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Abstract

Domain-adaptive pre-training (or DA-training
for short), also known as post-training, aims
to train a pre-trained general-purpose language
model (LM) using an unlabeled corpus of a
particular domain to adapt the LM so that end-
tasks in the domain can give improved per-
formances. However, existing DA-training
methods are in some sense blind as they do
not explicitly identify what knowledge in the
LM should be preserved and what should
be changed by the domain corpus. This pa-
per shows that the existing methods are sub-
optimal and proposes a novel method to per-
form a more informed adaptation of the knowl-
edge in the LM by (1) soft-masking the atten-
tion heads based on their importance to best pre-
serve the general knowledge in the LM and (2)
contrasting the representations of the general
and the full (both general and domain knowl-
edge) to learn an integrated representation with
both general and domain-specific knowledge.
Experimental results will demonstrate the ef-
fectiveness of the proposed approach.1

1 Introduction

Pre-trained general-purpose language mod-
els (LMs) like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and GPT-3 (Brown
et al., 2020) have become a standard component
in almost all NLP applications. Researchers have
also found that domain-adaptive pre-training (or
DA-training for short) using an unlabeled corpus
in a specific domain to adapt an LM can further
improve the end-task performance in the domain
(Gururangan et al., 2020; Xu et al., 2019a,b;
Sun et al., 2019; Alsentzer et al., 2019). Note
that domain-adaptive pre-training is also called
post-training (Xu et al., 2019a).

Existing DA-training methods simply apply the
same pre-training objective, i.e., the mask language

∗Now at Google Research leishu@google.com
1https://github.com/UIC-Liu-Lab/DGA

model (MLM) loss, to further train an LM using
a domain corpus. These methods are sub-optimal
because they do not explicitly identify what should
be preserved and what should be updated in the
LM by the domain corpus.

This paper argues that a good DA-training
method has two needs. On the one hand, the gen-
eral language knowledge learned in the LM should
be preserved as much as possible because the target
domain data is typically not large enough to be suf-
ficient to learn the general knowledge well. For ex-
ample, some words and their contexts may appear
infrequently in a particular domain. The knowledge
about them cannot be learned accurately based on
the domain data alone. When these words and con-
texts appear in an end-task, the system will have
difficulties. Thus, we need to rely on the knowledge
about them in the LM. Since existing DA-training
updates the LM with little guidance, such useful
general knowledge may be corrupted. On the other
hand, due to polysemy (same word with different
meanings in different domains) and the fact that
different domains also have their special word us-
ages and contexts, the LM should be specialized or
adapted to the target domain. A good DA-training
should balance these two needs to adapt the LM to
the target domain with minimal corruption to the
good general knowledge in the LM.

This paper proposes a novel technique to enable
a more informed adaptation to (1) preserve the gen-
eral knowledge in the LM as much as possible,
and (2) update the LM to incorporate the domain-
specific knowledge of the target domain as needed.
The focus of the existing DA-training research has
been on (2). As we argued above, (1) is also im-
portant as focusing only on (2) may destroy some
useful general knowledge and produce sub-optimal
results for end-tasks. To achieve (1), the system
should constrain the gradient update of each atten-
tion head2 based on its importance to the general

2We will see in Sec. 4 that constraining the neurons in
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knowledge so that the general knowledge in LM
can be preserved as much as possible. With (1),
(2) will be able to change the part of the general
knowledge that needs to be updated to adapt the
LM to suit the target domain.3

In this paper, we propose a novel model called
DGA (DA-training - General knowledge preserva-
tion and LM Adaptation) for the purpose. The key
idea of the proposed method is to preserve the gen-
eral language knowledge in the LM while adapting
the LM to a specific domain. However, it is not
obvious how this can be done, i.e., how to find
those parameters that are important for the general
knowledge and how to protect them. This paper
proposes a novel proxy-based method to achieve
the objectives. It works as follows. DGA first esti-
mates the importance of each attention head in the
LM via the newly proposed proxy KL-divergence
loss (Sec. 3.1). This importance score reflects how
important each attention head is to the general
knowledge. Based on the importance scores, it
performs two key functions: The first function uses
the scores to soft-mask (rather than binary-mask or
completely block) the gradient update to prevent
important general knowledge in LM from being
unnecessarily corrupted. This is related to prun-
ing of unimportant attention heads (Michel et al.,
2019). However, pruning is not directly applica-
ble to DA-training as we will show in Sec. 2. The
proposed soft-masking constrains only the back-
ward gradient flow in training. It is not necessary
to soft-mask the forward pass in either training
or inference. This is important because using the
knowledge in the full network encourages maximal
integration of pre-trained general knowledge and
the target domain-specific knowledge. The second
function contrasts the representation for the general
knowledge in the LM and the full (including both
the general and the domain-specific) knowledge to
learn an integrated representation (Sec. 3.2).4

In summary, this paper makes two key contribu-
tions.

(1). It proposes the idea of informed adaptation
to integrate the specialized knowledge in the target

other layers is unnecessary.
3This is very different from continual learning (CL) (Chen

and Liu, 2018) as CL needs to preserve the past knowledge
to deal with catastrophic forgetting (McCloskey and Cohen,
1989). DA-training can and should change/adapt the general
knowledge in the original LM to suit the target domain.

4Contrasting the general and only the domain-specific
knowledge gives poorer results (see Sec. 4.3) as it causes
the two types of knowledge to split rather than to integrate.

domain into the LM with minimal corruption to the
useful general knowledge in the original LM.

