
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 10189–10204
December 7-11, 2022 ©2022 Association for Computational Linguistics

Human Guided Exploitation of Interpretable Attention Patterns in
Summarization and Topic Segmentation

Raymond Li†, Wen Xiao†, Linzi Xing†, Lanjun Wang‡∗, Gabriel Murray§, Giuseppe Carenini†
†University of British Columbia, Vancouver, BC, Canada

‡Tianjin University, Tianjin, China
§University of Fraser Valley, Abbotsford, BC, Canada

{raymondl, xiaowen3, lzxing, carenini}@cs.ubc.ca
wanglanjun@tju.edu.cn gabriel.murray@ufv.ca

Abstract

The multi-head self-attention mechanism of
the transformer model has been thoroughly in-
vestigated recently. In one vein of study, re-
searchers are interested in understanding why
and how transformers work. In another vein,
researchers propose new attention augmenta-
tion methods to make transformers more accu-
rate, efficient and interpretable. In this paper,
we combine these two lines of research in a
human-in-the-loop pipeline to first discover im-
portant task-specific attention patterns. Then
those patterns are injected, not only to smaller
models, but also to the original model. The
benefits of our pipeline and discovered pat-
terns are demonstrated in two case studies with
extractive summarization and topic segmenta-
tion. After discovering interpretable patterns
in BERT-based models fine-tuned for the two
downstream tasks, experiments indicate that
when we inject the patterns into attention heads,
the models show considerable improvements
in accuracy and efficiency.

1 Introduction

With transformer-based models (Vaswani et al.,
2017) dominating the leaderboard for many key
NLP tasks such as summarization (Liu and Lapata,
2019), topic segmentation (Lukasik et al., 2020),
and sentiment analysis (Adhikari et al., 2019), their
core multi-head self-attention mechanism has also
been thoroughly investigated. In particular, to ex-
plain why and how transformers work, researchers
have analyzed the learnt self-attention matrices of
trained transformer models (e.g., Raganato and
Tiedemann (2018); Kovaleva et al. (2019)), with
Vig and Belinkov (2019) for instance, exploring the
attention patterns in BERT (Devlin et al., 2019) and
GPT-2 (Radford et al., 2019), as well as analyzing
their alignment with syntax.

Meanwhile, a parallel line of research has ex-
plored injecting predefined patterns into attention
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matrices of transformers in an attempt to reduce the
run-time complexity of self-attention while main-
taining competitive accuracy. This can be done by
either replacing the attention weights with a fixed
matrix (Raganato et al., 2020; Tay et al., 2021;
Xiao et al., 2020); or alternatively by guiding the
attention weights through more flexible masking
strategies (Mihaylov and Frank, 2019; Child et al.,
2019; Guo et al., 2019; Li et al., 2019; Beltagy
et al., 2020; Zaheer et al., 2020; Bai et al., 2021).

In this work, we propose and test a novel human-
in-the-loop pipeline that to the best of our knowl-
edge is the first attempt to combine research on
analyzing self-attention with work on injecting pat-
terns into attention matrices. To start, human users
visually explore the attention matrices of transform-
ers to identify task-specific patterns that could be
formalized as a predicate. After quantitatively eval-
uating the patterns on the validation set, they can
be injected into attention heads of transformer mod-
els to simultaneously improve task accuracy and
make the model more efficient by sparsifying the
attention matrices1. This is in contrast to previous
work that mostly focuses on the trade-off between
two metrics.

In both scenarios, we argue the interpretability
of the resulting model is improved. We provide
a justification of our claim based on the Predic-
tive, Descriptive, and Relevant (PDR) framework
proposed by Murdoch et al. (2019). Specifically,
by injecting human-interpretable patterns into the
model, we increase the model’s descriptive accu-
racy by explicitly encoding useful relationships
between input tokens in the attention weights while
simultaneously improving the predictive accuracy
in task performance. Further, the patterns are rele-
vant for the problem since they are discovered in
the human-in-the-loop process and are verified to

1The implementation of our work is publicly avail-
able at: https://github.com/raymondzmc/Attention-Pattern-
Exploitation
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be important for the task.
In order to test the feasibility and potential ben-

efits of our approach, we run two case studies on
the tasks of extractive summarization and topic
segmentation using BERT-based models, and we
find that: (i) Some of the important heads do have
patterns with interpretable meaning, either lexical,
local or positional. For instance, the matching to-
ken (i.e. the trend of attending to other tokens with
the same id) is an important clue for the summa-
rization model. (ii) We show that when the discov-
ered patterns are injected to the attention heads of
transformer models, both the task accuracy and ef-
ficiency of the model can be significantly improved.
(iii) Additionally, we also propose a strategy to im-
prove the performance of pretrained transformer
models by injecting patterns through PALs.

2 Related Work

In §2.1 and §2.2, we describe the two lines of re-
search that our work aims to combine. §2.3 summa-
rizes recent trends on enhancing the interpretability
of neural NLP models, while §2.4 introduces the
two NLP tasks used for our case studies.

