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Abstract

Prompt-based learning (a.k.a. prompting)
achieves high performance by bridging the gap
between the objectives of language modeling
and downstream tasks. Domain generalization
ability can be improved by prompting since
classification across different domains can be
unified into the prediction of the same set of
label words. The remaining challenge for do-
main generalization by prompting comes from
discrepancies between the data distribution of
different domains. To improve domain general-
ization with prompting, we learn distributional
invariance across source domains via two align-
ment regularization loss functions. The first is
vocabulary distribution alignment, which uses a
Kullback-Leibler divergence regularization on
source-domain vocabulary distributions. The
second is feature distribution alignment, which
uses a novel adversarial training strategy to
learn domain invariant representation across
source domains. Experiments on sentiment
analysis and natural language inference show
the effectiveness of our method and achieve
state-of-the-art results on six datasets.

1 Introduction

Pretrained language models (PLMs) have achieved
promising results on a range of natural language
processing (NLP) tasks (Peters et al., 2018; Devlin
et al., 2019; Brown et al., 2020). The framework of
tuning a PLM by task data has achieved competi-
tive performance (Devlin et al., 2019). However, it
suffers significant performance degradation when
the tuned PLM is directly applied to out-of-domain
examples (Gururangan et al., 2020). To tackle the
problem of domain shift where the training set and
the test set come from different data distributions,
unsupervised domain adaptation (Pan and Yang,
2009; Mansour et al., 2009) uses unlabeled target
data cooperated with the labeled source data for
training. However, in many real-world systems,
access to unlabeled data in the target domain is

also impossible. This paper focuses on domain
generalization (DG), the practical and challenge
setting, where a model trained on multiple source
domains can be directly generalized to a target do-
main without any labeled or unlabeled data from
the target domain (Blanchard et al., 2011; Muandet
et al., 2013).

Prompt-based learning (a.k.a. Prompting)
(Brown et al., 2020; Gao et al., 2021; Han et al.,
2021a; Liu et al., 2021a) makes better use of pre-
trained knowledge by bridging the gap between
objectives of language modeling and downstream
task. In particular, prompt-based text classification
uses an identical projection from the probability
distribution on label worlds to the probability dis-
tribution on classification classes and has achieved
state-of-the-art results (Gao et al., 2021; Han et al.,
2021b; Hu et al., 2022).

Intuitively, DG benefits from prompting in that
different domains can share a unified set of label
words, and thus no additional parameters such as
output layers can carry domain-specific informa-
tion to hinder the generalization performance for
an unseen domain. However, there remains a cru-
cial challenge for directly using prompting for DG.
As shown in Figure 1 (middle right), different do-
mains have intrinsically different feature distribu-
tions, and instances from different domains have
different predicted vocabulary distributions (top
left). For example, the preferable positive set of la-
bel words for book reviews can consist of “helpful”
and “well-written” more frequently, but for film
reviews, it can consist of “amazing” and “real”, etc
more frequently.

To tackle the above challenge, we propose two
regularization loss functions to better align differ-
ent domains, so that the gap between source do-
mains and a new target domain can be reduced.
The first alignment loss is vocabulary distribu-
tion alignment (VDA), which is used to reduce
the divergence of predicted vocabulary distribu-
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Figure 1: Distribution alignment for sentiment analysis. Positive instances from different domains tend to cluster
into different regions in the feature space of prompting baseline (middle right). FDA makes the feature distributions
of different domains similar (middle); VDA further reduces the distance of vocabulary distribution of instances from
different domains (top). As a result, generalization performance of predicting the same set of label words, e.g.,
{v+, v−} can be improved.

tions of different domains. To achieve this goal,
we use Kullback-Leibler divergence regularization
between predicted vocabulary distributions of dif-
ferent source domains in the same category. As a
result, the optimized distribution alignment for the
predicted vocabulary can improve the generaliza-
tion performance for unseen domains, as shown in
Figure 1 (top).