(2). It proposes a new model DGA with two
novel functions to enable better DA-training. DGA
estimates the attention head importance to protect
the important general knowledge in the LM and
integrates the specialized knowledge in the target
domain into the LM through contrasting the general
and the full knowledge.

To the best of our knowledge, none of these has
been reported in the literature before.

Extensive experiments have been conducted in
6 different domains and on 10 baselines to demon-
strate the effectiveness of the proposed DGA.

2 Related Work

Domain-adaptive pre-training (DA-training).
Researchers have applied DA-training to many do-
mains, e.g., reviews (Xu et al., 2019a,b), biomedi-
cal text (Lee et al., 2020), news and papers (Guru-
rangan et al., 2020), and social media (Chakrabarty
et al., 2019). However, they all use the same mask
language model (MLM) loss. We argue that it is
sub-optimal and it is also important to preserve the
general knowledge in the LM as much as possible
and integrate it with the target domain knowledge.
Network pruning as importance computation. It
is known that many parameters in a neural network
are redundant and can be pruned (Li et al., 2021;
Lai et al., 2021). This has also been shown for
pre-trained Transformer (Chen et al., 2020a; Lin
et al., 2020; Gao et al., 2021b; Michel et al., 2019;
Voita et al., 2019). A popular pruning method is
to discard the parameters with small absolute val-
ues (Han et al., 2015; Guo et al., 2016). Other
methods prune the network at a higher level. In
a Transformer-based model, these include prun-
ing the attention head (Michel et al., 2019; Voita
et al., 2019; McCarley et al., 2019) and pruning
sub-layers in a standard Transformer layer (Fan
et al., 2020; Sajjad et al., 2020). However, the
above methods are not directly applicable to us as
we need to compute the head importance for the
LM using unlabeled domain data, while the above
approaches are all for supervised end-tasks. We
propose to use a proxy KL-divergence loss for our
purpose. Note that it is possible to prune other sub-
layers in the Transformer. However, as shown in
Sec. 4.3, estimating the importance for other layers
does not improve the performance.
Contrastive learning. Contrastive learning (Chen
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et al., 2020b; He et al., 2020) can learn good repre-
sentations by maximizing the similarity of positive
pairs and minimizes that of negative pairs:

Lcontrast = − log
e(sim(qi,q

+
i )/τ)

∑N
j=1 e

(sim(qi,q
+
j )/τ)

, (1)

where N is the batch size, τ is a temperature pa-
rameter, sim(·) is a similarity metric, and qi and
q+i are representations for positive pairs xi and x+i
(typically, x+i is an augmented sample of xi, e.g.,
generated via cropping, deletion or synonym re-
placement (Gao et al., 2021a)). In the unsupervised
contrastive loss, the negative samples are the other
samples in the batch, indicated in the denominator.

We mainly use contrasive loss to contrast the
representations of the important general knowledge
in the original LM and the full knowledge (both the
general and domain-specific knowledge) to achieve
a good integration of the general knowledge and
the domain specific knowledge.

3 Proposed DGA System

As discussed earlier, DGA goes beyond the MLM
loss to perform two more functions: (1) preserv-
ing the important general knowledge in the LM
by soft-masking the attention heads based on their
importance. This helps avoid potential corruption
of the general knowledge in the LM in DA-training
(Sec. 3.1). However, the challenge is how to iden-
tify the general knowledge in the LM and how to
protect it. We will propose a method to do that.
(2) encouraging the model to learn integrated rep-
resentations of the target domain and the general
knowledge in the LM (Sec. 3.2). It is also not obvi-
ous how this can be done. We propose a contrastive
learning based method to do it. Figure 1 gives an
overview of DGA.

3.1 Preserving General Knowledge by
Soft-Masking Attention Heads

Multi-head attention. Multi-head attention is ar-
guably the most important component in the Trans-
former model (Vaswani et al., 2017). We omit
details of other parts and refer the reader to the
original paper. Formally, let x = x(1), ..., x(T ) be
a sequence of T real vectors where x(t) ∈ Rd and
let q ∈ Rd be a query vector. The attention mecha-
nism is defined as

att(x, q) = Wo

T∑

t=1

α(t)(q)Wvx
(t), (2)

Figure 1: Illustration of DGA. (A) shows the importance
computation. This is done by adding a gate vector gl
multiplying with the multi-head attention (Eq. 5) and
averaging its training gradients (Eq. 6). (B) shows DGA
training. In backward pass, attention heads are soft-
masked based on their importance I (Eqs. 9 and 10)
to try to preserve the general knowledge in the LM as
much as possible. In forward pass, the added gate vector
is removed except for feature learning in the contrastive
loss. The contrastive loss is computed by contrasting
the general knowledge with importance (ogen in Eq. 12)
applied and the full knowledge without applying the
importance (ofull in Eq. 14). The final objective of DGA
consists of MLM loss and contrastive loss. Note that we
omit the details of other parts of Transformer and only
focus on the multi-head attention mechanism.

where

α(t)(q) = softmax(
qTW T

q Wkx
(t)

√
d

). (3)

The projection matrices Wo,Wv,Wq,Wk ∈ Rd×d

are learnable parameters. The query vector is from
the same sequence as x in self-attention. A Trans-
former contains L identical layers. For layer l, Hl

different attention heads are applied in parallel to
enable the Transformer to be trained on more data.
Simply put, multi-head attention (mhatt) is the si-
multaneous application of multiple attention heads
in a single Transformer architecture. They are then
applied in parallel to obtain multi-head attention.5

mhattl(x, q) =
Hl∑

h=1

attlh(x, q), (4)

5We follow the notation in (Michel et al., 2019), where the
notation in Eq. 4 is equivalent to the “concatenation” formula-
tion in (Vaswani et al., 2017).
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where h indicates the hth attention head. Note that
the input x is different in each layer since the input
of a given layer is the output of last layer. To ease
the notation, we use the input x for all layers.