2.1 Attention Analysis in Transformers

Various works have investigated the attention head
matrices in transformers (Raganato and Tiedemann,
2018; Clark et al., 2019; Kovaleva et al., 2019;
Zhao and Bethard, 2020; Xiao et al., 2021), of-
ten with the aid of visualization tools (Vig, 2019;
Hoover et al., 2020; Li et al., 2021). For examples,
Vig and Belinkov (2019) visually explore atten-
tion patterns in BERT and GPT-2, analyzing their
alignment with syntax. While Voita et al. (2019)
characterize the functions of the attention heads in
Machine Translation (MT) models (positional, syn-
tactic, and rare words), and evaluate the importance
of those head functions. More recently, Bian et al.
(2021) find the redundancy in BERT’s attention
patterns to be both phase-independent (pretrained
and fine-tuned) and task-agnostic. Lastly, Huber
and Carenini (2022) infer discourse structures from
the attention patterns of language models (BERT
and BART), and find discourse information to be
consistently captured in the same heads even when
fine-tuned for different tasks. In this paper, we
also aim to find task-specific important attention
patterns, but in contrast to previous work that iden-
tifies and categorizes attention patterns, we propose
a pipeline to leverage these patterns in improving

models’ performance and interpretability.

2.2 Attention Augmentation
We organize the related work on augmenting at-
tention matrices into two categories. In the first
category, attention weights are completely replaced
with a fixed matrix. For example, Raganato et al.
(2020) use fixed positional patterns in MT models
and demonstrate benefits for low-resource scenar-
ios, while Tay et al. (2021) replace the weights com-
puted using dot-product self-attention with a ran-
dom matrix, and report comparable performance
with standard transformers. Later on, Xiao et al.
(2020) expand their work by using embedded RST-
style discourse trees as fixed attention matrices and
show the effectiveness of discourse-based attention
matrices for extractive summarization. In contrast,
in the second category of attention augmentation
works, masks are applied on top of the attention
weights to either inject linguistic information (Yang
et al., 2018; Mihaylov and Frank, 2019) or improve
the efficiency of self-attention via fixed patterns
(Child et al., 2019; Guo et al., 2019; Li et al., 2019;
Ainslie et al., 2020). Just to describe a few promi-
nent examples, Strubell et al. (2018) use bi-affine
attention to learn syntactic dependencies in atten-
tion heads, and Bai et al. (2021) inject syntactic
structures into BERT through extra attention layers.
Concurrently, while Beltagy et al. (2020) use di-
agonal/vertical/horizontal patterns to respectively
model local and global context, Zaheer et al. (2020)
add patterns randomly by drawing inspiration from
graph theory. In comparison, while in all previ-
ous works the designing of pre-defined patterns
requires extensive trial and error, and only improve
upon either the accuracy or efficiency at the ex-
pense of the other, we explore a strategy of dis-
covering and assessing important attention patterns
interactively in this paper. Not only do the discov-
ered patterns help improve performance in terms
of both accuracy and efficiency, they also reveal
valuable insights regarding the internal workings
of pretrained language models.

2.3 Model Interpretability
In the context of Machine Learning, interpretability
can be defined as the description of the internals of
a model in a way that is understandable to humans
(Gilpin et al., 2018). With the rise of deep learning,
various techniques have been proposed to interpret
the inner workings of neural NLP models. For ex-
ample, probing classifiers are often used for finding
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linguistic or knowledge information learned by neu-
ral networks (Conneau et al., 2018; Tenney et al.,
2019; Pimentel et al., 2020; Voita and Titov, 2020;
Hou and Sachan, 2021; Aghazadeh et al., 2022),
while behaviour testing aims at understanding how
models behave through inferences under different
controlled settings (McCoy et al., 2019; Ross and
Pavlick, 2019; Ribeiro et al., 2020; Koh et al., 2021;
Goel et al., 2021). In contrast, our work is an exam-
ple of making interpretability an inherent attribute
of the neural models (e.g. Chen and Ji (2020); Hu
et al. (2021)), with human-distinguishable patterns
revealing insights regarding a subset of parameters
in the model.

2.4 NLP Tasks used in the two Case Studies

Extractive summarization is the task of picking
the most representative sentences as the summary
for the given document(s). Current state-of-the-
art models, which are mostly based on large-scale
pretrained language models (Liu and Lapata, 2019;
Zhong et al., 2020; Jia et al., 2020; Ruan et al.,
2022), can deliver good performance, but why and
how such models work so well still remain an open
question. In our case study, we adopt the popular
BERTSum (Liu and Lapata, 2019).

Topic segmentation is the task of breaking
stretches of running text into smaller topical-
coherent segments consisting of one or more sen-
tences addressing a common topic. Recently, more
research work frames the task in the supervised
learning paradigm and uses neural models such
as Bi-LSTMs (Koshorek et al., 2018; Xing et al.,
2020) and transformer (Glavas and Somasundaran,
2020; Lo et al., 2021) as the backbone, due to the
availability of large-scale labeled benchmarks sam-
pled from Wikipedia. These proposed neural topic
segmentation models achieve state-of-the-art per-
formance on monologue text by formulating the
problem as a sequence labeling task, where the pre-
dicted label of each sentence indicates whether or
not it is the end of a segment. In our case study, we
adopt Cross-Segment BERT (Lukasik et al., 2020).

3 Proposed Generic Pipeline

As an overview, we first briefly describe the pro-
posed pipeline (Figure 1). Specifically, given a
trained model, users are asked to first discover im-
portant patterns using the visual interface (Li et al.,
2021) by following three steps:
Step 1 (§3.1.1): Estimate the importance scores for

all the heads on the validation set, and find impor-
tant heads that stand out.
Step 2 (§3.1.2): Discover relevant patterns in the
important heads, using criteria described in §3.1.2.
Step 3 (§3.1.3): Evaluate and validate the patterns
to confirm their global relevance.

