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Abstract

We study the text generation task under the ap-
proach of pre-trained language models (PLMs).
Typically, an auto-regressive (AR) method is
adopted for generating texts in a token-by-
token manner. Despite many advantages of AR
generation, it usually suffers from inefficient in-
ference. Therefore, non-autoregressive (NAR)
models are proposed to generate all target to-
kens simultaneously. However, NAR models
usually generate texts of lower quality due to
the absence of token dependency in the out-
put text. In this paper, we propose ELMER:
an Efficient and effective PLM for NAR tExt
geneRation to explicitly model the token de-
pendency during NAR generation. By leverag-
ing the early exit technique, ELMER enables
the token generations at different layers, ac-
cording to their prediction confidence (a more
confident token will exit at a lower layer). Be-
sides, we propose a novel pre-training objec-
tive, Layer Permutation Language Modeling,
to pre-train ELMER by permuting the exit layer
for each token in sequences. Experiments on
three text generation tasks show that ELMER
significantly outperforms NAR models and fur-
ther narrows the performance gap with AR
PLMs (e.g., ELMER (29.92) vs BART (30.61)
ROUGE-L in XSUM) while achieving over 10
times inference speedup.

1 Introduction

Since the advant of GPT-2 (Radford et al., 2019),
pre-trained language models (PLMs) have achieved
state-of-the-art performance across text generation
tasks, which aim to generate human-like texts on
demand (Brown et al., 2020; Li et al., 2022c).
These PLMs usually adopt an auto-regressive (AR)
fashion to generate texts token-by-token: the next
token is predicted based on all previously gener-
ated tokens. A major limitation of this approach is
that it is hard to be parallelized for the inference
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process, thus leading to a relatively high inference
latency (Gu et al., 2018). Such a limitation prevents
AR models from wide deployment in online real-
time applications, such as query rewriting in search
engines and online chat-bot. Moreover, AR models
are prone to suffering from the exposure bias prob-
lem since there is a gap between AR training and in-
ference (Zeng and Nie, 2021). These concerns have
sparked extensive interests in non-autoregressive
(NAR) models for text generation (Gu et al., 2018).

Compared to AR models, NAR models predict
target tokens in all positions simultaneously and
independently (Gu et al., 2018). This full paral-
lelism leads to an efficient and low-latency infer-
ence process. However, the independence assump-
tion prevents NAR models from learning the depen-
dency among target tokens, resulting in accuracy
degradation (Zhan et al., 2022). One widely-used
solution to improve the NAR generation quality
is to iteratively refine outputs (Gu et al., 2019;
Ghazvininejad et al., 2019), which however leads
to the loss in the speed-up advantage. In addition,
many studies aim to learn the input-output mapping
for more accurate generation via embedding map-
ping (Guo et al., 2019), latent alignment (Libovický
and Helcl, 2018), and discrete variables (Ma et al.,
2019). While easing the difficulty of NAR gener-
ation to some extent, these methods still struggle
for generating complex sentences. Therefore, in-
spired by Zhan et al. (2022), we argue that the key
to NAR text generation is to enhance the learning
of token dependency—each token should be gener-
ated depending on forward and backward generated
tokens.

In this paper, we propose ELMER: an Efficient
and Effective PLM for NAR tExt geneRation, to
explicitly learn the bi-directional token dependency.
Typically, most NAR models predict tokens simul-
taneously only at the last layer, thus making the
token prediction unaware of tokens generated in
other positions. To address this issue, we propose
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to generate tokens at different layers and the upper-
layer token generation can depend on lower-layer
generated tokens from both left and right. In this
way, our model can explicitly learn the dependency
between tokens from different layers while enjoy-
ing full parallelism in NAR decoding, as shown in
Figure 1. To this end, we propose to extend the
early exit technique (Li et al., 2021c) to NAR text
generation: if there is sufficient confidence to gen-
erate a token at a lower layer, the model is allowed
to exit at this layer and make the prediction without
passing through the upper layers.

Furthermore, instead of exiting at a fixed layer
for a token, we aim to predict each token at differ-
ent layers for learning diverse token dependencies
in NAR text generation. Thus, inspired by XLNet
(Yang et al., 2019), we further propose a novel pre-
training objective based on early exit, i.e., Layer
Permutation Language Modeling (LPLM), to help
ELMER learn complex token dependencies. Given
a sequence, LPLM will permute the exit layer (from
1 to the maximum layer) for each token and maxi-
mize the NAR text generation probability w.r.t. all
possible exit layer permutations of the sequence.
Through LPLM, each token is able to exit at dif-
ferent layers and attend to all other tokens from
both forward and backward positions. In this way,
LPLM could effectively capture diverse token de-
pendencies from large-scale corpora. Pre-trained
with the general LPLM, ELMER can adapt to down-
stream text generation tasks and datasets by using
specific early exit strategies.

To the best of our knowledge, we are the first
to introduce the idea of early exit to NAR text
generation. We fine-tune ELMER on three popu-
lar text generation tasks. Experiments show that
ELMER significantly improves the best NAR mod-
els by +5.71 ROUGE-1 on XSUM, +1.09 ME-
TEOR on SQuAD v1.1, and +2.26 Distinct-2 on
PersonaChat, and narrows the performance gap
with auto-regressive PLMs (e.g., ELMER (29.92) vs
BART (30.61) ROUGE-L on XSUM) while achiev-
ing over 10x faster inference.

2 Related Work

Pre-trained Language Models. Recent years have
witnessed remarkable achievement of PLMs in text
generation tasks (Li et al., 2021b). Most PLMs
adopt an AR paradigm to generate texts during
pre-training and fine-tuning. The work based on
GPT (Radford et al., 2019; Brown et al., 2020)

converts different tasks into language modeling by
sequentially predicting tokens. BART (Lewis et al.,
2020) employs an auto-regressive decoder to re-
cover the corrupted text in pre-training. T5 (Raffel
et al., 2020) masks word spans from input texts and
then sequentially predicts masked tokens. Tang
et al. (2022) pre-trains a text generation model us-
ing labeled datasets with multi-task learning. Li
et al. (2022b) leverages prompts to effectively fine-
tune text generation models. Differently, our PLM,
ELMER, adopts a NAR schema to generate texts,
which leads to a very low latency in inference.