Head importance. Researchers have found that
not all attention heads are important (Michel et al.,
2019). We introduce a gate vector, gl, where each
cell is a gate variable, glh, to the attention head
summation for detecting the importance of atten-
tion heads. The resulting importance scores are
used to soft-mask the heads in DA-training.

gmhattl(x, q) =
Hl∑

h=1

glh,⊗attlh(x, q) (5)

where ⊗ is the element-wise multiplication. A
gradient-based head importance detection method
is proposed in (Michel et al., 2019). Given a dataset
D = {(ym,xm)}Mm=1 of M samples (ym is the
label of xm as Michel et al. (2019) worked on
supervised learning), the importance of a head is
estimated with a gradient-based proxy score

Ilh =
1

M

M∑

m=1

|∇glh |, (6)

where ∇glh is the gradient of gate variable glh,

∇glh =
∂Limpt(ym,xm)

∂glh
, (7)

where Limpt is a task-specific/domain-specific loss
function. The gradient can be used as the impor-
tance score because changing glh is liable to have
a large effect on the model if Ilh has a high value.

Although Eq. 6 offers a way to compute the
importance of attention heads w.r.t. a given loss
Limpt, we are unable to directly apply it: If we
use the domain data at hand and the MLM loss
as Limpt, ∇glh only indicates the importance score
for domain-specific knowledge. However, our goal
is to estimate the attention heads importance for
the general knowledge in LM which requires the
data used in training the LM to compute the Limpt.
In practice, such data is not accessible to users of
the LM. Further, label is needed in Eq. 6 but our
domain corpus is unlabeled in DA-training. To ad-
dress these issues, we propose to compute a proxy
KL-divergence loss for Limpt.

Proxy KL-divergence loss. We need a proxy for
Limpt such that its gradient (∇glh) can be used to
compute head importance without using the LM’s
original pre-training data. We propose to use model

robustness as the proxy, i.e., we try to detect heads
that are important for LM’s robustness. Its gradi-
ent, ∇glh , then indicates the robustness and thus
the importance to the LM model. Our rationale
is as follows: If an Ilh (the average of |∇glh |, see
Eq. 6) has a high value, it indicates that it is impor-
tant to the LM’s robustness because its change can
cause the LM to change a great deal. It is thus an
important head to the LM. In contrast, if Ilh has a
small value, it is a less or not important head to the
LM.

To compute the robustness of the LM, we take
a subset (a hyper-parameter) of the target do-
main data {xsub

m } (no label in DA-training) and
input xsub

m twice to the LM and compute the KL-
divergence of the two resulting representations,

Limpt = KL(f1(xsub
m ), f2(x

sub
m )), (8)

where f1 and f2 are the LM with different dropout
masks. Note that we don’t need to add any addi-
tional dropouts to implement f because indepen-
dently sampled dropout masks are used as input in
the Transformer. In training a Transformer, there
are dropout masks placed on fully-connected layers
and attention probabilities. Thus, simply feeding
the same input to the Transformer twice will get
two representations with different dropout masks.
Since dropout is similar to adding noise, the dif-
ference between the two representations can be re-
garded as the robustness of the Transformer model.
Figure 1 (A) shows how we compute the impor-
tance of each attention head using the gradient of
the gate vector gl.

Soft-masking attention heads in DA-training.
Recall we want to preserve the general knowledge
in the LM during DA-training using head impor-
tance Ilh. Given the attention head att(x, q) and
DA-training loss LDA-train (typically the MLM loss;
we also propose an additional loss in Sec. 3.2),
we can “soft mask” its corresponding gradient
(∇attlh

6) using the head importance value Ilh,

∇′
attlh = (1− Inorm

lh )⊗∇attlh , (9)

where Inorm
lh is from Ilh via normalization

Inorm
lh = |Tanh(Normalize(Ilh))|. (10)

Normalize makes the Ilh have a mean of 0 and
standard deviation of 1. Absolute value of Tanh

6∇attlh indicates the gradient for attention head attlh(x, q),
distinguished from ∇glh in Eq. 6 which is the gradient for the
gate variable glh
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ensures that Ilh takes values in the interval [0, 1].
Eq. 9 means to constrain the gradient of the corre-
sponding head attlh(x, q) by element-wise multi-
plying one minus the head importance to the gra-
dient. It is “soft-masking” because Ilh is a real
number in [0, 1] (instead of binary {0, 1}), which
gives the model the flexibility to adjust the attention
head. This is useful because although some heads
are important to the LM, they may conflict with
the knowledge in the target domain and thus need
adjusting. Also note that the soft masks here affect
only the backward pass and are not used in forward
pass (so that forward pass can use the full network
and encourage maximal integration of pre-trained
general and domain-specific knowledge) except for
feature learning using contrastive learning (see be-
low). Figure 1 (B) shows that attention heads are
soft-masked during training.

3.2 Contrasting General and Full Knowledge

We now present how to integrate the general knowl-
edge in the LM and the domain-specific knowl-
edge in the target domain by contrasting the general
knowledge and the full knowledge (both general
and domain-specific). We first introduce how we
obtain such knowledge from the LM for the input
x, and then discuss how we contrast them.