Once the important patterns are identified, there
are two common approaches (i.e. fixing and mask-
ing) to inject them as constraints to the attention
matrices in the transformer-based neural models
(see §3.2). The pipeline also enables two scenarios,
in which injecting the patterns can be beneficial:
the first one is to train a new model with the pat-
terns injected, while the second one is to enhance
the original model.

3.1 Discover Patterns from Attention

In this section we provide details of the three steps
for discovering patterns from the attention heads.
The three steps are illustrated in Figure 1 (B).

3.1.1 Step 1: Estimate Head Importance
Although the multi-head self attention mechanism
in transformers allows the model to learn multi-
ple types of relationships between input representa-
tions across a single hidden layer, the importance of
the individual attention heads can vary depending
on the downstream tasks. In practice, we propose
the use of scalable gradient-based methods (Michel
et al., 2019; Voita et al., 2019; Molchanov et al.,
2019) for an efficient estimation of head impor-
tance, and take the top-K heads at each layer to
find important patterns for the task (§3.1.2). Note
that K can be adjusted based on the availability of
human users and the size of the model.

3.1.2 Step 2: Find Attention Patterns
Once the the most important heads are identified,
their attention distributions are inspected to look
for patterns.

We define an attention pattern to be interpretable
iff it can be modeled as a predicate P between
any pair of input tokens (xi, xj). For instance, the
positional pattern ‘preceding token’ would be true
if xi appears before xj . Candidate patterns can
be discovered following two criteria: 1) they are
beneficial for the downstream task; 2) they occur
consistently among relevant tokens.

3.1.3 Step 3: Evaluate Attention Patterns
With a pattern discovered in §3.1.2, this step con-
firms the pattern’s global relevance by empirically
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Figure 1: The overview of our proposed generic pipeline. Given (A) a trained model for a specific task, our pipeline
can be divided into two main parts: (B) pattern discovery and (C) pattern injection.

measuring the proportion of attention values align-
ing with the pattern. For each attention head, the
associated predicate is evaluated over the entire val-
idation set to ensure the pattern is not appearing by
chance on the certain data that the user happen to
look at.

Specifically, we define the global relevance (GR)
of a pattern P for a head h as follows:

GR(P, h) =
1

|X|
∑

x∈X

∑|x|
i

∑|x|
j α

(x,h)
i,j · 1P (xi,xj)

|x|
(1)

where the attention value from the token xi to xj
on the head h for an input sample x, denoted as
α
(x,h)
i,j , is aggregated if and only if P (xi, xj) holds.

To validate a pattern’s generality, the relevance is
averaged over the validation set X .

3.2 Inject Patterns
As illustrated in Figure 1 (C), after extracting the
patterns following the three steps in §3.1, we pro-
pose to inject the patterns into attention matrices
with two methods (§3.2.1), and discuss two practi-
cal scenarios (§3.2.2) where they can be beneficial
for the downstream tasks.

3.2.1 Methods for injecting Patterns
In this work, we inject the discovered patterns by
either fixing or masking the attention weights prior
to the softmax function. For fixed attention weights,
the attention logits in the scaled-dot-product atten-
tion is replaced with a fixed (possibly input depen-
dent) matrix such that:

FixAttn(V,X) = σ(F (P )(X))V (2)

where σ is the softmax operation, V is the value
vectors, and F (X) ∈ [0, 1] computes a binary ma-

trix from the input sequence X based on the predi-
cated P for the specific pattern. Similarly, a pattern
can also be injected by casting a mask over the
attention weights computed from the key and query
vectors, as:

MaskAttn(Q,K, V,X) = σ(M (P )(X)+QKT )V
(3)

where M(X) ∈ [0,−∞) computes the desired be-
haviour in the same fashion as F (X), and is added
to the attention logits to approximate the multipli-
cation of the attention distribution by a weight.

Although the two methods are very similar with
respect to the improvement they contribute (see §4),
masking allows more flexibility and is generally
used for patterns with a large number of applicable
tokens, while fixing is more rigid and better suited
for a small number of applicable tokens.

3.2.2 Scenarios for Injecting Patterns
In practice, patterns can be injected in at least two
scenarios: (i) injecting patterns directly into the
attention heads of transformer-based models, and
(ii) injecting patterns into pretrained transformer
models using techniques such as the Projected At-
tention Layers (Stickland and Murray, 2019). We
conduct case studies for these two scenarios in §4.

4 Case Studies

In this section, we demonstrate the effectiveness of
our pipeline in two NLP tasks (extractive summa-
rization and topic segmentation) and discuss our
findings in detail.

4.1 Models for Tasks
We adopt the popular BERTSum (Liu and Lapata,
2019) for extractive summarization. With the con-
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Figure 2: Example of Pattern Extraction in the extractive summarization case study.2 (A) We first find important
heads, before (B) identifying the three interpretable patterns (highlighted in Green, Olive and Blue, respectively):
(i) Matching token, (ii) Intra-Sentence, and (iii) Positional.. Finally, (C) each pattern is evaluated with the global
relevance score (GR) on all of the attention heads. For the purpose of illustration, we display one attention head
with significantly larger GR in for each of the three identified patterns.

textualized representation from BERT, the model
uses a binary classifier to predict whether each sen-
tence belongs in the summary. We train the model
on the CNN/DM dataset (See et al., 2017), and use
ROUGE (Lin, 2004) as the evaluation metric.

We adopt Cross-Segment BERT (Lukasik et al.,
2020) for topic segmentation, where a candidate
segment boundary is first represented by its left
and right context, and then passed through a binary
classifier to predict whether the candidate is a topi-
cal segment boundary. The model is trained on the
WikiSection dataset (Arnold et al., 2019), and the
F1-score is used as evaluation metric for validation.