Non-autoregressive Text Generation. Recently,
there is a wide range of studies for NAR text genera-
tion (Gu et al., 2018; Ghazvininejad et al., 2019; Qi
et al., 2021). Among them, Gu et al. (2018) is the
first to propose NAR paradigm to reduce the infer-
ence latency. Ghazvininejad et al. (2019) iteratively
masks and predicts a fraction of tokens that the
model is least confident about. Several groups aim
to learn accurate input-output mapping. For exam-
ple, Saharia et al. (2020) and Libovický and Helcl
(2018) use connectionist temporal classification to
perform latent alignment in NAR models. Our
work is closely related to BANG (Qi et al., 2021),
a PLM bridging the NAR and AR generation. We
differ in that we use early exit to predict tokens
at different layers, which can help NAR models
learn the forward and backward token dependency.
Moreover, we propose a novel pre-training objec-
tive based on early exit, LPLM, for learning diverse
token dependencies by permuting the exit layer for
each token.

3 Preliminaries

Generally, the goal of text generation is to model
the conditional probability Pr(Y|X ), where X =
⟨x1, . . . , xn⟩ and Y = ⟨y1, . . . , ym⟩ denote the in-
put text and output text respectively and each con-
sists of a sequence of tokens from a vocabulary V .
There are three common generation paradigms to
model the conditional probability Pr(Y|X ), i.e., au-
toregressive (AR), non-autoregressive (NAR), and
semi-nonautoregressive (Semi-NAR) generation.

AR Generation. AR generation models predict the
output text based on a left-to-right factorization as:

Pr(Y|X ) =
m∏

t=1

Pr(yt|y<t,X ), (1)

where each token yt is generated based on the input
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text X and previous tokens y<t. Note that AR gen-
eration only models the forward token dependency.
The token-by-token fashion makes AR generation
process hard to be parallelized. Most of existing
text generation PLMs adopt AR approach (Radford
et al., 2019; Lewis et al., 2020; Raffel et al., 2020).

NAR Generation. In contrast to AR models, NAR
text generation models predict each token in output
text simultaneously as follows, without modeling
the forward or backward token dependency:

Pr(Y|X ) =
m∏

t=1

Pr(yt|X ), (2)

where each token yt is predicted only based on the
input text X . The independence assumption makes
NAR generation process parallelizable, thus signif-
icantly accelerating the inference speed (Gu et al.,
2018). While, in the absence of token dependency,
the generation quality of NAR models is lower than
their AR counterparts (Wang et al., 2019).

Semi-NAR Generation. Semi-NAR generation is
formalized between AR and NAR generation as:

Pr(Y|X ) =

m∏

t=1

Pr(yt|Yct ,X ), (3)

where each token yt is conditioned on the input text
X and a visible part Yct of the output text Y . Yct

is designed differently to balance inference latency
and accuracy (Stern et al., 2019; Lee et al., 2018).
Note that the lower-layer generated tokens in our
model is similar to the visible part Yct . While, our
model keeps the advantage of full parallelism in
contrast to iterative Semi-NAR methods.

In this paper, we mainly focus on the NAR
approach, considering both effectiveness and ef-
ficiency for text generation models.

4 Approach

Our proposed NAR text generation PLM, ELMER,
is depicted in Figure 1. ELMER aims to enhance
the modeling of token dependency for NAR mod-
els. With early exit, tokens exiting at different lay-
ers can build the bi-directional token dependency
with each other. Moreover, we design Layer Per-
mutation Language Modeling (LPLM) to pre-train
ELMER by permuting the exit layer for each token.
Next, we will describe each part in detail.

Layer 1

Layer 2

Layer 3

Layer 4
𝑦!

𝑦"

𝑦#

𝑦$

[MASK] [MASK] [MASK] [MASK] [MASK]

Copy hidden state
Early exit...
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Figure 1: Overview of our proposed model ELMER.

4.1 Early Exit for Dependency Modeling
Most NAR models simultaneously predict tokens
only at the last layer (Jiang et al., 2021; Zhan et al.,
2022), which makes the current token generation
unaware of the tokens generated in other positions.
Thus, to model the bi-directional token dependency
(both forward and backward), we propose to predict
tokens at different layers by leveraging the early
exit technique (Li et al., 2021c). In this way, the
upper-layer token generation can depend on tokens
generated at lower layers from both left and right.

NAR Transformer. ELMER is built on the Trans-
former encoder-decoder architecture (Vaswani
et al., 2017). Both encoder and decoder consist of
L stacked layers where each layer contains several
sub-layers (e.g., multi-head self-attention and feed-
forward network). Unlike the original Transformer
decoder that auto-regressively generates text, our
model uses NAR fashion to generate tokens simul-
taneously. Given a pair of input-output text ⟨X ,Y⟩,
X is fed into the encoder and processed as hidden
states S = ⟨s1, ..., sn⟩. We then feed a sequence
of “[MASK]” tokens into the NAR decoder to gen-
erate every token in output text Y in parallel.