Obtaining the general knowledge for the in-
put sequence x from the LM is by extracting the
representation of combining the attention heads
and their importance scores (Inorm

lh in Eq. 10) in
the forward pass. The intuition is that since the
importance scores show how important each atten-
tion head is to the general knowledge, the resulting
representation reflects the main general knowledge
used by x. Formally, we plug Inorm

lh (soft-masks)
as the gate variable glh in Eq. 5,

gmhattgen
l (x, q) =

Hl∑

h=1

Inorm
lh ⊗ attlh(x, q). (11)

Given the attention heads for general knowledge,
we can plug it into the whole Transformer to obtain
the final general knowledge (taking the average of
each token’s output in the input sequence).

ogen = Transformer(gmhattgen(x, q)). (12)

(See ogen also in Figure 1 (B)).
Obtaining the full (both general and domain-

specific) knowledge in x is similar. The only dif-
ference is that we extract the representation of x

without applying the importance (soft-masks) on
attention heads in the forward pass,

gmhattfull
l (x, q) =

Hl∑

h=1

attlh(x, q). (13)

Similarly, we can plug it into the Transformer,

ofull = Transformer(gmhattfull(x, q)). (14)

(See ofull also in Figure 1 (B)). Note that it is possi-
ble to use (1− Inorm

lh ) as the importance of domain-
specific knowledge and contrast it with the general
knowledge. However, this produces poorer results
(see Table 3) as explained in footnote 4.

Contrasting general and full knowledge. It
is known that contrastive learning helps learn a
good isotropic representation that is good for down-
stream tasks, with the help of positive and nega-
tive instances. We contrast the general (ogen) and
full (ofull) representations (as positive and nega-
tive instances) for the same input x to make them
different, which encourages the learning of domain-
specific knowledge in ofull that is not already in the
general knowledge and yet related to and integrated
with the general knowledge (ogen) of the input.

We construct contrastive instances as follows:
for an input xm, three contrastive instances are pro-
duced. Anchor om and positive instance o+

m are
both full knowledge from Eq. 14, obtained based
on two independently sampled dropout masks in
the Transformer (recall that this can be achieved by
inputting xm twice (see Sec. 3.1). We regard o+

m

and om as positive instances because the dropout
noise has been shown to be good positive instances
for improving alignment in training sentence em-
bedding (Gao et al., 2021a). Negative instance o−

m

is the general knowledge for xm from the LM ob-
tained via Eq. 12. With om, o+

m, and o−
m, our

contrastive loss is (sim(·) is the cosine similarity),

Lcontrast = −log
esim(om,o+

m)/τ
∑N

j=1(e
sim(om,o+

j )/τ + esim(om,o−
j )/τ )

.

(15)

Compared to Eq. 1, the second term is added in
the denominator, i.e., general knowledge represen-
tations as additional negative samples/instances.
Figure 1 (B) shows a red arrow pointed from ofull

to itself, indicating the positive instances are from
inputting twice. The dashed red arrow pointing
to ogen indicates the negative instances contrasting
the specialized and general knowledge.
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Unlabeled Domain Datasets End-Task Classification Datasets
Source Dataset Size Dataset Task #Training #Testing #Classes

Reviews
Yelp Restaurant 758MB Restaurant Aspect Sentiment Classification (ASC) 3,452 1,120 3
Amazon Phone 724MB Phone Aspect Sentiment Classification (ASC) 239 553 2

Amazon Camera 319MB Camera Aspect Sentiment Classification (ASC) 230 626 2

Academic Papers
ACL Papers 867MB ACL Citation Intent Classification 1,520 421 6
AI Papers 507MB AI Relation Classification 2,260 2,388 7

PubMed Papers 989MB PubMed Chemical-protein Interaction Prediction 2,667 7,398 13

Table 1: Statistics for domain post-training datasets and end task supervised classification datasets (more detail of
each task is given in Appendix A).

3.3 DGA Objectives

DGA is a pipelined model: First, a subset of the
domain data is used to estimate the attention head
importance (Ilh in Sec. 3.1). Second, given the
attention head importance, we compute the final
domain-adaptive loss by combining the conven-
tional Masked Language Model (MLM) loss (in-
clude the proposed soft-masking for general knowl-
edge) and the proposed contrastive loss:

LDA-train = LMLM + λ1Lcontrast, (16)

where λ1 is the hyper-parameter to adjust the im-
pact of the added term.

4 Experiments

We follow the experiment setup in (Gururangan
et al., 2020). RoBERTa (Liu et al., 2019)7 is used
as the LM. In each experiment, we first DA-train
the LM and then fine-tune it on the end-task. The
final evaluation is based on the end-task results.

4.1 Datasets and Baselines

Datasets: Table 1 shows the statistics of the un-
labeled domain datasets for DA-training and their
corresponding end-task classification datasets. We
use 6 unlabeled domain datasets:8 3 of them are
about reviews: Yelp Restaurant (Xu et al., 2019a),
Amazon Phone (Ni et al., 2019), Amazon Camera
(Ni et al., 2019); 3 of them are academic papers:
ACL Papers (Lo et al., 2020), AI Papers (Lo et al.,
2020), and PubMed Papers9. Each unlabeled do-
main dataset has a corresponding end-task classifi-

7https://huggingface.co/roberta-base
8We down-sampled the PubMed due to its huge original

size. In general, our datasets are much smaller comparing to
previous work (Gururangan et al., 2020) (which used more
than 11GB of data for each domain). Our experiments showed
that a smaller dataset is sufficient and more data does not help.
It also requires much less computation resource.