The second alignment loss is feature distribu-
tion alignment (FDA), which is used to learn a
generalized feature space corresponding to the pre-
dicted token for different domains. To achieve
this goal, we use an adversarial training strategy
(Goodfellow et al., 2014) to reduce the domain
discrepancy (Ben-David et al., 2007). Different
from traditional domain adversarial training for DA
(Ganin et al., 2016), we learn the domain-invariant
representation for each category across source do-
mains. As a result, the optimized feature distribu-
tion alignment across source domains can improve
DG performance, as shown in Figure 1 (middle).

We conduct experiments on three sentiment anal-
ysis datasets and three natural language inference
datasets. Results show that our method can effec-
tively learn distribution alignment and achieve the

best results under both leave-one-domain-out eval-
uation and cross-dataset evaluation settings. To
our knowledge, we are the first to use regulariza-
tion to improve DG for prompting and the first to
simultaneously learn domain invariance over rep-
resentation and predicted probability in DG. The
code will be released at https://github.com/
jiachenwestlake/PDA.

2 Related Work

Prompt-based learning. Adapting the PLMs for
downstream tasks via fine-tuning has become a
dominant framework for NLP in recent years (Pe-
ters et al., 2018; Devlin et al., 2019; Brown et al.,
2020). Prompt-based learning applies a fixed func-
tion to condition the model, so that the language
model gets additional instructions to perform the
downstream task. Prompt tuning the PLMs with
manually designed prompts has achieved promis-
ing results on few-shot classification tasks such
as sentiment analysis and natural language infer-
ence (Gao et al., 2021; Liu et al., 2021c). However,
designing prompting function is challenging and re-
quires heuristics. To this end, recent work propose
to apply prompts as learnable parameters, such as
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soft prompts (Lester et al., 2021; Vu et al., 2021;
Gu et al., 2021), P-tuning V2 (Liu et al., 2021b)
and prefix tuning (Li and Liang, 2021). Prompts
capture task-specific knowledge with much smaller
additional parameters than its competitors, such as
Adapter (Wang et al., 2021; Pfeiffer et al., 2021)
and LoRA (Hu et al., 2021). However, relatively
little work has considered that the domain discrep-
ancy can affect the performance of prompt-based
learning. This paper focuses on improving the do-
main generalization ability for prompt-based learn-
ing via a domain invariance learning strategy.
Domain generalization. Different from domain
adaptation (DA) (Pan and Yang, 2009; Mansour
et al., 2009), DG improves out-of-domain (OOD)
robustness with no need to explicitly know the
data distribution in target domain (Blanchard et al.,
2011; Muandet et al., 2013). While a plethora
of DG methods have been proposed for objective
recognition during the last decade (Li et al., 2017;
Gulrajani and Lopez-Paz, 2020), invariance learn-
ing has shown high success and has become a
prevalent approach for DG. Such algorithms in-
clude domain adversarial training (Li et al., 2018;
Albuquerque et al., 2020; Xiao et al., 2021); Deep
CORAL (Sun and Saenko, 2016), which optimizes
the second-order statistics over feature space and
IRM (Arjovsky et al., 2019), which tackles domain
shift with intrinsic relationship between feature rep-
resentation and labeling prediction. In contrast to
these work, we tackle DG via simultaneously learn-
ing the domain invariance for both feature represen-
tation and predicted probability using novel regu-
larization methods with prompting. Besides, recent
work on DA with PLMs use domain-invariant fea-
ture regularization based on adversarial fine-tuning
(Vernikos et al., 2020; Wang et al., 2020; Wu and
Shi, 2022), which are difficult to directly apply
for DG. In terms of prompting for classification
on OOD instances, a recent work PADA (Ben-
David et al., 2022) first generates a prompt for
each instance and then applies the example-specific
prompt to a T5 model for classification. Orthogo-
nal to this example-based method, we aim to tackle
a more general problem setting, generalization for
any data distribution.