4.2 Discover Patterns from Attentions

Using the two models from §4.1, as we discover
that similar attention patterns exist in the impor-
tant heads for both tasks, the two case studies are
presented together. Without loss of generality, we

2(A) and (B) of Figure 2 are captured from the visual
interface presented in Li et al. (2021).

will use extractive summarization as the running
example task (Figure 2) to illustrate the process of
pattern discovery. We also apply the same process
to topic segmentation.

4.2.1 Find Important Heads
We adapt the Taylor expansion method (Molchanov
et al., 2019) as a proxy score for the head impor-
tance estimation. Following Li et al. (2021), we
use the first-order expansion to avoid the overhead
from computing the Hessian, where the gradient
w.r.t. the validation loss is summed over all parame-
ters of an attention head to estimate its importance.

The importance score heatmap of all heads is
visualized in Figure 2 (A), revealing that head im-
portance is not uniformly distributed, i.e. a small
number of heads play a dominant role for the sum-
marization task, as observed in Michel et al. (2019).

4.2.2 Discover and Evaluate Patterns
To discover task-specific patterns, we analyze the
top-3 most important heads of each layer, and
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look for human-interpretable relationships encoded
in the attention weights. In practice, we use the
instance-level interactions provided by the visual
framework (Li et al., 2021), and randomly select 5
validation examples per task for our analysis. The
entire process takes less than one hour to complete
for each task, where we manually examine the at-
tention weights for less than half of the tokens for
each example. It is worth noting that detailed analy-
sis regarding the trade-off between human cost and
pattern recall would require extensive user studies
beyond the scope of this work.

After discovering patterns, we assess the global
relevance of each patterns on the validation set,
where the pattern is kept only if the correspond-
ing predicate P exists in at least one significantly
relevant head. In our case studies, we use the 3-
sigma rule to determine the significance of a pattern.
Specifically, patterns with at least one head over 3
standard deviations above the GR mean (over all
the heads) are kept for further applications.

After verifying on the validation set, we discover
three patterns consistently existing in both tasks
(over 50% of important heads). This suggests that
important patterns are generalizable across multi-
ple NLP tasks, which is consistent with the find-
ings in Bian et al. (2021). Further analysis also
shows that the attention patterns are consistent af-
ter fine-tuning, where we report an average Jensen-
Shannon Divergence of 0.01 between the attention
distributions of BERTSum across 3 random seeds.
We hope our findings provide motivation for the
in-depth study of pattern importance in different
NLP tasks. Lastly, while it may be argued that
this step of the pipeline can be automated by di-
rectly evaluating the importance and relevance of
predefined patterns (e.g. syntax, discourse) based
on intuitions, as indicated below, our interactive
approach allows the discovery of interpretable pat-
terns which otherwise would be hard to define due
to the infinite search space of possible patterns.
Next, we describe the three discovered patterns in
detail.

Matching Token (Green in Figure 2) This pat-
tern describes the “attending to matching tokens”
behaviour, where the attention value αh

i,j between
input tokens xi and xj on the head h is high when-
ever xi = xj . For example, as shown in Figure 2
(i), the token "photo" mostly attends to other ap-
pearances of the token "photo" in the input se-
quence. To evaluate whether this pattern has a

large global relevance for any head, we only con-
sider tokens that appear at least twice within a
single documents, and compute GR (Eq. 1), in
which P (xi, xj) holds if and only if xi = xj , i.e.
1P (xi,xj) = (1freq(xi)>1)× (1xi=xj ).

The evaluation results show that there are sev-
eral heads for which the matching token pattern has
high global relevance (See the Green box in Fig-
ure 2). Interestingly, these heads are more promi-
nent (in the importance heatmap) for the extractive
summarization task, suggesting this pattern is espe-
cially important for summarization models during
inference.

Intra-Sentence/Context (Olive in Figure 2)
This pattern describes the behaviour of only attend-
ing to tokens within a text span. For summarization,
these heads will focus on attending tokens within
the same sentence (Figure 2 (ii)). Similarly, the
same heads in topic segmentation models will fo-
cus on attending tokens within the same context
(left or right). To evaluate this pattern, GR is com-
puted with P (xi, xj) holding iff xi and xj occur
within the same text span. Figure 2 (C) reveals that
this pattern appears more frequently in the mid to
upper layers of the transformer encoder.

Positional (Blue in Figure 2) Similar to Ko-
valeva et al. (2019), we also observe “positional
heads”, which focus specifically on either the pre-
ceding or following tokens, i.e., either αh

i,i−1 or
αh
i,i+1 have high values (Figure 2 (iii)). To eval-

uate this pattern, GR is computed with P (xi, xj)
holding iff j = i− 1 for preceding postional heads
and j = i+1 for succeeding positional heads. The
pattern is verified to exist in the lower layers of the
encoder, shown in the blue boxes of Figure 2 (C).

Other Patterns In addition to the three patterns
mentioned above, we also observe heads that focus
on attending to special tokens (e.g. [CLS], [SEP])
or punctuations (e.g. periods). However, we find
that attention heads with this behaviour are gener-
ally less important for the task (outside top-3), and
therefore omitted them from the next step of our
pipeline.

On the other hand, we also find uninterpretable
attention patterns in some of the important heads
of each layer. As hypothesized by previous works
(Clark et al., 2019), these attention heads might be
performing complex linguistic operations in combi-
nation with other heads. We leave the verification,
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interpretation and the efficient injection of these
patterns into the models as a direction for future
work.