Specifically, we first replace the original masked
multi-head attention in decoder with bi-directional
multi-head attention akin to the encoder. For each
“[MASK]” token in the t-th position, the L decoder
layers process it to hidden states {hl

t}1≤l≤L as:

hl
t = Layerl(hl−1

1≤t≤T ,S), (4)

h0
t = Embed([MASK]), (5)

where Layerl(·) denotes the l-th layer, Embed(·) is
the sum of word embedding and position embed-
ding, and T is the maximum length of the decoder.
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The output distribution for predicting the t-th token
yt is computed by feeding the last decoder state hL

t

into a softmax classifier (parameterized by Wc) as:

Pr(yt|hL
t ) = softmax(Wch

L
t ). (6)

Prior NAR models require to determine the output
length, thus an extra module for length prediction is
always needed. Instead, following Su et al. (2021),
we let ELMER dynamically adjust the output length
by emitting an end token (i.e., [EOS]) at any posi-
tion. After the entire generation is completed, the
final sequence ranges from the beginning to the
position where the first end token is emitted.

Early Exit Off-Ramps. Instead of predicting all
tokens simultaneously at the last layer, we propose
to generate tokens at different layers for learning
the bi-directional token dependency. Hence, by
leveraging early exit (Li et al., 2021c), if a token
is predicted with sufficient confidence at a lower
layer, the model is allowed to exit and predict with-
out passing through the upper layers. In this way,
the upper-layer tokens can be generated depending
on forward and backward tokens generated at the
lower layers. The bi-directional token dependency
can further alleviate the hallucination issue in NAR
generation (Gu et al., 2018), where the generated
texts tend to be ungrammatical with repetitions.

Specifically, we inject the “off-ramps” (Li et al.,
2021c), which make predictions with intermediate
hidden states, at each decoder layer. The off-ramp
can be simply implemented by a softmax classifier.
For an off-ramp at the l-th layer, it makes the token
prediction as:

Pr(yt|hl
t) = Off-Rampl(hl

t), (7)

= softmax(W l
ch

l
t), (8)

where the l-th off-ramp is parameterized by W l
c .

These off-ramps can be specified independently or
share the weights across L layers. Different from
previous early-exit work that makes sentence-level
prediction (Xin et al., 2020; Liao et al., 2021), our
early exit is built at token level.

During training, if a token has been predicted at
the l-th layer early, the hidden state hl

t will not be
updated in upper layers. Thus, in our model, we
directly copy the last hidden state hl

t (exit at layer l)
to the subsequent layers following (Elbayad et al.,
2020; Li et al., 2021c). Since the last hidden state
predicts tokens with sufficient confidence, it has
contained the predicted token information provided
for the upper-layer tokens generation.

4.2 Layer Permutation Pre-training
The NAR models equipped with early exit predict
each token at a fixed layer. To learn diverse token
dependencies, we design a novel pre-training ob-
jective based on early exit, Layer Permutation Lan-
guage Modeling (LPLM), where each token can
exit at different layers. This is different from most
prior work that focuses on designing small-scale
NAR models for specific tasks such as translation.
In contrast, we pre-train a general large-scale PLM
on massive corpora following Qi et al. (2021). Our
PLM can adapt to various downstream tasks.

Layer Permutation Language Modeling. Per-
mutation language modeling was first proposed in
XLNet (Yang et al., 2019) by permuting the factor-
ization order. For a sequence with length T , there
are T ! permutation orders to consider in autore-
gressive factorization. In our LPLM, rather than
performing permutation on the sequence length, we
permute the exit layer for each token. In particular,
for each token in a sequence, we assume that it can
exit at any of L layers. Therefore, there are LT exit
layer permutations for a sequence. Intuitively, if
model parameters are shared across all exit layer
permutations, each token can build diverse seman-
tic dependencies with tokens in all positions.

Formally, let PY = {p : ⟨l1, ..., lt, ..., lT ⟩} be
the set of all possible exit layer permutations of the
sequence Y with length T . We use lt (1 ≤ lt ≤ L)
to denote the exit layer of the t-th token. Then, for
a permutation p ∈ PY , the NAR generation proba-
bility (Eq. 2) based on LPLM can be expressed as:

Pr(Y|X ) =
T∏

t=1

Pr(yt|X ) =
T∏

t=1

Pr(yt|hlt
t ), (9)

where the model exits at the lt-th decoder layer and
predicts the t-th token yt with the hidden state hlt

t .
Pr(yt|hlt

t ) can be computed using Eq. 8.
During pre-training, for a sequence in our cor-

pora, we sample k layer permutations at each time
and compute the output probability with Eq. 9.
With the layer permutation operation, each token
can exit at different layers, thus LPLM can effec-
tively learn diverse token dependencies from large-
scale corpora. Moreover, typical early exit methods
usually need to set thresholds to estimate the exit
layer (Elbayad et al., 2020; Li et al., 2021c), which
is not flexible for large-scale pre-training. Our pro-
posed layer permutation naturally avoids to make
exit estimations in large-scale pre-training.
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Pre-training Tasks. Following BART (Lewis et al.,
2020), our model is trained by first feeding the cor-
rupted text to encoder and then reconstructing the
original text by decoder in a NAR manner using
the above LPLM. We mainly adopt two useful doc-
ument corruption methods:

• Sentence Shuffling: The original text is first
divided into sentences according to full stops, and
then these sentences are randomly shuffled.

• Text Infilling: Based on the shuffled text, we
sample 15% spans with lengths drawn from a Pois-
son distribution (λ = 3). Following BART (Lewis
et al., 2020), each span is replaced with a sin-
gle “[MASK]” token and the model can learn how
many tokens in a span should be predicted.

4.3 Downstream Fine-Tuning

Our pre-trained model can be fine-tuned for various
downstream text generation tasks. In fine-tuning
phase, it becomes possible to precisely estimate the
exit layer for each token with small-scale and task-
specific datasets. Here, we mainly consider two
early exit methods, i.e., hard and soft early exit.

Hard Early Exit. The most straightforward way is
to calculate the exit confidence and set a threshold.
Following prior work (Xin et al., 2020), we quan-
tify the exit confidence for token prediction using
the entropy of the output probability distribution:

H(yt)entropy = −
∑

Pr(yt|hl
t) · log Pr(yt|hl

t),
(10)

where Pr(yt|hl
t) is computed as Eq. 8. In this way, a

low entropy means a high confidence. Specifically,
at the l-th off-ramp, our ELMER model will com-
pute the entropy of its output distribution H(yt)
and then compare with a pre-defined threshold δ to
determine whether the model should exit here or
continue to the next layer.