3 Background

3.1 Prompting for Text Classification

A typical framework of prompt-based text classifi-
cation is shown in Figure 2, where the sentiment

Figure 2: An example of prompt-based sentiment analy-
sis for film reviews.

Setting Src data Tgt data Data Distributions

Standard - Labeled pT (x, y)
Domain adaptation Labeled Unlabeled pS(x, y), pT (x)

Domain generalization Labeled - pS(x, y)

Table 1: Comparison between the settings of standard
training, domain adaptation and domain generalization.

orientation of a film review can be judged by the
probability of sentiment words.

Given a sequence of tokens s = [x1, . . . , xt], the
prompted input s̃ is represented as:

s̃ := [CLS] tmp([MASK]) s [SEP] (1)

where tmp([MASK]) denotes prompting template.
Feeding s̃ into a PLM M, we obtain hidden

representation at [MASK], M(s̃) ∈ RH , where H
represents the hidden dimension. Then, a linear
classifier f : RH → C|V| parameterized by θf ∈
RH×|V| outputs the probability over vocabulary V ,
where C|V| denotes a (|V| − 1)-simplex.

Prompting for binary text classification defines
a set of label words Vp = {v+, v−} ⊂ V , e.g.,
v+ := good, v− := bad. Predicted probability is:

p(v+|s, f,M) =
exp(M(s̃)⊤θf

v+)∑
v∈{v+,v−} exp(M(s̃)⊤θf

v)
(2)

where θf
v+ and θf

v− are parameters corresponding
to v+ and v−, respectively. Similarly, the probabil-
ity for negative category is p(v−) = 1− p(v+).

Given training data Ŝ = {(si, yi)}1≤i≤m with
cardinality m, the objective is a cross-entropy loss,

Lclass = −
m∑

i=1

[
yi log p(v+) + (1− yi) log p(v−)

]
(3)

3.2 Domain Generalization
Transfer learning aims to tackle the problem of
domain shift, i.e., test data are drawn from different
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Figure 3: Overall structure for the proposed method.
Green arrows indicate positive gradient (minimize the
corresponding loss), while red arrows indicate negative
gradient (maximize the corresponding loss).

distribution from the training data. Let X be the
input space and Y be the output space. We define
a domain as a distribution p(x) on X or a joint
distribution p(x, y) on X × Y .

Domain adaptation uses unlabeled target data
xT ∼ pT (x) and labeled source data (xS , yS) ∼
pS(x, y) for training (Mansour et al., 2009; Ben-
David et al., 2010). In contrast, domain generaliza-
tion aims to solve a more practical and challenging
problem setting, where both labeled and unlabeled
target data is unavailable during training, and thus
the available data for training is only the source
labeled data (xS , yS) ∼ pS(x, y) (Blanchard et al.,
2011; Muandet et al., 2013). A comparison be-
tween DA and DG w.r.t. the training data condition
is given in Table 1.

4 Prompt-based Distribution Alignment

The overall framework of our method is shown
in Figure 3. The proposed method consists of
three parts: (I) Prompt-tuning for text classifica-
tion (§3.1). (II) vocabulary distribution alignment
(VDA) via Kullback-Leibler divergence regulariza-
tion (§4.1) and (III) feature distribution alignment
(FDA) via labeling awareness domain adversarial
training (§4.2).

4.1 Vocabulary Distribution Alignment
In order to improve DG with prompting, we first
aim to learn domain invariance w.r.t. the predicted
vocabulary distribution. A regularization method
is proposed to reduce the divergence of vocabu-
lary distributions between different source domains.
In contrast to labeling regularization (Wang et al.,
2018), our method is more general and more ro-
bust in two points: (i) vocabulary distribution from

PLMs involves rich domain information; (ii) our
method can invariably adjust to different tasks with
different categories or different label words.