4.3 Injecting Patterns to Models
After uncovering potentially important patterns
and confirming their relevance, we inject them to
transformer-based models for the task of summa-
rization and topic segmentation through masking
and fixing the attention weights. While we only per-
form the pattern discovery process on the CNN/DM
and WikiSection datasets, we inject the discovered
patterns to two other datasets (NYT-50 (Sandhaus,
2008) for summarization and Wiki-727K (Arnold
et al., 2019) for topic segmentation) to demonstrate
that our discovered patterns are generalizable in
“cross-dataset” settings3.

4.3.1 Method for Fixing and Masking
The patterns identified from our analysis can be
injected into an attention head through masking or
fixing its corresponding attention weight matrix.
Specifically, for the matching token pattern, we
apply an attention mask which enforces that when
a token appears more than once in the document, it
should attend only to other occurrences of itself:

M
(m)
i,j =

{
1 (xi = xj) ∨ (freq(xi) = 1)

0 otherwise
(4)

where the constraint is removed for tokens occur-
ring only once in the document.

Similarly, for intra-sentence/intra-context atten-
tion, the attention mask specifies that only tokens
within the same boundary can attend to each others,
where:

M
(s)
i,j =

{
1 SameBoundary(xi, xj)
0 otherwise

(5)

Lastly, we use a fixed attention matrix to encode
the two positional patterns with:

F
(−1)
i,j =

{
1 j = i− 1

0 otherwise
(6)

With F
(+1)
i,j being the same, but equal to 1 for

j = i+1. We use fixed attention matrices for these
patterns to save computational overhead since it
has the same effect as applying the mask (each row
is a one-hot vector). This is similar to the method
proposed by Raganato et al. (2020), but we only fix
for the preceding and succeeding token patterns.

3Results shown in Sec. 4 are without the Trigram Blocking
trick, and more results with it are in Appendix D

4.3.2 Pattern-Infused Sparse Transformers
In the first round of experiments, we inject the four
patterns on smaller transformer models to demon-
strate their effectiveness on both tasks. Since the
goal of these experiments is to assess the benefits
brought by these patterns, we do not perform exten-
sive hyper-parameter search when injecting these
patterns (e.g. on which layer, etc.).

Under both settings, each of the four patterns (in-
cluding two positional patterns) is injected in a sep-
arate attention head across all layers in the model.
Motivated by studies on the trade-off between spar-
sity ratio and task performance, we adopt the spar-
sity ratio used by previous works (Shi et al., 2021;
Wang et al., 2022): ρ = 1− |M |/N2, where |M |
denotes the number of non-zero elements in the
attention mask, and N denotes the length of the
example. Given the sparsity ρ, the complexity of
self-attention is thus reduced to O

(
(1− ρ)n2

)
(Shi

et al., 2021). To investigate how the sparsity ra-
tio affects the performance of our pattern-infused
models, we experiment with different number of
heads to inject our patterns, where the sparsity ra-
tio increases along with the number of heads (with
patterns).

As shown in Table 1, our pattern-infused models
outperform the plain transformer models for both
the CNN/DM and NYT-50 datasets under all three
settings (6 Layer 8 Heads, 6 Layer 12 Heads, and
6 Layer 12 Heads with BERT embeddings). Simi-
larly for topic segmentation, results also show that
the pattern-injection approach substantially outper-
forms the vanilla transformer across all metrics. It
is worth emphasizing that the performance gain is
slightly higher for summarization models. When
normalized by the ROUGE scores of extractive ora-
cle summaries4, the pattern-infused summarization
models achieve an average 15% improvement over
the baselines, while the topic-segmentation models
achieve a 12% improvement over the baselines. In-
line with prior work (McCoy et al., 2020), we also
find that the performance is consistent across ran-
dom seeds, where we report an extremely low stan-
dard deviation of 0.03 (ROUGE) and 0.002 (F1)
for extractive summarization and topic segmenta-
tion, respectively. Overall, the results from our
experiments convincingly demonstrates the bene-
fits of our approach and the generalizability of the

4As reported by Liu and Lapata (2019), the ROUGE
scores (R-1/R-2/R-L) of the oracle upper bound for
CNN/DM and NYT-50 are respectively, 52.59/31.24/48.87
and 49.18/33.24/46.02.
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Model Sparsity (ρ)
Extractive Summarization Topic Segmentation

CNN/DM NYT-50 WikiSection Wiki-727K
R-1 R-2 R-L R-1 R-2 R-L P R F-1 P R F-1

6 Layer 8 Heads
Transformer 0 40.50 18.22 36.94 45.86 26.83 38.23 0.698 0.647 0.671 0.647 0.243 0.353
+Patterns (4/8) 0.43 41.42 18.94 37.92 47.11 27.89 39.34 0.744 0.711 0.727 0.624 0.318 0.421
+Patterns (8/8) 0.86 41.37 18.92 37.89 47.17 27.94 39.37 0.771 0.666 0.714 0.668 0.274 0.395

6 Layer 12 Heads
Transformer 0 40.53 18.22 36.98 46.07 27.01 38.42 0.681 0.680 0.681 0.687 0.255 0.372
+Patterns (4/12) 0.29 41.58 19.10 38.10 46.84 27.68 39.08 0.752 0.717 0.734 0.643 0.350 0.453
+Patterns (8/12) 0.58 41.66 19.17 38.17 47.15 27.95 39.38 0.757 0.701 0.730 0.655 0.342 0.450
+Patterns (12/12) 0.86 41.68 19.16 38.19 47.17 27.94 39.38 0.756 0.702 0.728 0.663 0.318 0.430