9https://pubmed.ncbi.nlm.nih.gov/

cation dataset10: Restaurant11 (Xu et al., 2019a),
Phone (Ding et al., 2008; Hu and Liu, 2004), Cam-
era (Ding et al., 2008; Hu and Liu, 2004)12, ACL
(ACL-ARC in Jurgens et al. (2018)), AI (SCIERC
in Luan et al. (2018)), and PubMed (CHEMPORT
in Kringelum et al. (2016)).

Baselines. We consider 10 baselines.
(1). Non-DA-training (RoBERTa) (Liu et al.,

2019) uses the original RoBERTa for the end-task
fine-tuning without any DA-training.

(2). DA-training using masked language
model loss (MLM) is the existing DA-training
method. To our knowledge, existing DA-training
systems are all based on the MLM loss.

(3). DA-training using adapter-tuning (MLM
(Adapter)) adds adapter layers between layers of
Transformer for DA-training. An adapter (Houlsby
et al., 2019) has two fully connected layers and a
skip connection. During DA-training, the Trans-
former is fixed, only the adapters are trained. The
bottleneck (adapter) size is set to 64 (Houlsby et al.,
2019). During end-task fine-tuning, both RoBERTa
and adapters are trainable for fair comparison.

(4). DA-training using prompt-tuning (MLM
(Prompt)) (Lester et al., 2021) adds a sequence of
prompt tokens to the end of the original sequence.
In DA-training, RoBERTa (the LM) is fixed and
only the prompt tokens are trained. In end-task
fine-tuning, both LM and the trained prompt are
trainable. We initialize 100 tokens and set the learn-
ing rate of the prompt token to 0.3 in DA-training,
following the setting in Lester et al. (2021).

(5). Knowledge distillation (MLM+KD) (Hin-
10Note that our results are different from those presented

in Table 5 of (Gururangan et al., 2020) because we observe
very high variances due to very small original test sets and
thus re-partition the training and test set (by enlarging the test
set and reducing the training set slightly)

11To be consistent with existing research (Tang et al., 2016),
examples with conflict polarities (both positive and negative
sentiments are expressed about an aspect term) are not used.

12Note that Ding et al. (2008) and Hu and Liu (2004) con-
tain 9 and 5 domains, respectively. We extract those domains
related to “Phone” and “Camera” from them.
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ton et al., 2015) minimizes the representational
deviation between the general knowledge in LM
and the specialized knowledge in DA-training. We
compute the KL divergence between the representa-
tions (the output before the masked language model
prediction head) of each word of the two models
(LM and DA-trained) as the distillation loss.

(6). Adapted distillation through attention
(MLM+AdaptedDeiT) is derived from DeiT (Tou-
vron et al., 2021), a distillation method for visual
Transformer (ViT) (Dosovitskiy et al., 2020). We
adapt DeiT to a text-based and unsupervised model
by distilling the LM representation13 to the added
distillation token and change ViT to RoBERTa.

(7, 8). DA-training using sequence-level
contrastive learning (MLM+SimCSE and
MLM+InfoWord). SimCSE is a contrastive learn-
ing method for sentence embedding (Gao et al.,
2021a). We use its unsupervised version where
positive samples are from the same input with
different dropout masks and negative samples are
other instances in the same batch. InfoWord (Kong
et al., 2020) is another contrastive learning method
contrasts the span-level local representation and
sequence-level global representation.

(9, 10). DA-training using token-aware
contrastive learning (MLM+TaCL and
MLM+TaCO). TaCL (Su et al., 2021) and
TaCO (Fu et al., 2022) are two recent methods
to improve BERT pre-training with token-aware
contrastive loss.14 We change the backbone to
RoBERTa for fair comparison.

4.2 Implementation Detail

Architecture. We adopt RoBERTaBASE as our
backbone LM (12 layers and 12 attention heads
in each layer). A masked language model head is
applied for DA-training. The end-task fine-tuning
of RoBERTa follows the standard practice. For
the three ASC tasks (see Table 1), we adopt the
ASC formulation in (Xu et al., 2019a), where the
aspect (e.g., “sound”) and review sentence (e.g.,
“The sound is great”) are concatenated via </s>.

Hyperparameters. Unless otherwise stated, the
same hyper-parameters are used in all experiments.
The maximum input length is set to 164 which is
long enough for all datasets. Adam optimizer is

13We take the average of its token’s output as sequence’s
representation. The same for SimCSE baseline.

14TaCL and TaCO are not a DA-training model. It pre-trains
an LM to improve it using the same data as that for training
the LM. We switch the data to our target domain data.

used for both DA-training and end-task fine-tuning.
The max sequence length is set to 164, which is
long enough for our end-tasks and only needs mod-
erate computational resources.

Domain-adaptive pre-training (DA-training).
The learning rate is set to 1e-4 and batch size is
256. We train 2.5K steps for each domain, roughly
a full pass through the domain data, following (Gu-
rurangan et al., 2020; Xu et al., 2019a). The subset
of data {xsub

m } for computing Limpt to determine
head importance in Sec. 3.1 is set to 1.64 Million
tokens, which is sufficient in our experiments. λ1

in Eq. 16 is set to 1 and τ in Eq. 15 is set to 0.05.
End-task fine-tuning. The learning rate is set

to 1e-5 and batch size to 16. We train on end-task
fine-tuning datasets for 5 epochs for Restaurant; 10
epochs for ACL, AI and PubMed; and 15 epochs
for Phone and Camera. We simply take the results
for the last epoch as we empirically found that
the above number of epochs gives us stable and
convergence results.

4.3 Evaluation Results and Ablation Study

We report the end-task results of the 10 baselines
on the 6 datasets in Table 2.