We first recall the computing of predicted prob-
ability in §3.1. Given an prompted input s̃, the
predicted probability over the vocabulary V is:

p(v|s, f,M) =
exp(M(s̃)⊤θf

v)∑
v′∈V exp(M(s̃)⊤θf

v′)
(4)

where θf
v are the parameters w.r.t. a token v ∈ V .

Noting that different categories in a classification
task intrinsically have different vocabulary distribu-
tions. We thus make VDA across source domains
for each category. Given training data of k cate-
gories for n source domains {{Ŝj

i }1≤j≤k}1≤i≤n,
the optimization objective of VDA is the Kullback-
Leibler divergence between average vocabulary dis-
tributions for each source domain pair in each cate-
gory,

Lkl−div =
k∑

j=1

∑

l ̸=t

DKL

(
p(V|Ŝj

l )||p(V|Ŝj
t )
)

(5)

where the average vocabulary distribution for do-
main l in category j is represented as:

p(V|Ŝj
l ) =

1

|Ŝj
l |

∑

s∈Ŝj
l

p(V|s, f,M) (6)

As a result, VDA can make the probability of
preferable label words across different domains
more similar, as shown in Figure 1 (top). Thus,
when using the unified set of label words for unseen
target domains, DG ability can be improved.

4.2 Feature Distribution Alignment
In addition, we also learn domain-invariant repre-
sentation across source domains.

Given n source domains, we equip each domain
pair (i, j), 1 ≤ i < j ≤ n with a domain classifier
gij : RH → {0, 1} parameterized by θgij ∈ RH×2

to differentiate two domains. We assume that the
i-th domain and the j-th domain (i < j) are cat-
egorized by y = 0 and y = 1, respectively. We
denote all the n(n − 1)/2 domain classifiers as
g = {gij}1≤i<j≤n.
Domain discrimination. Following (Ganin et al.,
2016), given a training instance s from either the i-
th or j-th domain, the probability of the i-th domain
is:

p(y = 0|s, gij ,M) =
exp(M(s̃)⊤θ

gij
i )∑

k∈{i,j} exp(M(s̃)⊤θ
gij
k )

(7)
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Given the training samples from n source do-
mains {Ŝi}1≤i≤n, we use the cross-entropy loss to
represent the objective of domain discrimination,

L̃disc(Ŝ,g,M) =−
n∑

i<j

[ ∑

s∈Ŝi

log p(y = 0|s)

+
∑

s′∈Ŝj

log
(
1− p(y = 0|s′)

] (8)

Different from traditional domain adversarial
training for DA (Ganin et al., 2016), we further
use labeling information of source domains and
propose label-aware domain adversarial training.
Label-aware domain discrimination. Given train-
ing data of k categories for n source domains
{{Ŝl

i}1≤l≤k}1≤i≤n, domain discrimination is con-
ducted on each category. Accordingly, we need
kn(n− 1) domain classifiers, G = ∪k

l=1g
l, where

gl = {glij}1≤i<j≤n. The objective of label-aware
domain discrimination is represented as:

Ldisc =
k∑

l=1

L̃disc(Ŝ
l,gl,M) (9)

where each L̃disc(Ŝ
l,gl,M) is defined in Eq. (8).

Domain adversarial training. Domain adversarial
training can be seen as a two-player minimax game
where the domain classifiers G tend to minimize
the label-aware domain discrimination loss while
the PLM M tends to maximize the loss, to make
representations in category cluster across source
domains. Formally, the label-aware domain adver-
sarial training objective is represented as:

max
M

min
G
Ldisc (10)

4.3 Learning Algorithm
Joint training objective. Given source-domain
training samples, VDA and FDA objectives are
optimized jointly for learning the PLM M and task
classifier f (MLM head), formally represented as:

min
M,f

{
Lclass + Lkl−div −min

G
Ldisc

}
(11)

where the text classification objective Lclass, VDA
objective Lkl−div and FDA objective Ldisc are de-
fined as above.
Training process. The training process is shown
in Algorithm 1. In each step, given a minibatch of
training data from n source domains in the same
category, where each domain has β instances. The
text classification task (lines 3-6) updates param-
eters of PLM and MLM head based on the nβ