Soft Early Exit. The hard early exit method only
makes one prediction for each token. Following
prior work (Huang et al., 2021), the soft variant
predicts the outputs at every decoder layer and the
prediction is fed into the next layer for further im-
provement. In particular, at the l-th layer for the
t-th position, we predict the most probable word ŷlt
using the l-th off-ramp (Eq. 8) as follows:

ŷlt = argmax Pr(ylt|hl
t). (11)

Then, we concatenate the word embedding of ŷlt
with the current hidden state hl

t and process it by a

linear layer as follows:

h̃l
t = W [Embed(ŷlt);h

l
t], (12)

where W is a learnable matrix and h̃l
t is the up-

dated hidden state of the l-th layer, which will be
taken as input to the next l + 1-th layer. Compared
with the hard early exit, the soft early exit is able
to calibrate the token prediction at each layer.

4.4 Time Complexity Analysis
Since AR and NAR models adopt the same encoder
architecture, the difference in time complexity is
dominated by decoders. To generate a sequence
with length T , an AR decoder with L layers has
a time complexity O(LT 2) quadratic in sequence
length. In contrast, a NAR decoder has a linear time
complexity O(LT ). This is because the attention
computation in NAR decoders can be parallelized
across all positions. While, our ELMER model gen-
erates tokens at different layers. Let L(< L) de-
note the average exit layer for a sequence, the time
complexity will further be decreased to O(LT ).

5 Experiments

In this section, we detail the experimental setup and
then highlight the main takeaways of our results.

5.1 Experimental Setup

Pre-training Setup. We pre-train ELMER based on
the 16GB corpus (including English Wikipedia and
BookCorpus). For our model, we use 6 layers in
both encoder and decoder, with a dimension of 768
in hidden states, consistent with the base version
of many AR and NAR pre-trained models (Lewis
et al., 2020; Qi et al., 2020, 2021). We pre-train our
model from scratch with a learning rate of 2e-4 and
a minibatch size of 4096. We adopt the dictionary
from BART (Lewis et al., 2020). In pre-training,
we share the off-ramp weights across all layers and
sample 10 exit layer permutations for a sequence.

Fine-Tuning Datasets. Following prior work (Qi
et al., 2021), we fine-tune ELMER on three text
generation tasks and datasets: (1) XSUM (Narayan
et al., 2018) is a news summarization dataset con-
taining 227K news article and single-sentence sum-
mary pairs; (2) SQuAD v1.1 (Rajpurkar et al.,
2016) is a question generation dataset, contain-
ing 98K triples of passage, question, and answer.
We concatenate the passage and answer as input
and predict the question; (3) PersonaChat (Zhang
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Type Models
XSUM Latency↓

(ms/Sample)
SQuAD v1.1 Latency↓

(ms/Sample)R-1↑ R-2↑ R-L↑ R-L↑ B-4↑ MT↑

AR

Transformer 30.66 10.80 24.48 262.47 (22.0x) 29.43 4.61 9.86 159.49 (13.4x)
MASS 39.70 17.24 31.91 196.17 (16.4x) 49.48 20.16 24.41 132.46 (11.1x)
BART 38.79 16.16 30.61 185.19 (15.5x) 42.55 17.08 23.19 114.00 ( 9.6x)
ProphetNet 39.89 17.12 32.07 817.80 (68.5x) 48.00 19.58 23.94 456.51 (38.4x)

Semi-NAR

InsT 17.65 5.18 16.05 63.37 (5.3x) 29.98 2.34 8.15 67.61 (5.7x)
iNAT 26.95 6.88 22.43 31.27 (2.6x) 32.34 3.16 9.18 31.59 (2.7x)
CMLM 29.12 7.70 23.04 113.64 (9.5x) 29.60 3.89 9.70 106.84 (9.0x)
LevT 25.33 7.40 21.48 101.01 (8.5x) 30.81 2.68 9.40 116.41 (9.8x)
BANG 34.71 11.71 29.16 109.77 (9.2x) 47.39 17.62 21.69 111.11 (9.3x)

NAR

NAT 24.04 3.88 20.32 17.47 (1.5x) 31.51 2.46 8.86 17.11 (1.4x)
iNAT 24.02 3.99 20.36 16.94 (1.4x) 32.44 2.33 8.84 16.52 (1.4x)
CMLM 23.82 3.60 20.15 16.88 (1.4x) 31.58 2.51 8.85 16.41 (1.4x)
LevT 24.75 4.18 20.87 27.72 (2.3x) 31.38 2.27 9.14 27.52 (2.3x)
BANG 32.59 8.98 27.41 15.97 (1.3x) 44.07 12.75 18.99 15.69 (1.3x)

ELMER-Hard 34.54 9.78 26.08 12.39 (1.0x) 37.94 11.77 18.01 12.24 (1.0x)
ELMER-Soft 38.30 14.17 29.92 11.94 (1.0x) 40.22 13.49 20.08 11.90 (1.0x)

Table 1: A comparison between ELMER and baselines on XSUM and SQuAD v1.1 datasets. R-1/2/L, B-4, and MT
are short-hands for ROUGE-1/2/L, BLEU-4, and METEOR. ELMER-Hard and ELMER-Soft denote fine-tuning
ELMER with hard and soft early exit strategies, respectively. Bold and underline fonts denote the best and second
best methods within NAR models. Our baseline results are collected from (Liu et al., 2021) and (Qi et al., 2021).

et al., 2018) is a dialog generation dataset, contain-
ing 150K triples of persona profile, dialogue his-
tory, and response. We concatenate the profile and
dialogue history as input and generate the response.
The statistics of datasets are shown in Appendix A.