Superiority of DGA. Our DGA consistently out-
performs all baselines. Thanks to the proposed
more informed adaptation, DGA improves over
the widely used traditional DA-training baseline
MLM. We also see that MLM markedly outper-
forms RoBERTa (non-DA-training) on average (see
the last column). We discuss more observations
about the results bellow.

(1). Training the entire LM in DGA helps
achieve much better results. Using adapter (MLM
(adapter)) and prompt (MLM (prompt)) have mixed
results. This is because adapter and prompt do not
have sufficient trainable parameters, which are also
randomly initialized and can be difficult to train.

(2). DGA is also better than distillation-based
systems: MLM+AdaptedDeiT and MLM+KD,
which try to preserve the past knowledge. This
is not surprising because the goal of DA-training is
not simply preserving the previous knowledge but
also to adapt/change it as needed to suit the target
domain. DGA is specifically designed for this with
soft-masking and contrasting of knowledge.

(3). The contrastive learning in DGA is more
effective than the other contrastive alternatives
(MLM+SimCSE, MLM+TaCL, MLM+TaCO and
MLM+InfoWord). This indicates contrasting the
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Domain Camera Phone Resturant AI ACL PubMed
Avg

Model MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc. Micro-F1
RoBERTa 78.82 87.03 83.75 86.08 79.81 87.00 60.98 71.85 66.11 71.26 72.38 73.64

MLM 84.39 89.90 82.59 85.50 80.84 87.68 68.97 75.95 68.75 73.44 72.84 76.40
MLM (Adapter) 83.62 89.23 82.71 85.35 80.19 87.14 60.55 71.38 68.87 72.92 71.68 74.60
MLM (Prompt) 85.52 90.38 84.17 86.53 79.00 86.45 61.47 72.36 66.66 71.35 73.09 74.98

MLM+KD 82.79 89.30 80.08 83.33 80.40 87.25 67.76 75.46 68.19 72.73 72.35 75.26
MLM+AdaptedDeiT 86.86 91.37 83.08 85.64 79.70 86.84 69.72 76.83 69.11 73.35 72.69 76.86

MLM+SimCSE 84.91 90.35 83.46 86.08 80.88 87.59 69.10 76.25 69.89 74.30 72.77 76.84
MLM+TaCL 81.98 88.88 81.87 84.92 81.12 87.50 64.04 73.18 63.18 70.31 69.46 73.61
MLM+TaCO 84.50 90.22 82.63 85.32 79.27 86.68 59.73 71.22 63.66 70.36 72.38 73.69

MLM+InfoWord 87.95 91.92 84.58 86.84 81.24 87.82 68.29 75.92 68.58 73.68 73.21 77.31
DGA 88.52 92.49 85.47 87.45 81.83 88.20 71.99 78.06 71.01 74.73 73.65 78.74

Table 2: We report the macro-F1 (MF1) and accuracy results for all datasets, except for CHEMPORT in the PubMed
domain, for which we use micro-F1 following Gururangan et al. (2020); Dery et al. (2021); Beltagy et al. (2019).
The results are averages of 5 random seeds (the standard deviation is reported in Appendix B). The average column
(Avg) is the average over the MF1 (or Micro-F1 for PubMed) for all datasets.

general and full knowledge for knowledge integra-
tion is important.

Effectiveness of the proxy KL-divergence loss.
We use the proposed proxy KL-divergence loss to
compute the head importance to identify the gen-
eral language knowledge in the LM without using
the LM’s original pre-training data (Sec. 3.1).

For evaluation, we are interested in how good
the proxy is. Since we don’t have the data that pre-
trains RoBERTa, it is not obvious how to assess
the quality of the proxy directly. Here, we provide
some indirect evidences to show the effectiveness
of the proxy for computing the importance of units
to the general knowledge in the LM.

We conduct a separate experiment to compare
the attention heads’ importance score vectors after
applying the proxy using the data from different
domains. For each domain i, we compare its impor-
tance vector with the importance vector of every
other domain, and then average the cosine similari-
ties to get the value for domain i. We get 0.92 for
Restaurant, the same 0.91 for ACL, AI, and Phone,
0.89 for PubMed and 0.92 for Camera. We see that
different domains give similar importance values,
which indirectly show that our proxy can identify
the common general knowledge.

We also compute the importance score distribu-
tions of the proxy. For each of the 6 domains, after
applying the proxy, around 20% of the attention
heads are heavily protected (0.8 ≤ Inorm

lh ≤ 1.0)
and another 20% moderately protected (0.6 ≤
Inorm
lh < 0.8), which indicate the general knowl-

edge. While Phone, AI, Camera and Restaurant
share a similar distribution, ACL and PubMed pro-
tect slightly less. This is understandable as PubMed

and ACL (medical or NLP publications) are prob-
ably less common than the other domains and the
general knowledge in the LM covers them less.

Ablation study. To better understand DGA, We
want to know (1) whether constraining the neurons
in other layers are helpful (the proposed DGA only
constrains the attention heads), and (2) where the
gain of DGA is from. To answer (1), we constrain
the training of different layers in a standard Trans-
former. In Table 3 (rows 3-5), “H”, “I”, and “O”
refer to attention head, intermediate layer, output
layer in a standard Transformer layer, respectively.
“E” refers to the embedding layers. The brack-
ets with combination of “H, I, O, E” indicate the
location we apply the soft-masking (DGA only ap-
plies soft-masking in the attention head). We can
see their results are similar or worse than DGA,
implying that attention heads are more indicative
of important knowledge. To answer (2), we con-
duct the following ablation experiments: (i) DGA
(w/o contrast), without the contrastive loss, but
only soft-masking the backward pass according
to the attention head importance. (ii) DGA (ran-
dom masking) with randomly generated attention
head importance scores and using them to do soft-
masking and contrastive learning. (iii) Ensemble
(LM+MLM) performs the end-task fine-tuning on
both the MLM DA-trained RoBERTa (conventional
DA-training) and the original RoBERTa (LM) by
concatenating their outputs and taking the average.
(iv) DGA (domain-specific) refers to the variant
that contrasts domain-specific and general knowl-
edge (see Sec. 3.2).15

