shot learning sets were sam-
pled with no consideration to the label distributions
of the original training or validation sets.

A.5.2 Text Preprocessing Steps
We preprocessed the text of the tweets in the fol-
lowing manner: we removed all HTML tags, re-
moved all URLs (even the anonymized URLs),
removed the anonymized @ tags, removed the
retweet (“RT”) tags, and removed all “&amp” tags.
The text is tokenized using the WordPiece tokenizer
(Devlin et al., 2019).

A.5.3 Dictionaries Used During Keyword
Simplification

We used two sets of dictionaries during keyword
simplification. For the first dictionary, we used
Lexicoder. For a description of the Lexicoder dic-
tionary, see Section A.4.3. We used the same token-
replacements as described in Section A.4.3.

The second dictionary used was a dictionary
of “us” and “them” pronouns. These pronouns
are intended to capture directed or indirected
abuse. The “us” pronouns are “we’re”, “we’ll”,
“we’d”, “we’ve”, “we”, “me”, “us”, “our”, “ours”,
and “let’s”. The “them” pronouns are “you’re”,
“you’ve”, “you’ll”, “you’d”, “yours”, “your”, “you”,
“theirs”, “their”, “they’re”, “they”, “them”, “peo-
ple”, “men”, “women”, “man”, “woman”, “mob”,
“y’all”, and “rest.” This dictionary is loosely based
on suggested words found in Alorainy et al. (2019).

A.5.4 Number of Parameters and Runtime
This experiment uses the BERTBASE-UNCASED pre-
trained language model, which contains 110 mil-
lion parameters (Liu et al., 2019). When using
DASCL, we also had an additional temperature pa-
rameter, τ , that was directly optimized. With the
hyperparameters described in Section A.5.5 and us-
ing an NVIDIA V100 GPU, it took approximately
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Loss Accuracy Precision Recall Avg. Precision
CE .723± .004 .644± .022 .438± .054 .605± .007

CE w/ DA .726± .004 .662± .035 .423± .059 .607± .007
CE+SCL .727± .003 .659± .037 .438± .065 .611± .006

CE+DASCL .724± .006 .655± .020 .416± .037 .610± .007
CE+DASCL w/ DA .724± .004 .662± .031 .406± .051 .609± .006

Table 7: Accuracy, precision, recall, and average precision over the validation set for economic media (Barberá
et al., 2021). Results are averages over 10 random seeds with standard deviations reported.

(a) CE (b) CE+SCL

(c) CE+DASCL

Figure 4: t-SNE plots of the classifier token embeddings on the New York Times articles about the economy test set
fine-tuned using the full training set. The loss configuration is noted below each plot. Blue are negative examples
and red are positive examples.
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2.6 seconds to train over 40 batches using cross-
entropy (CE) alone and 4.9 seconds to train over
40 batches using CE+DASCL.

A.5.5 Hyperparameter Selection and
Configuration Details

We selected hyperparameters using the validation
set. We searched over the learning rate and the tem-
perature initialization; again, we used λ = 0.9 for
all loss configurations involving contrastive learn-
ing. In line with Caselli et al. (2021), we used a
batch size of 32. We fine-tuned BERTBASE-UNCASED

and HateBERT for 5 epochs.
For the learning rate, we searched over {1 ×

10−6, 2×10−6, 3×10−6, 4×10−6, 5×10−6, 1×
10−5, 2× 10−5}; for the temperature, τ , initializa-
tion, we searched over {0.07, 0.3}. We fine-tuned
the model and selected the model from the epoch
with the highest F1 over the positive class. We
repeated this with three random seeds, and selected
the hyperparameter configuration with the highest
average F1 over the positive class. We used the F1
score over the positive class as the criterion because
it is one of the metrics of interest in Caselli et al.
(2021). The final learning rate across all loss config-
urations was 2×10−6. The final τ initialization for
both SCL and DASCL loss configurations was 0.3.
We note that our hyperparameter search yielded a
different set of hyperparameters from Caselli et al.
(2021). We used these same hyperparameters when
we limited the training set to 100 and 1,000 labeled
examples.

A.5.6 Model Evaluation Details
During fine-tuning, the model from the epoch with
the highest F1 over the validation set was chosen
as the final model for each random seed. We report
macro F1 and F1, the main metrics of interest with
this dataset, and average precision. For a definition
of average precision, see Section A.3.6.

A.5.7 Results over the Validation Set
Table 8 reports the macro F1, F1, and average pre-
cision over the validation set for AbusEval. The
validation set was used for model selection, so the
reported results over the validation set are from the
model with the highest F1 achieved on the valida-
tion set across the 5 epochs.

A.5.8 t-SNE Plots of the Learned Classifier
Token Embeddings for the Test Set

We use t-SNE plots to visualize the learned classi-
fier token embeddings, “<s>”, over the AbusEval

Model Macro F1 F1, Pos Avg. Precision
BERT .756± .006 .632± .008 .681± .014

HateBERT .754± .009 .635± .008 .708± .005
BERT+
DASCL .759± .007 .639± .007 .683± .012

HateBERT+
DASCL .755± .005 .635± .005 .706± .006

Table 8: The macro F1, F1, and average precision over
the AbusEval validation set (Caselli et al., 2020). Re-
sults are averages over 10 random seeds with standard
deviations reported.

test set when using BERT and when using BERT
with DASCL. These plots are in Figure 5. We see
that using DASCL with BERT pushes embeddings
of different classes farther apart compared to using
BERT alone.
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(a) BERT (b) BERT with DASCL

Figure 5: t-SNE plots of the classifier token embeddings on the AbusEval test set fine-tuned using the full training
set. The model is noted below each plot. Blue are examples of non-abusive tweets and red are examples of abusive
tweets.
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