6 Layer 12 Heads (with BERT Embeddings)
Transformer 0 40.74 18.40 37.20 46.07 26.98 38.37 0.738 0.674 0.704 0.665 0.415 0.511
+Patterns (4/12) 0.29 41.49 19.07 37.99 47.02 27.83 39.21 0.782 0.715 0.747 0.674 0.423 0.520
+Patterns (8/12) 0.58 41.57 19.11 38.08 47.16 27.96 39.40 0.760 0.737 0.748 0.665 0.421 0.515
+Patterns (12/12) 0.86 41.61 19.15 38.14 47.17 27.95 39.37 0.761 0.731 0.745 0.666 0.367 0.473

Table 1: Results for the two tasks (four datasets) under different settings, where we report the average performance
across the top-3 checkpoints. The parenthesis (e.g. 4/8) denotes the number of heads with patterns injected, while
sparsity (ρ) is computed from the average of the 4 datasets.

Model R-1 R-2 R-L
Transformer 40.50 18.22 36.94

+ match (m) +0.03 +0.12 +0.07
+ intra (i) +0.05 +0.06 +0.12
+ pos (p) -0.16 -0.17 -0.13
+ m +i +0.84 +0.65 +0.91
+ m +p +0.07 +0.11 +0.11
+ i + p -0.01 +0.03 +0.07
+ all +0.92 +0.72 +0.98

Table 2: Ablation study on the CNN/DM dataset with
the 6 Layer 8 Head transformer setting.

patterns discovered by our pipeline.
In addition, while a higher sparsity ratio causes

a slight decrease in performance under some sce-
narios, we find that even with a ratio of 0.86, our
model still significantly outperforms the vanilla
transformer across all settings. This is in contrast
to the findings by previous work (Child et al., 2019;
Guo et al., 2019; Li et al., 2019; Beltagy et al.,
2020; Zaheer et al., 2020; Shi et al., 2021), where
the high sparsity ratio from fixed patterns often re-
sults in performance degradation from the vanilla
transformer. These findings from our work provide
crucial insights for designing more energy efficient
models in the future.

Overall, with the discovered patterns injected,
our models are arguably more interpretable than
plain transformers on both tasks, as we know
with certainty the information encoded in each
masked/fixed attention heads. To further justify our
claim of interpretability, the attention heads with
patterns injected tend to have higher importance
scores than the other heads5, suggesting that such

5An illustrative example is shown in Appendix C.1

patterns are effectively leveraged by the model.
To study the contribution of individual patterns,

we perform an ablation study by injecting all
combinations of patterns on CNN/DM using the
transformer model with 6 layers and 8 heads6.
From Table 2, we observe that injecting match-
ing token and intra-sentence together achieves the
strongest improvement in accuracy among all com-
binations, only slightly lower than injecting all pat-
terns. Meanwhile, the gains from injecting pat-
terns separately are only marginal. One intrigu-
ing explanation is that these two patterns allows
the model to learn sentence-level features based
on term frequency (plausibly similar to TF-IDF
(Jones, 1972)), where higher scores are assigned
to sentences containing frequently appearing to-
kens. Additionally, although injecting only the po-
sitional patterns causes the performance to degrade,
it works better when combined with the two other
patterns. We hypothesize that positional patterns
need to be combined with patterns with more global
context in order to be more effectively utilized.

4.3.3 Guided Pattern Injection into
Pre-trained Models

We then experiment with injecting the patterns back
into the pre-trained transformer encoder. In partic-
ular, we inject them through additional attention
heads in the form of a Projected Attention Layer
(PAL) (Stickland and Murray, 2019), along with
the parameters of the original model. Details re-
garding PALs are described in Appendix A.

6Ablation study results for topic segmentation (WikiSec-
tion) can be found in Appendix E
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Model
CNN/DM (in-dataset) NYT-50 (cross-dataset)
R-1 R-2 R-L R-1 R-2 R-L

BERTSum 42.33 19.88 38.86 48.37 29.25 40.72
+ PAL 42.34 19.88 38.86 48.56 29.41 40.91
+ PAL + Patterns 42.58 20.05 39.10 48.74 29.60 41.11

Table 3: ROUGE F-scores of PAL with pretrained mod-
els for extractive summarization. All metrics were sig-
nificantly better than the baselines with a confidence
level of 99% according to the Bootstrap Significance
test (Dror et al., 2018).

The hidden size of our PALs is 256, which con-
sists of 4 additional attention heads (dk = dv =
dq = 64). PAL is added in each of the 12 BERT
layers, where our patterns are injected in the 4 PAL
attention heads. To ensure the changes in perfor-
mance are due to the patterns rather than the addi-
tional parameters, we also compare against adding
PAL without injecting the patterns.

Results in Table 3 indicate that injecting the
patterns in PAL (+PAL+Patterns) surprisingly im-
proves BERTSum’s performance on both datasets,
where the performance gains on the NYT-50 are
similar (or even slightly better) than on the in-
domain CNN/DM dataset, supporting the gener-
ality of the discovered patterns. Additionally, as
it was the case for the transformers with patterns
injected, visualizing the head importance scores
reveals that the PAL heads with patterns injected
are significantly more important (by two orders of
magnitude) than the PAL heads without patterns
injected7, indicating that the interpretable patterns
are important features during model inference.

In summary, the key aim of our experiments was
to verify consistent improvements over our own
baselines under the same settings in order to probe
the benefits (effectiveness and efficiency) of the
discovered patterns for the task. Therefore, we do
not perform extensive tuning to achieve the same
results reported by Liu and Lapata (2019).