Baselines. We compare ELMER to existing popu-
lar AR, NAR, and Semi-NAR generation models.

For AR generation, we experiment with a vanilla
Transformer model and three PLMs:

• Transformer (Vaswani et al., 2017). It is an
AR generation model without pre-training. To date,
Transformer has become the backbone of many text
generation PLMs and our ELMER model.

• MASS (Song et al., 2019), BART (Lewis et al.,
2020), and ProphetNet (Qi et al., 2020). These are
three representative PLMs for AR text generation,
whose pre-training objectives vary from denoising
text to future n-gram prediction. For a fair compar-
ison, we adopt the base version of these PLMs.

For NAR and Semi-NAR generation, we evalu-
ate six models with varying decoding strategies:

• NAT (Gu et al., 2018). It is the first proposed
NAR text generation model. This baseline adds a
module in the encoder to predict fertilities, acting
as a global plan for the parallel generation.

• InsT (Stern et al., 2019). It is a Semi-NAR text
generation model leveraging insertion operations.
It repeatedly inserts tokens at multiple locations
based on the partially inserted sequence.

• iNAT (Lee et al., 2018), CMLM (Ghazvinine-
jad et al., 2019), LevT (Gu et al., 2019), and
BANG (Qi et al., 2021). These four baselines are
both NAR and Semi-NAR text generation models.
Among them, BANG is the recent state-of-the-art
PLM for NAR text generation.

Evaluation Metrics. To evaluate the effectiveness
of different models, we adopt four evaluation met-
rics: ROUGE-n assesses the text quality by com-
puting the overlapping n-grams between the gen-
erated and real texts (Lin, 2004); BLEU-n com-
putes the co-occurrence ratio of n-grams between
the generated and real texts (Papineni et al., 2002);
METEOR assesses word-to-word matches between
the generated and real texts based on the harmonic
mean of the unigram precision and recall (Baner-
jee and Lavie, 2005); and Distinct-n measures the
diversity degree by calculating the number of dis-
tinct n-grams in generated texts (Li et al., 2016).
To examine the efficiency, we set the batch size
as 1 at inference to calculate the per-sample in-
ference latency under the same parameter setting
following (Qi et al., 2021). More details about our
experiments can be found in Appendix B.

5.2 Main Results
Table 1 and Table 2 display the results of ELMER

and baselines on three text generation datasets.
First, ELMER-Soft outperforms NAR and Semi-

NAR baselines on almost all datasets and metrics.
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Type Models
PersonaChat Latency↓

(ms/Sample)BLEU-1↑ BLEU-2↑ Distinct-1↑ Distinct-2↑ Overall↑

AR

Transformer 41.56 32.95 0.30 0.80 18.90 138.31 (11.9x)
MASS 41.06 35.75 1.40 6.90 21.28 112.13 ( 9.7x)
BART 47.60 39.36 1.10 6.10 23.54 106.15 ( 9.2x)
ProphetNet 46.00 38.40 1.30 7.30 23.25 392.79 (33.9x)

Semi-NAR

InsT 12.63 9.43 0.10 0.30 5.62 65.27 (5.6x)
iNAT 41.17 32.13 0.10 1.10 18.63 43.25 (3.7x)
CMLM 44.38 35.18 0.10 0.80 20.12 105.82 (9.1x)
LevT 24.89 18.94 0.10 0.60 11.13 80.26 (6.9x)
BANG 39.82 30.72 1.90 14.20 21.66 109.17 (9.4x)

NAR

NAT 31.53 24.17 0.10 0.80 14.15 17.86 (1.5x)
iNAT 30.56 23.38 0.10 0.70 13.69 16.40 (1.4x)
CMLM 31.44 24.06 0.10 0.60 14.05 16.26 (1.4x)
LevT 26.92 20.47 0.00 0.40 11.95 27.56 (2.4x)
BANG 31.11 23.90 2.50 22.70 20.05 14.89 (1.3x)

ELMER-Hard 29.43 21.89 1.56 21.45 18.58 12.01 (1.0x)
ELMER-Soft 31.45 23.99 3.66 24.96 21.02 11.59 (1.0x)

Table 2: A comparison between ELMER and baselines on PersonaChat with respect to automatic evaluation metrics.

Compared to the best NAR BANG, ELMER-Soft
achieves prominent gains in effectiveness metrics
such as +5.71 ROUGE-1 in XSUM, +1.09 ME-
TEOR in SQuAD v1.1, and +2.26 Distinct-2 in Per-
sonaChat. These considerable gains clearly demon-
strate the effectiveness of our ELMER model. In
contrast to these NAR and Semi-NAR models, our
model leverages the early exit technique to explic-
itly model the forward and backward token depen-
dency during parallel NAR decoding.

Second, ELMER consistently achieves compa-
rable or better results than the AR baseline with-
out pre-training, i.e., Transformer, and further nar-
rows the performance gap between NAR and AR
PLMs. For example, the performance gap between
BANG and BART in XSUM and SQuAD is 3.20
ROUGE-L and 4.20 METEOR, which has now
been decreased by ELMER-Soft to 0.69 and 3.11.
ELMER-Soft also obtains the best Distinct scores
in PersonaChat. Diversity is critical for dialogue
generation to avoid boring or useless responses. Be-
sides, the lower BLEU scores than NAT probably
because the diverse generated texts by ELMER-Soft
makes a reasonable difference from real texts. For
those models without pre-training such as CMLM
and NAT, they tend to generate highly frequent
words and common phrases such as “I, an, the”,
which share much overlapped and repetitive parts
with the target output. By contrast, our pre-trained
model generates diverse responses, which is more
critical to avoid boring or useless responses in dia-
logue generation.