Algorithm 1 Training Process.
Input data: Training samples of n source domains.
Input parameters: parameters of PLM θM, task classifier
θf and domain classifiers ∪k

l=1{θgkij}1≤i<j≤n. Hyperpa-
rameter: learning rate η and combinational coefficient γ1,
γ2.
Output: Tuned PLMM and the MLM head f
# Training process begin
1: while Stopping conditions are not met do
2: Minibatch of y ∈ Y: {{ski , y}1≤k≤β}1≤i≤n

# Parameter updates using each minibatch
3: for i ∈ {1, . . . , n} do
4: Lclass ← 1

β

∑β
k=1 CE(f(M(ski )), y

k
i )

# Minimizing text classification obj.
5: [θf ,θM]←[θf ,θM]−η(1− γ1 − γ2)∇θf ,θMLclass

6: end for
7: for i, j ∈ {1, . . . , n}, i ̸= j do
8: Lkl−div ← DKL(f(M(si))||f(M(sj)))

# Minimizing the KL-divergence
9: [θf ,θM]← [θf ,θM]− ηγ1∇θf ,θMLkl−div

10: end for
11: for i, j ∈ {1, . . . , n}, i < j do
12: Ldisc← 1

2β

∑β
k

[
CE(gij(M(ski )), 1)+

∑β
t CE(gij(M(skj )), 0)

]

# Minimizing domain discrimination obj.
13: θg

y
ij ← θg

y
ij − ηγ2∇

θ
g
y
ij
Ldisc

# Maximizing domain discrimination obj.
14: θM ← θM + ηγ2∇θMLdisc

15: end for
16: end while

data points. The VDA task (lines 7-10) updates
parameters of PLM and MLM head. The FDA
task (lines 11-15) updates parameters of domain
classifiers using positive gradients (line 13) while
updating parameters of PLM using negative gradi-
ents (line 14). The VDA and FDA tasks equally
process 2n(n− 1)β data points in each step.

5 Experiments

We evaluate our method on both sentiment classifi-
cation and natural language inference.

5.1 Experimental Setup
Dataset. The statistics of the six datasets are
listed in Table 2. The binary sentiment analysis
datasets include Amazon reviews (Blitzer et al.,
2007), IMDB (Thongtan and Phienthrakul, 2019)
and SST-2 (Socher et al., 2013). For natural lan-
guage inference, we use three datasets that consist
of three categories: {entailment, neutral, contradic-
tion}, including a smaller version of MNLI1 Ben-
David et al. (2022), SNLI (Bowman et al., 2015)
and SICK (Marelli et al., 2014).
Evaluation. We use the standard leave-one-
domain-out evaluation for DG (Gulrajani and
Lopez-Paz, 2020) on amazon reviews and MNLI.

1https://github.com/eyalbd2/PADA.
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Sentiment Analysis
Dataset Domain #Training #Dev #Test

Amazon

book (B) 1,600 400 400
DVD (D) 1,600 400 400

electronics (E) 1,600 400 400
kitchen (K) 1,600 400 400

IMDB movie 6,400† 1,000 25,000

SST-2 movie 6,920 872 1,821
Natural Language Inference

Dataset Domain #Training #Dev #Test

MNLI

fiction (F) 2,547 1,972 1,972
government (G) 2,541 1,944 1,944

slate (S) 2,605 1,954 1,954
telephone (T) 2,754 1,965 1,965

travel (T’) 2,541 1,975 1,975

SNLI general 13,000† 2,000 9,831

SICK image&video 9,501 500 500

Table 2: Statistics of datasets. † indicates subset of the
original dataset to build a fair upper-bound w.r.t. data
size.