15We don’t have DGA(w/o soft-masking) because our con-
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Domain Camera Phone Resturant AI ACL PubMed
Avg

Model MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc. Micro-F1
RoBERTa 78.82 87.03 83.75 86.08 79.81 87.00 60.98 71.85 66.11 71.26 72.38 73.64

MLM 84.39 89.90 82.59 85.50 80.84 87.68 68.97 75.95 68.75 73.44 72.84 76.40
DGA (H, I) 86.79 91.60 84.21 86.40 81.32 87.91 71.07 77.36 69.50 73.82 73.34 77.71

DGA (H, I, O) 88.04 92.01 85.85 87.63 81.45 87.79 71.54 77.61 70.52 74.58 73.10 78.42
DGA (H, I, O, E) 87.05 91.60 83.74 86.11 80.64 87.61 72.64 78.17 71.24 74.96 73.54 78.14

DGA (w/o contrast) 86.19 90.89 84.48 86.65 81.70 87.93 68.25 75.49 69.31 73.73 72.72 77.11
DGA (random mask) 82.07 89.30 83.86 86.33 80.60 87.52 69.51 76.64 69.59 73.73 72.92 76.43

Ensemble (LM+MLM) 85.22 90.64 85.15 87.23 79.86 86.98 65.10 74.43 68.56 73.44 72.60 76.08
DGA (domain-specific) 88.06 92.04 83.45 85.82 81.72 87.90 68.00 75.57 70.91 75.06 73.17 77.55

DGA 88.52 92.49 85.47 87.45 81.83 88.20 71.99 78.06 71.01 74.73 73.65 78.74

Table 3: Ablation results - averages of 5 random seeds. The standard deviations are reported in Appendix B.

Table 3 shows that the full DGA always gives the
best result, indicating every component contributes.
Additional observations are as follows:

(1) DGA’s gain is partially from the novel soft-
masking: we can see that on average, DGA (w/o
contrast) outperforms conventional DA-training
(MLM). Besides, our gradient-based mask is infor-
mative: we can see DGA (random mask) is worse
than DGA (w/o contrast) on all datasets. DGA (w/o
contrast) is even better than Ensemble, which di-
rectly combines the information given by both the
original LM and the traditional DA-trained model
during end-task fine-tuning

(2) Besides soft-masking, contrasting the gen-
eral and full knowledge also helps. We can see
DGA outperforms DGA (w/o contrast) and DGA
(domain-specific) in all datasets.

5 Conclusion

This paper argued that an effective DA-training
method should effectively integrate the target do-
main knowledge to the general knowledge in the
LM. Existing approaches do not explicitly do this.
This paper proposed a novel method DGA to
achieve it (1) by estimating the attention heads
importance in LM and using the importance scores
to soft-mask the attention heads in DA-training to
preserve the important knowledge in LM as much
as possible, and (2) by contrasting the general and
the full knowledge. Extensive experiment results
demonstrated the effectiveness of the proposed ap-
proach DGA.

6 Limitations

While effective, DGA has some limitations. First,
the main focus of DGA is to adapt an LM to a

trastive learning relies on soft-masking. If removed, con-
trastive loss will not have the additional negative samples and
our DGA becomes MLM+SimCSE.

given target domain. It does not consider the gen-
eralization to other domains. For example, it will
be interesting to incrementally or continually adapt
an LM to more and more domains to make the LM
more useful. Second, the importance of parame-
ters for general knowledge in the LM is computed
using a proxy method based on model robustness.
Although it is quite effective, it is interesting to
explore other approaches to further improve it. We
will work on these in our future work as specializ-
ing and improving an LM is an important problem.
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Domain Camera Phone Resturant AI ACL PubMed
Model MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc. Micro-F1

RoBERTa ±0.0403 ±0.0179 ±0.0210 ±0.0154 ±0.0117 ±0.0049 ±0.0646 ±0.0347 ±0.0192 ±0.0096 ±0.0071
MLM ±0.0479 ±0.0298 ±0.0165 ±0.0103 ±0.0096 ±0.0056 ±0.0117 ±0.0086 ±0.0218 ±0.0118 ±0.0035

MLM (adapter) ±0.0165 ±0.0110 ±0.0265 ±0.0181 ±0.0102 ±0.0068 ±0.0551 ±0.0288 ±0.0142 ±0.0099 ±0.0055
MLM (prompt) ±0.0243 ±0.0138 ±0.0126 ±0.0087 ±0.0060 ±0.0035 ±0.0301 ±0.0124 ±0.0068 ±0.0108 ±0.0028

MLM+KD ±0.0295 ±0.0158 ±0.0320 ±0.0230 ±0.0099 ±0.0070 ±0.0345 ±0.0224 ±0.0292 ±0.0155 ±0.0093
MLM+AdaptedDeiT ±0.0187 ±0.0122 ±0.0160 ±0.0101 ±0.0048 ±0.0022 ±0.0250 ±0.0179 ±0.0065 ±0.0079 ±0.0086