Finally, in terms of efficiency, ELMER achieves

Models
XSUM

ROUGE-1 ROUGE-2 ROUGE-L

NAR LevT 24.75 4.18 20.87

ELMER-Hard 34.54 9.78 26.08
-w/o pre-training 28.56 5.33 21.96
ELMER-Soft 38.30 14.17 29.92
-w/o pre-training 30.45 7.37 24.00

Table 3: Ablation study on XSUM dataset.

much faster inference speed than all NAR and AR
models, w.r.t. the per sample inference latency. For
example, the inference latency of AR Transformer
model in XSUM, SQuAD v1.1, and PersonaChat
are 262.47ms, 159.49ms, and 138.31ms per sample,
while those of ELMER-Soft are 11.94ms, 11.90ms,
and 11.59ms, which amount to 22.0, 13.4, and 11.9
times speedup. Compared to AR PLMs, we achieve
over 10x inference speedup, especially the highest
68.5x speedup in XSUM. Moreover, ELMER-Soft
is slightly faster than other NAR baselines. We
speculate that this speedup is mainly due to the fact
that prior NAR models require to predict the output
length such as NAT or rely on multiple insertion
and deletion operations such as LevT.

5.3 Detailed Analysis

We report detailed analysis of our model on XSUM
dataset – we have similar findings on other datasets.

Ablation Study. Our ELMER model is the first
one to adopt the early exit technique to conduct
NAR text generation. To learn more diverse token
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dependencies, we proposed the LPLM objective
(Sec. 4.2) based on early exit to pre-train ELMER.
Here, we evaluate the effects of early exit and large-
scale LPLM training by directly applying the hard
and soft early exit methods to NAR text generation
without pre-training. We compare the early-exit
variants with the best non-pretrained NAR model
in XSUM, i.e., LevT. The results are shown in Ta-
ble 3. We can observe that these two early-exit
variants without pre-training perform better than
LevT. This indicates that introducing the early exit
mechanism can improve NAR text generation qual-
ity due to the explicit modeling of the target-side
dependency. Moreover, our proposed large-scale
pre-training based on the LPLM objective improves
NAR results significantly and consistently in both
early exit strategies. By utilizing the general LPLM,
our model can capture diverse token dependencies
from large-scale corpora and further adapt to down-
stream tasks with specific early exit methods.

Parameter Sensitivity Analysis. In ELMER-Hard,
the pre-defined entropy threshold δ is critical to
determine at which layer our model will exit. Here,
we further examine the model performance and the
fraction of tokens exiting at every layers (1 ∼ 6) by
varying the exit threshold in the set {0.0, 0.25, 0.5,
0.75, 1.0}. As the threshold δ increases gradually,
more tokens exit earlier. From the experiment, we
find that low and high thresholds lead to reverse
early exit situations shown by the fraction of tokens
exiting at each layer. Therefore, we only present
the results for two representative thresholds (0.5
and 1.0) in Figure 2. We can observe that: (1) when
δ = 0.5, a larger fraction of tokens are generated in
higher layers (≥ 3), which means a lower threshold
needs more computation to achieve enough confi-
dence. These upper-layer “difficult” tokens can
depend on simple tokens such as “I”, “the”, “have”
generated at lower layers. (2) when δ = 1.0, it
shows an opposite trend and the performance drops
slightly. The reason might be that 1.0 is so high
that the model makes a precipitate exiting decision.
Finally, according to the model performance on the
validation set, we set the threshold δ as 0.5 in our
experiments.

5.4 Human Evaluation

Despite the effectiveness of automatic evaluation,
human evaluation remains critical for text genera-
tion (Celikyilmaz et al., 2020). Since human eval-
uation is expensive, we only focus on comparing
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Figure 2: Varying δ for ELMER-Hard on XSUM.

our best performing ELMER-Soft with two AR and
NAR PLMs, i.e., BART and BANG.

In order to reduce the variance caused by human,
three workers were asked to score texts from four
aspects (Li et al., 2022a), i.e., fluency, informative-
ness, accuracy, and relevance. Fluency evaluates
whether the text is well-formed and logical to read;
Informativeness measures whether the text contains
useful information; Accuracy tests whether the text
describes the given content accurately; Relevance
measures whether the text is relevant to the given
context. These four scores are rated from 1 to 5. We
further design a Turing test (Turing, 1950) where a
human judge is asked to detect whether the given
text is generated by a human. For each method,
we average the scores from three human judges
and then report the average results over 500 texts.
From the results in Table 4, we can see that our
model is better than NAR model BANG in terms of
fluency (3.99 vs 3.42) and relevance (3.63 vs 3.38).
The major reason is that our model leverages the
early exit to explicitly model the token dependency,
which could reduce token repetitions and improves
the fluency of texts. While, our model achieves
a slightly worse fluency score than the AR model
BART. We speculate that BART can produce some
common phrases by using the AR generation mode.

We also present some generated examples by
our model in Appendix C. It can be observe that
our model can generate some common phrases oc-
curred in real texts such as “surface-to-air”, “South
China Sea”, and “main seminary”. These phrases
can improve the fluency of NAR generated texts.
By incorporating early exit and generating tokens at
different layers, our model can explicitly learn the
forward and backward token dependency, which
can deal with the multi-modality issue to some
extent. While, as a NAR model, our model still
inevitably generates some repetitive stop tokens
such as “on on on”, which can be further improved
in future work.
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Models
XSUM

TT (%) Flu. Info. Acc. Rel.

BART 51.01 4.11 3.99 3.64 3.79
BANG 45.34 3.42 3.45 3.46 3.38
ELMER-Soft 48.90 3.99 3.52 3.49 3.63

Gold 55.67 4.12 4.29 3.95 4.05

Table 4: Turing test (TT) and human scores on XSUM.
Flu., Info., Acc. and Rel. denote fluency, informative-
ness, accuracy and relevance respectively.