Task Template Label words

Sentiment Analysis It was [MASK], <Text> {(good), (bad)}

NLI
<Premise>, <Hypothesis>,
[SOFT], ..., [SOFT], [MASK]

{(no, false), (yes, true),
(uncertain, neutral)}

Table 3: Prompt design.

Besides, we also consider a more challenge setting,
the cross-dataset evaluation, where amazon reviews
and MNLI are used as the source dataset to train
sentiment analysis and natural language inference
models, respectively. Then, the sentiment analysis
model is tested on IMDB and SST-2, while the nat-
ural language inference model is tested on SNLI
and SICK. We use macro-F1 as the performance
metric in each experiment.
Training details. Following Gao et al. (2021),
we use manually designed prompting templates
on both sentiment analysis and natural language
inference datasets. The details of prompt design
are listed in Table 3. We use RoBERTaBASE (Liu
et al., 2019) as the default PLM, building the model
on the OpenPrompt framework (Ding et al., 2022).
The whole model is trained up to 20 epochs with
a minibatch size of 4 for each category in each
domain. We use AdamW with an initial learning
rate of 1e−5, weight decay rate of 0.01 and warm
up steps of 500 for optimization.

5.2 Leave-one-domain-out Results

We report the results of leave-one-domain-out eval-
uation in Table 4. The data settings for our method

and all baselines except for the upper-bound are
the same (source domains w/o the target domain).

Prompting outperforms fine-tuning w/o prompt-
ing by 0.8% and 1.8% on amazon reviews and
MNLI respectively, which shows that prompting
benefits from the unified feature space of language
modeling and classification task. Besides, both of
the two invariance-based regularization methods
VDA and FDA can improve the prompting base-
line, achieving 92.8%(amazon), 80.1%(MNLI) and
92.9%(amazon), 79.4%(MNLI), respectively. This
shows that both VDA and FDA can effectively
learn domain invariance to improve DG. More-
over, FDA cooperating with VDA can further im-
prove the performance and give the best results on
two datasets. This shows that FDA can effectively
promote the vocabulary distributional invariance
across source domains and thus improve DG per-
formance.

Compared with other invariance-based methods,
Deep CORAL (Sun and Saenko, 2016) and IRM
(Arjovsky et al., 2019), we focus on vocabulary dis-
tributional invariance, which can effectively lever-
age rich pretrained knowledge in PLMs. Compared
with the reported results of PADA (Ben-David et al.,
2022) on MNLI, our method performs better, which
shows the effectiveness of learning distributional
invariance for DG.

5.3 Cross-dataset Results

To evaluate DG performance for more diverse dis-
tinctions in text genre and topic, we report cross-
dataset evaluation results in Table 5. The training
data settings for our method and all the baselines
except for the upper-bound are the same (only the
source dataset). Further, we include another PLM,
BERTBASE to show the robustness of our method
to different PLMs.

The results show a similar trend as the leave-
one-domain-out results, and achieve more signif-
icant improvements over the baseline prompting
method compared with the leave-one-domain-out
evaluation, over 5% on the SICK dataset, over 3.5%
on the SST-2 dataset and about 3% on the other
two datasets. Besides, our method outperforms
other baselines and achieves the best results on all
the four datasets, which shows the effectiveness of
learning domain invariance via VDA and FDA for
DG.
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Method Amazon MNLI

Prompting VDA FDA DEK→B BEK→D BDK→E BDE→K Avg. GSTT’→F FSTT’→G GFTT’→S GSFT’→T GSTF→T’ Avg.