5 Conclusion and Future Work

In this paper, we propose a generic human-in-the-
loop pipeline, which combines two popular re-
search directions, where the findings from an anal-
ysis of the multi-head self-attention mechanism in
transformers can be utilized to create more accurate
and interpretable transformer models. A human an-
alyzes the attention heads of a task-specific model,
discovers and verifies potentially meaningful pat-
terns, and injects them into the attention heads of

7An illustrative example is shown in Appendix C.2

models. By running a case study on two NLP tasks,
we show the effectiveness of our pipeline. We do
discover meaningful patterns in some important
heads, and the relationships encoded in the pat-
terns help us understand the features used by the
model for both tasks. Furthermore, by injecting
the patterns into the smaller models and the origi-
nal model, the performance and interpretability get
improved in both cases.

As future work, we plan to apply our pipeline
to other NLP tasks (e.g. language modeling, ab-
stractive summarization) and explore and verify
whether the important patterns from one task can
be transferable to another task. Similarly, we also
plan to apply our pipeline to different model vari-
ants to examine and compare the patterns encoded
in the attention weights. In the long term, our
pipeline could be naturally automated by replacing
the pattern discovery step with evaluating prede-
fined linguistic patterns. However, assessing the ef-
ficiency gains from injecting such patterns (requir-
ing ground-truth annotations) would require more
in-depth studies beyond the scope of this paper. Fi-
nally, since human factors are an important aspect
of interpretability, we plan to conduct extensive
user studies across different NLP tasks and model
sizes to examine the trade-off between human-cost
and the coverage of discovered patterns.

Limitations

The scope of our case studies is limited to English
datasets consisting of long documents for BERT-
based models. Additionally, we only adopt the
visual interface proposed by Li et al. (2021) due to
its support for long documents, and leave the de-
sign and implementation of additional visualization
techniques as a venue for future work.
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A Projected Attention Layer (PAL)

Projected Attention Layer (PAL) proposed by Stick-
land and Murray (2019) as adaptor modules for the
pretrained model. Similar to the design in the orig-
inal work, the PAL layer runs "parallel" with the
pretrained encoder layer where their respective out-
put are added in a residual manner (Rebuffi et al.,
2018), such that:

hl+1 = LN
(
hl + SA(hl) + PAL(hl)

)
(7)

where LN denotes LayerNorm, and SA is the self-
attention layer in the pretrained encoder. In each
PAL layer, the hidden size of pretrained layer is first
reduced via linear projection and passed through its
own self-attention layer before transformed back
into the original hidden size.

B Experiment Settings

B.1 Extraction Summarization
The dataset CNN/DM consists of news articles and
multi-sentence highlights as summaries. In our
work, we used the non-anonymized version pro-
cessed by See et al. (2017) while following the
standard dataset split that contains 287,226 training
examples, 13,368 validation examples and 11,490
test examples 8. Following previous work (Xu and
Durrett, 2019; Zhang et al., 2019; Xu et al., 2020),
we create the NYT-50 dataset from the New York
Times Annotated Corpus by removing the docu-
ments whose summaries are shorter than 50 words,
and use the data split that consists of 137,778
training examples, 17,222 validation examples and
17,223 test examples. In both datasets, we use
the same data pre-processing steps from previous
work (Liu and Lapata, 2019; Xu et al., 2020), and
obtain sentence-level oracle labels for extractive
summarization by greedily select sentences that
maximizes the ROUGE evaluation metric (Nallap-
ati et al., 2017). During training and inference, the
documents are truncated to 512 and 800 tokens, re-
spectively, for the CNN/DM and NYT-50 datasets.

During training, we use the ADAM optimizer
(Kingma and Ba, 2014) (β1 = 0.9, β2 = 0.999)
following the same learning rate scheduler used in
(Liu and Lapata, 2019). We train all our models for
a total of 50, 000 steps where the validation loss is
evaluated every 1, 000 steps for selecting the top-3
checkpoints. We perform all our experiments on a
combination of NVIDIA GTX 1080 Ti and V100

8https://github.com/abisee/cnn-dailymail

under the single GPU setting, where the true batch
size is set to 36 with gradient accumulation per step
is set to 9 or 3 for 1080 Ti and V100 respectively
due to memory constraints.

B.2 Topic Segmentation

The dataset WikiSection (Arnold et al., 2019) con-
sists of Wikipedia documents with distinct section
and subsection headings indicating topic bound-
aries. In our work, we use the largest English subset
in city domain (en_city) consisting of 19.5k docu-
ments, and use the same 70/10/20 (train/dev/test)
split setting used by the authors9. Similarly, Wiki-
727 (Koshorek et al., 2018) consists of 727,000
open-domain documents from English Wikipedia,
where we use the 80/10/10 (train/dev/test) split set-
ting used by the authors10. During training and
inference, the context length for the left and right
windows are both set to 128 tokens.

During training, we use the AdamW optimizer
(Loshchilov and Hutter, 2019) (β1 = 0.9, β2 =
0.999) following the same learning rate scheduler
used in Lukasik et al. (2020). Due to the significant
size difference between the two datasets, we trained
the model on WikiSection for five epochs and on
Wiki-727 for one epoch, where validation process
is executed every 2, 500 steps to select the top-3
checkpoints. We perform all our experiments on a
combination of NVIDIA GTX 1080 Ti and V100
under the single GPU setting, where the true batch
size is set to 64 with gradient accumulation per step
is set to 4 or 1 for 1080 Ti and V100 respectively
due to memory constraints.