MLM+SimCSE ±0.0114 ±0.0077 ±0.0098 ±0.0065 ±0.0029 ±0.0016 ±0.0086 ±0.0056 ±0.0054 ±0.0071 ±0.0027
MLM+TaCL ±0.0218 ±0.0103 ±0.0230 ±0.0159 ±0.0105 ±0.0059 ±0.0275 ±0.0156 ±0.0713 ±0.0394 ±0.0118
MLM+TaCO ±0.0456 ±0.0232 ±0.0166 ±0.0134 ±0.0077 ±0.0052 ±0.0675 ±0.0380 ±0.0207 ±0.0128 ±0.0099

MLM+InfoWord ±0.0267 ±0.0139 ±0.0272 ±0.0191 ±0.0170 ±0.0089 ±0.0344 ±0.0219 ±0.0070 ±0.0079 ±0.0072
DGA ±0.0095 ±0.0047 ±0.0127 ±0.0094 ±0.0052 ±0.0040 ±0.0127 ±0.0081 ±0.0079 ±0.0080 ±0.0034

Table 4: Standard deviations of the corresponding metrics of the proposed DGA model and the baselines on the six
experiments.

Domain Camera Phone Resturant AI ACL PubMed
Model MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc. MF1 Acc. Micro-F1

RoBERTa ±0.0403 ±0.0179 ±0.0210 ±0.0154 ±0.0117 ±0.0049 ±0.0646 ±0.0347 ±0.0192 ±0.0096 ±0.0071
MLM ±0.0479 ±0.0298 ±0.0165 ±0.0103 ±0.0096 ±0.0056 ±0.0117 ±0.0086 ±0.0218 ±0.0118 ±0.0035

DGA (H, I) ±0.0373 ±0.0210 ±0.0032 ±0.0039 ±0.0054 ±0.0045 ±0.0095 ±0.0048 ±0.0094 ±0.0073 ±0.0049
DGA (H, I, O) ±0.0167 ±0.0092 ±0.0182 ±0.0155 ±0.0055 ±0.0033 ±0.0093 ±0.0075 ±0.0080 ±0.0070 ±0.0056

DGA (H, I, O, E) ±0.0237 ±0.0123 ±0.0270 ±0.0187 ±0.0099 ±0.0050 ±0.0109 ±0.0089 ±0.0067 ±0.0057 ±0.0079
DGA (w/o contrast) ±0.0433 ±0.0251 ±0.0135 ±0.0106 ±0.0060 ±0.0040 ±0.0197 ±0.0119 ±0.0132 ±0.0093 ±0.0050
DGA (random mask) ±0.0879 ±0.0413 ±0.0335 ±0.0235 ±0.0096 ±0.0044 ±0.0153 ±0.0090 ±0.0105 ±0.0059 ±0.0052

Ensemble ±0.0332 ±0.0178 ±0.0199 ±0.0139 ±0.0035 ±0.0031 ±0.0236 ±0.0103 ±0.0061 ±0.0028 ±0.0046
DGA (domain-specific) ±0.0137 ±0.0070 ±0.0259 ±0.0200 ±0.0031 ±0.0018 ±0.0128 ±0.0071 ±0.0108 ±0.0067 ±0.0043

DGA ±0.0095 ±0.0047 ±0.0127 ±0.0094 ±0.0052 ±0.0040 ±0.0127 ±0.0081 ±0.0079 ±0.0080 ±0.0034

Table 5: Standard deviations of the corresponding metrics of the proposed DGA model and the ablation on the six
experiments.

A Datasets Details

Table 2 in the main paper has given the number of
examples in each dataset. Here we provide addi-
tional details about the 4 types of end-tasks.

(1) (Phone, Camera and Restaurant) Aspect
Sentiment Classification (ASC) is defined as fol-
lows (Liu, 2015): given an aspect or product feature
(e.g., picture quality in a camera review) and a re-
view sentence containing the aspect in a domain
or product category (e.g., camera), classify if the
sentence expresses a positive, negative, or neutral
(no opinion) sentiment or polarity about the aspect
(for Phone and Camera, there are only negative and
positive polarities in the data).

(2) (ACL) Citation Intent Classification is de-
fined as follows: given a citing sentence (a sen-
tence contains a citation), classify if the sentence
expresses a citation function among “background”,
“motivation”, “uses”, “extension” and “comparison
or contrast future”.

(3) (AI) Relation Classification is defined as
follows: given a within-sentence word sequence
spans containing a pair of entities, classify if the
span expresses a relation among “feature of”, “con-
junction”, “evaluate for”, “hyponym of”, “used
for”, “part of” and “compare”.

(4) (PubMed) Chemical-protein Interaction
Classification is defined as follows: given a span
containing a pair of chemical and protein, classify
if the span expresses a chemical-protein interac-
tion among “downregulator”, “substrate”, “indirect-
upregulator”, “indirect-downregulator”, “agnon-
ist”, “activator”, “product of”, “agonist-activator”,
“inhibitor”, “upregulator”, “substrate product of”,
“agonist-inhibitor”and “antagonist”.

B Standard Deviations

Table 4 reports the standard deviations of the cor-
responding results in Table 2 (in the main paper)
of DGA and the considered baselines over 5 runs
with random seeds. We can see the results of DGA
are stable. Some baselines (e.g., RoBERTa in AI,
MLM in Camera and MLM+TaCL in ACL) can
have quite large standard deviations.

Table 5 reports the standard deviations of the
corresponding results in Table 3 (in the main paper)
of DGA and the considered baselines over 5 runs
with random seeds. We can see the results of DGA
are stable. Some baselines (e.g., DGA (random
mask) and DGA (w/o contrast) in Camera) can
have quite large standard deviations.
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