× × × 90.9 89.9 92.0 93.5 91.6 76.9 77.2 76.4 74.3 78.3 76.6
× × ✓ 91.2 90.1 91.8 93.7 91.7 77.3 78.9 74.3 75.7 78.5 76.9
✓ × × 92.1 90.8 92.2 94.4 92.4 78.0 77.8 80.0 76.2 79.9 78.4
✓ ✓ × 92.6 91.9 92.5 94.2 92.8 78.6 82.3 80.2 78.3 81.2 80.1
✓ × ✓ 93.1 92.0 92.1 94.5 92.9 79.5 83.8 77.3 76.2 80.3 79.4
✓ ✓ ✓ 92.9 92.2 93.3 94.8 93.3† 80.8 85.8 79.7 79.4 83.0 81.7†

Deep CORAL (Sun and Saenko, 2016) 91.9 91.3 90.9 93.5 91.9 77.6 76.3 78.2 75.3 78.2 77.1
IRM (Arjovsky et al., 2019) 92.3 91.2 91.9 94.5 92.5 78.1 75.2 79.4 76.2 79.2 77.6

PADA‡ (Ben-David et al., 2022) 86.8 86.9 89.0 92.6 88.8 76.4 83.4 76.9 78.9 82.5 79.6

Upper-bound (all domains) 94.2 92.6 93.9 94.9 93.9 81.7 86.4 81.4 81.6 84.8 83.2

Table 4: Leave-one-domain-out evaluation on amazon reviews and MNLI. ‡ the results of PADA on amazon
are reproduced by ours and the results of PADA on MNLI come from the original paper. † indicates statistical
significance with p < 0.01 by t-test when compared to all baselines.

Method Amazon→ MNLI→

Prompting VDA FDA IMDB SST-2 SNLI SICK
RoBERTaBASE BERTBASE RoBERTaBASE BERTBASE RoBERTaBASE BERTBASE RoBERTaBASE BERTBASE

× × × 88.5 85.2 86.2 84.8 75.4 64.1 53.6 52.5
× × ✓ 89.8 85.5 88.4 84.7 74.9 65.2 57.2 54.7
✓ × × 89.4 86.0 87.6 85.1 76.6 64.8 56.7 55.2
✓ ✓ × 90.8 86.8 90.9 86.3 78.7 67.0 58.2 56.2
✓ × ✓ 91.2 87.2 89.2 85.9 77.2 66.4 60.5 57.8
✓ ✓ ✓ 92.1† 88.5† 91.3† 86.8† 79.3† 67.6† 62.0† 60.4†

Deep CORAL (Sun and Saenko, 2016) 89.8 85.8 87.6 85.7 77.3 65.5 57.0 56.3
IRM (Arjovsky et al., 2019) 89.0 84.8 86.7 84.2 76.2 65.8 58.7 57.0

Upper-bound (target dataset) 94.3 92.3 94.3 90.7 88.2 83.0 90.2 89.6

Table 5: Cross-dataset evaluation on four datasets. † indicates statistical significance with p < 0.01 by t-test when
compared to all baselines.

Figure 4: Techniques for visualizing the vocabulary
distribution used in Figure 5.

5.4 Visualizing Distribution Alignment

Visualizing vocabulary distribution. To intu-
itively show how VDA and FDA can learn domain-
generalized vocabulary distribution, we project the
probability of label words, e.g., {good, bad} over
total vocabulary into a 2-dimensional space via the

coordinate computation shown in Figure 4. In par-
ticular, the x-axis (horizontal) indicates divergence
between probabilities of negative and positive label
words and the y-axis (vertical) indicates the prob-
ability of positive label word. Thus, x-coordinate
near the origin and y-coordinate away from the
origin mean that the probability of positive label
word is higher while the vocabulary distribution is
sharper, which can reflect the quality of vocabulary
distribution. Besides, the four regions can indicate
FP/FN/TP/TN as shown in Figure 4.