6 Conclusion

This paper presented an efficient and effective PLM
for NAR text generation, called ELMER. ELMER

introduced a token-level early exit mechanism to
explicitly model the semantic dependency between
target tokens during parallel decoding. Moreover,
we proposed a pre-training objective, Layer Permu-
tation Language Modeling, to pre-train ELMER on
large-scale corpora by permuting the exit layer for
each token in a sequence. Experiments on text sum-
marization, question generation, and dialogue gen-
eration demonstrate that our model can effectively
improve the NAR generation quality compared to
highly competitive NAR models and further nar-
row the performance gap with AR models while
achieving higher inference efficiency. In future
work, we will investigate the efficacy of utilizing
the proposed model to iteratively generate texts and
consider more early exit strategies in fine-tuning.

7 Limitations

An important limitation of ELMER compared with
other NAR text generation models is the need for
defining an appropriate early exit strategy. In pre-
training, ELMER utilizes a general strategy, i.e.,
layer permutation language modeling, by permut-
ing the exit layer for each token in a sequence.
However, to apply ELMER to downstream specific
tasks and datasets, we need to design an effective
and suitable estimation method to decide at which
layer the model will exit and predict tokens. Also,
as a PLM, ELMER may present biases learned from
the pre-training corpus in the output text.

In this study, we evaluate ELMER on three text
generation tasks and datasets, but the output length
of these tasks is relatively short. We should deal
with long-form text generation which raises more
challenges to the NAR paradigm.

8 Ethical Concerns

Current NAR text generation techniques achieve
faster inference speed but suffer from several issues
like multi-modality, lack of accuracy to the input,
commonsense issues etc., which makes their online
real-time deployment difficult. ELMER is an effort
at rectifying some of these issues, with a focus of
modeling the semantic dependency between target
tokens to improve NAR generation quality. How-
ever, compared to AR models, ELMER outputs con-
tinue to mix multiple candidates and repeat words
at times. This should be strongly considered before
any direct deployment of real-world systems.

On the other hand, the text generation technol-
ogy may be potentially misused for harmful appli-
cations. When deploying ELMER to online real-
time platforms, the high-quality text generated by
our work also makes it difficult to distinguish syn-
thetic text from human-written text, such as fake
news and stories. It is somewhat difficult to an-
ticipate the harmful usages of our method since
they often involve repurposing our model in a to-
tally different setting or for an unexpected purpose
than we planned. To alleviate this problem, we
can ask for help from some classic security risk
assessment frameworks such as detecting threats
and potential impacts, measuring likelihood, and
determining risk as a combination of likelihood and
impact (Blank, 2011).
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Appendix

We provide some experiment-related information
as supplementary materials. The appendix is orga-
nized into three sections:

• Statistics of each dataset are presented in Ap-
pendix A;

• Training settings of baselines and our model
ELMER are presented in Appendix B;

• Generated examples by our model are pre-
sented in Appendix C.

A Statistics of Datasets

The detailed information of these three datasets is
listed in Table 5.

Dataset #Train #Valid #Test #Output

XSUM 204,045 11,332 11,334 21.1
SQuAD v1.1 75,722 10,570 11,877 11.6
PersonaChat 122,499 14,602 14,056 11.9

Table 5: Statistics of three datasets. #Output denotes
the average number of tokens in the output texts.

B Experimental Details

For AR baselines, we adopt the hyper-parameters:
learning rate 2e-5, batch size 20, Adam optimizer,
and the maximum input and output length of 512.
We fine-tune these models on each dataset for 50
epochs and select the best model. For NAR and
Semi-NAR baselines, the hyper-parameters are
the same as AR baselines except the number of
fine-tuning epochs, since NAR models need more
epochs to converge (Qi et al., 2021). We fine-tune
these baselines and ELMER for 50 epochs and save
checkpoints for every epoch. We select the best
checkpoint based on the performance on valida-
tion set. Following BANG (Qi et al., 2021), the
difference between semi-NAR and NAR models
lies in that: (1) we select the outputs from the
first iteration as the NAR outputs, since the first
iteration only depends on the input text; (2) we
select the outputs from the maximum (we set as
10) iteration as the semi-NAR outputs, since each
iteration depends on both the input text and the last
generated texts. Most settings and results are col-
lected from GLGE (Liu et al., 2021) and BANG (Qi
et al., 2021). To make a fair comparison with non-
pretrained baselines, we also compare ELMER with

the best NAR non-pretrained baseline LevT in ab-
lation analysis (Table 3).

C Case Study

We show some qualitative examples of these three
datasets in Table 6, Table 7, and Table 8.

Due to the explicit modeling of the bi-direction
token dependency, our model can generate some
common phrases occurred in real texts such as
“surface-to-air”, “South China Sea”, and “main sem-
inary”. These phrases can improve the fluency of
NAR generated texts. But, as a NAR model, our
model still inevitably generates some repetitive to-
kens such as “on on on”. The generated exam-
ples in PersonaChat also explain that our model
generates more diverse responses, which are very
different from the real responses.
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News Reports on Wednesday suggested more than one
iguana was actually filmed, with scenes then
stitched together. But the BBC has said only one
animal was chased by the snakes - with other igua-
nas only filmed for close-ups. The scene quickly
went viral when it was aired last year and later
won a Bafta for must-see moment. The iguana
hatchling, filmed in the Galapagos, eventually got
away - much to viewers’ relief. The Daily Mail
claimed the episode was embroiled in a "fakery
row" after producer Elizabeth White told the Me-
dia Production Show: "It wasn’t the same iguana,
no, and often we have to augment it with other
clips. "Unfortunately lizards, snakes and iguanas
aren’t good at ’takes’." But the BBC defended the
Sir David Attenborough-fronted programme, with
a spokeswoman saying: "The BBC strongly refutes
any suggestion that the award-winning iguana v
snakes sequence was ’faked’. "The final iguana
chase in which one iguana escapes the snakes was
- unusually for natural history filming - shot using
two cameras, allowing us to follow both the individ-
ual iguana and the snakes’ point of view. "What was
captured in the field was extraordinary animal be-
haviour which had never been witnessed or filmed
before." She added: "As is common in natural his-
tory film-making, pick-up shots were filmed sepa-
rately - for example close-ups of iguana eyes - to
make the story of the sequence as clear as possible
for the audience. "This is absolutely in keeping
with the norms of natural history film-making - and
absolutely in line with the BBC’s editorial policy
guidelines, and was a true representation of animal
behaviour."