C Head Importance of Pattern-Injected
Models

C.1 Attention Heads

Similarly, We also visualize the head importance
score (Figure 3) using the 6-layer 12-head model on
NYT-50, where the first four heads (index 1-4) of
each layer are injected with our patterns (matching
token, intra-sentence and positional, respectively).
From this example, we can see that the heads with
patterns injected are considered to be more impor-
tant across almost all layers, with the most impor-
tant head being the intra-sentence head in the last
layer. This fits our intuition since the output of the
last layer is used as the sentence-representation for
the classifier.

9https://github.com/seastianarnold/WikiSection
10https://github.com/koomri/text-segmentation
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Figure 3: Importance heatmap for the 6-layer 12-head model. Head 1-4 are injected with the patterns, where the
highlighted boxes represent Matching Token (Green), Intra Sentence (Olive) and Positional (Blue) (-1, +1).

C.2 Projected Attention Layer Heads
We visualize the important scores of the PAL heads
for BERTSum trained on CNN/DM (Figure 4),
where there are four heads added to each BERT
layer via residual connection. Figure 4b shows
the normalized importance score of the PAL heads
without any patterns injected, where the model is
opting to use almost entirely the representation
from the BERT layers. In Figure 4a, where each of
the four PAL heads are injected with our patterns,
we can see that importance score significantly in-
creased from the score without the patterns injected,
indicating that the features encoded in our patterns
are indeed being utilized by the models in addition
to the existing pretrained representations.

D Summarization with Trigram Blocking

Model
CNN/DM NYT-50

R-1 R-2 R-L R-1 R-2 R-L
6 Layer 8 Head

Transformer 41.07 18.41 37.45 45.13 26.05 37.52
+Patterns (4/8) 41.93 19.04 38.37 46.36 27.03 38.58

6 Layer 12 Head
Transformer 41.12 18.42 37.50 45.35 26.23 37.71
+Patterns (4/12) 42.01 19.12 38.44 46.09 26.84 38.35

6 Layer 12 Head (with BERT Embeddings)
Transformer 41.38 18.65 37.79 45.35 26.20 37.66
+Patterns (4/12) 42.24 19.35 38.68 46.27 27.02 38.49

Table 4: The results for the summarization experiments
under three settings with Trigram Blocking applied.

D.1 Trigram Blocking
In our experiments, we follow previous work
(Paulus et al., 2018; Liu and Lapata, 2019) in eval-
uating the models in two ways: with and without

the trigram blocking. At inference time, the sum-
mary is usually formed by selecting sentences with
the highest prediction scores. However, with the
trigram blocking trick, sentences with overlapping
trigram will not be selected. This trick has been
shown to be an effective method to deal with redun-
dancy on some dataset (e.g. CNN/DM), but may
cause performance drop in others (e.g. Pubmed
and arXiv).

Model
w Tri-block

R-1 R-2 R-L
Transformer 41.07 18.41 37.45

+ match (m) +0.67 +0.54 +0.71
+ intra (i) +0.20 +0.12 +0.27
+ pos (p) -0.13 -0.13 -0.10
+ m +i +0.84 +0.57 +0.89
+ m +p +0.46 +0.38 +0.52
+ i + p +0.27 +0.20 +0.34
+ all +0.86 +0.63 +0.92

Table 5: Ablation study on the CNN/DM dataset (6-
layer 8-head) with Trigram Blocking applied.

D.2 Pattern-Infused Sparse Transformers

In Table 4, we show the trigram blocking results
of the sparse transformer models on both summa-
rization datasets, and Table 5 shows the trigram
blocking results for pattern ablation experiment
on the CNN/DM dataset. In line with §4.3.2, our
pattern-infused models work better than all the
other models on all of the settings on both dataset.
As for the ablation study, we see a higher perfor-
mance gain with the matching-token pattern when
trigram blocking is applied, where the best perform-
ing model is still the one with all patterns applied.
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(a) PAL with patterns (b) PAL without patterns

Figure 4: PAL head importance with (a) and without (b) patterns injected, where the highlighted boxes represent
Matching Token (Green), Intra Sentence (Olive) and Positional (Blue) (-1, +1)

D.3 Guided Knowledge Injection into
Pre-trained Models

Table 6 shows that the results with trigram blocking.
We find the performance gain from the patterns to
be higher for CNN/DM and lower for NYT-50.

Model
CNN/DM NYT-50

R-1 R-2 R-L R-1 R-2 R-L
BERTSum 42.97 20.09 39.43 47.58 28.40 39.95
+ PAL 42.96 20.07 39.41 47.78 28.56 40.15
+ PAL + Patterns 43.07 20.12 39.50 48.25 29.10 40.70

Table 6: ROUGE F-scores of pretrained models with
PAL when trigram blocking is applied.

E Pattern Ablation for Topic
Segmentation

Table 7 shows that applying all 3 types of patterns
leads to the highest performance gain in F-1 score.
This is inline with the ablation results for extractive
summarization.

Model P R F-1
Transformer 0.698 0.647 0.671

+ match (m) +0.035 +0.064 +0.051
+ intra (i) +0.006 -0.006 +0.000
+ pos (p) +0.022 -0.022 -0.002
+ m +i +0.023 +0.070 +0.047
+ m +p +0.040 +0.059 +0.050
+ i + p +0.030 -0.030 -0.004
+ all +0.046 +0.064 +0.056

Table 7: Ablation study results on the WikiSection
dataset with the 6-layer 8-head setting.
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