Based on the above computation, we visualize
the sample of a hold-out domain, book in Figure 5.
First, VDA can make scatters much nearer to the
origin than the prompting baseline, which shows
that VDA can effectively generalize the source-
domain vocabulary distribution to unseen target
domain such that the probability of negative label
word tend to be lower. Furthermore, the compo-
sition of VDA and FDA can make the vocabulary
distribution sharper. This shows that collaborative
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Figure 5: Visualizing vocabulary distribution for instances of hold-out domain, book on amazon reviews.
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Figure 6: Average A-distance across source domains
for each hold-out domain on MNLI.

effects of VDA and FDA can generalize the vocab-
ulary distribution to unseen target domain.
Domain invariance learning. We visualize the
proxy A-distance (Ben-David et al., 2007) for
leave-one-domain-out evaluation. As shown in Fig-
ure 6, the feature space with prompting achieves
better invariance than fine-tuning w/o prompting,
which supports the motivation of using prompt-
ing for domain generalization. Further, both VDA
and FDA can reduce domain discrepancy upon the
prompting baseline, which shows that both VDA
via KL-divergence regularization and FDA via do-
main adversarial training can improve domain in-
variance learning. Furthermore, combination of
VDA and FDA can further reduce the average do-
main discrepancy. This shows the effectiveness of
using VDA and FDA simultaneously for reducing
domain discrepancy for DG.

5.5 Analysis on Training Tasks

Training procedure. We show the trend of loss for
each subtask in our method against training step in
Figure 7, the loss of classification task and VDA
quickly reach low plateaus with small fluctuations.
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Figure 7: Task loss Lclass, VDA loss Lkl−div and FDA
loss Ldisc against training step on amazon reviews.

Method Amazon MNLI ∆

Prompting (baseline) 92.4 78.4 -
+ VDA 92.8 80.1 0.0
+ VDA (label-agnostic) 92.1 77.8 −1.5
+ FDA 92.9 79.4 0.0
+ FDA (label-agnostic) 92.6 78.6 −0.6
+ VDA + FDA 93.3 81.7 0.0
+ VDA + FDA (label-agnostic) 92.6 80.4 − 1.0

Table 6: Importance of labeling awareness for distribu-
tion alignment on domain generalization.

While the loss of FDA via domain adversarial train-
ing descents with a similar trend as other tasks at
the beginning 0∼200 steps. This is because at the
beginning, the domain discriminators are stronger
than the feature embedding. However, with the
gradient ascent, the domain classification loss then
converges to a much higher stable value than loss
of other tasks.
The importance of labeling awareness. As listed
in Table 6, when conducting distribution alignment
without specially computing in each category (a.k.a.
labeling agnostic), both VDA and FDA suffer large
descents of −1.5% and −0.6%, respectively. This
shows that labeling awareness is important for
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learning domain invariance for DG. Interestingly,
the labeling agnostic VDA even becomes lower
than the prompting baseline by −0.6%, which is
because vocabulary distributions are distinct be-
tween different classification categories, thus align-
ing vocabulary distribution in different categories
across domains can hurt the performance.

6 Conclusion

We investigated how to improve out-of-domain
(OOD) robustness for prompt-based learning, by
learning domain invariance via vocabulary distribu-
tion alignment and feature distribution alignment
with prompting. Experiments show that we achieve
the best results on six datasets of sentiment analysis
and natural language inference under both the stan-
dard leave-one-domain-out evaluation setting and
a novel cross-dataset evaluation setting compared
with a range of strong baselines. Moreover, the pro-
posed distribution alignment method can be seen
as a general regularization technique for domain
generalization beyond the text classification task.

Limitations

Our work focuses on the text classification task to
investigate how to use invariance learning to im-
prove out-of-domain generalization with prompt-
ing. However, the proposed distribution alignment
method can be a general approach for domain gen-
eralization in NLP. It can be the future work to
consider more tasks beyond text classification.

Another limitation is the computational complex-
ity of the proposed FDA, which is poly(k · n · n).
Although it can only slightly increase the training
time in our experiments, but there could be a trade-
off between the training time and the classification
accuracy when the number of source domains is
much larger.
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