Satellite images taken on 14 February appear to
show two batteries of eight missile launchers and a
radar system on Woody or Yongxing Island in the
Paracels. The presence of missiles would signifi-
cantly increase tensions in the acrimonious South
China Sea dispute. China’s Foreign Minister Wang
Yi said reports were a Western media invention.
But Mr Wang defended "the limited and necessary
self-defence facilities" on islands inhabited by Chi-
nese personnel as "consistent with the right for self-
preservation and self-protection.... under the inter-
national law". Asked about the reports, US Secre-
tary of State John Kerry attacked China’s increased
"militarisation" of the contested region, saying it
was a "serious concern". Taiwan’s defence ministry
said it had "learned of an air defence missile sys-
tem deployed" by the Chinese on Woody Island.
It would not say how many missiles had been de-
ployed or when, but told the BBC they would be
capable of targeting civilian and military aircraft.
The commander of the US Pacific Fleet confirmed
the deployment to Reuters news agency. Adm Harry
Harris said such a move would be "a militarisation
of the South China Sea in ways" China’s President
Xi Jinping had pledged not to make. Japan’s Chief
Cabinet Secretary Yoshihide Suga said there were
"serious concerns" over China’s "unilateral move to
change the status quo" in the region, and "we cannot
accept this fact". China has been carrying out ex-
tensive land reclamation work in the region, which
it says is legal and for civilian purposes. But the
work has angered other countries which also claim
the territory, and there is growing concern about the
implications of the area becoming militarised.

Summaries The BBC has denied claims award-winning series
Planet Earth II faked a nail-biting scene showing a
baby iguana being chased by racer snakes .

China has deployed surface-to-air missiles on a dis-
puted island in the South China Sea, Taiwan says .

ELMER-Hard The BBC has defended claims the BBC nature doc-
umentary of the iguana footage of a "faked storm "
by a Davidborough.

China has confirmed that new reports of on surface-
air on on on of in the South China Sea .

ELMER-Soft The BBC has defended claims a BBC documentary
about a series of from natural drama Sir David Atten
was "faked".

China is the first of of air defence missiles on a
disputed disputed island of the South China Sea,
according to US

Table 6: Qualitative examples on XSUM dataset.
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Paragraphs Moreau Seminary [SEP] The university is the ma-
jor seat of the Congregation of Holy Cross ( albeit
not its official headquarters , which are in Rome ) .
Its main seminary , Moreau Seminary , is located
on the campus across St . Joseph lake from the
Main Building . Old College , the oldest building
on campus and located near the shore of St . Mary
lake , houses undergraduate seminarians . Retired
priests and brothers reside in Fatima House ( a for-
mer retreat center ) , Holy Cross House , as well
as Columba Hall near the Grotto . The university
through the Moreau Seminary has ties to theologian
Frederick Buechner . While not Catholic , Buechner
has praised writers from Notre Dame and Moreau
Seminary created a Buechner Prize for Preaching .

eight [SEP] The College of Engineering was estab-
lished in 1920 , however , early courses in civil and
mechanical engineering were a part of the College
of Science since the 1870s . Today the college ,
housed in the Fitzpatrick , Cushing , and Stinson -
Remick Halls of Engineering , includes five depart-
ments of study ? @ S aerospace and mechanical
engineering , chemical and biomolecular engineer-
ing , civil engineering and geological sciences ,
computer science and engineering , and electrical
engineering ? @ S with eight B . S . degrees of-
fered . Additionally , the college offers five - year
dual degree programs with the Colleges of Arts and
Letters and of Business awarding additional B . A
. and Master of Business Administration ( MBA )
degrees , respectively .

Questions What is the primary seminary of the Congregation
of the Holy Cross ?

How many BS level degrees are offered in the Col-
lege of Engineering at Notre Dame ?

ELMER-Hard What is the name of Frederick Binaryinary at St.
Joseph ?

How many B.S degrees offered at the College of
the engineering ?

ELMER-Soft What is the name of the main seminary at St. Joseph
?

How many B.S. degrees offered at the College of
departments ?

Table 7: Qualitative examples on SQuAD v1.1 dataset.

Histories i love to meet new people . i have a turtle named
timothy . my favorite sport is ultimate frisbee . my
parents are living in bora bora . autumn is my favorite
season . [SEP] hello , how are you doing tonight ?
i am well an loving this interaction how are you ? i
am great . i just got back from the club .

i just bought a brand new house . i like to dance at
the club . i run a dog obedience school . i have a
big sweet tooth . i like taking and posting selkies .
[SEP] hello , how are you doing tonight ? i am well
an loving this interaction how are you ? i am great . i
just got back from the club . this is my favorite time
of the year season wise i would rather eat chocolate
cake during this season . what club did you go to ?
me an timothy watched tv i went to club chino . what
show are you watching ? lol oh okay kind of random
do you live in a house or apartment ? we watched a
show about animals like him i love those shows . i
am really craving cake . why does that matter any ? i
went outdoors to play frisbee

Reponses this is my favorite time of the year season wise it matters because i have a sweet tooth .

ELMER-Hard what team of do you do ? ultimate i like to exercise with my dogs .

ELMER-Soft i love club! do you have new friends ? cool. i spend time with my dog .

Table 8: Qualitative examples on PersonaChat dataset.
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