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Abstract

Despite the great success of spoken language
understanding (SLU) in high-resource lan-
guages, it remains challenging in low-resource
languages mainly due to the lack of labeled
training data. The recent multilingual code-
switching approach achieves better alignments
of model representations across languages by
constructing a mixed-language context in zero-
shot cross-lingual SLU. However, current code-
switching methods are limited to implicit align-
ment and disregard the inherent semantic struc-
ture in SLU, i.e., the hierarchical inclusion of
utterances, slots, and words. In this paper, we
propose to model the utterance-slot-word struc-
ture by a multi-level contrastive learning frame-
work at the utterance, slot, and word levels
to facilitate explicit alignment. Novel code-
switching schemes are introduced to gener-
ate hard negative examples for our contrastive
learning framework. Furthermore, we develop
a label-aware joint model leveraging label se-
mantics to enhance the implicit alignment and
feed to contrastive learning. Our experimental
results show that our proposed methods signifi-
cantly improve the performance compared with
the strong baselines on two zero-shot cross-
lingual SLU benchmark datasets.

1 Introduction

Spoken language understanding (SLU) is a criti-
cal component of goal-oriented dialogue systems,
which consists of two subtasks: intent detection and
slot filling (Wang et al., 2005). Recently, massive
efforts based on the joint training paradigm (Chen
et al., 2019; Qin et al., 2021) have shown superior
performance in English. However, the majority
of them require large amounts of labeled training
data, which limits the scalability to low-resource
languages with little or no training data. Zero-
shot cross-lingual approaches have arisen to tackle

1Work is done during internship at Microsoft STCA.
2Corresponding authors.

Method en es zh tr

zero-shot 88.24 52.18 30.01 3.08
code-switching 88.69 54.42 45.24 7.41

Table 1: mBERT based zero-shot and code-switching
(CoSDA-ML) results on four languages of MultiATIS++
(semantic EM accuracy).

this problem that transfer the language-agnostic
knowledge from high-resource (source) languages
to low-resource (target) languages.

For the data-based transfer methods, machine
translation is first applied to translate the source ut-
terances into the targets (Upadhyay et al., 2018;
Schuster et al., 2019; Xu et al., 2020). How-
ever, machine translation may be unreliable or
unavailable for some extremely low-resource lan-
guages (Upadhyay et al., 2018). Therefore, multi-
lingual code-switching (Liu et al., 2020a; Qin et al.,
2020) is developed to reduce the dependency on
machine translation, which simply uses bilingual
dictionaries to randomly select some words in the
utterance to be replaced by the translation words
in other languages. Code-switching has achieved
promising results as the word representations in the
mixed-language context are aligned in a universal
vector space, which is essential for cross-lingual
transfer (Cao et al., 2020; Chi et al., 2021).

Despite the substantial improvements of CoSDA-
ML (Qin et al., 2020) in Table 1, there still exists a
challenging performance gap between English and
the target languages. We believe only the implicit
alignment of code-switching is insufficient for re-
fining model representations. To address this issue,
we advocate a fundamental methodology – exploit-
ing structures of utterances. In general, given a user
utterance, there is a natural hierarchical structure,
utterance-slot-word, which describes the complex
relations between the intents and the slots. To im-
prove the transferability of a cross-lingual SLU
system, it is crucial to employ multiple relations to
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Figure 1: Multi-level contrastive learning examples.

achieve explicit alignment at different levels, which
is ignored by the previous methods.

In this paper, we propose a novel multi-level
contrastive learning (CL) framework to perform
explicit alignment. First, at the utterance level, we
develop a CL scheme to enhance the intent con-
sistency of code-switched utterances (Figure 1(a)).
Let xi be an utterance in a batch of source language
training data. The corresponding code-switched ut-
terance x̂i is its positive example as although x̂i

is expressed in mixed languages, it has a similar
meaning to xi. Other instances (xj and x̂j , j �= i),
meanwhile, serve as the in-batch negative examples
of xi.

Second, at the slot level, we formulate the rela-
tion between the slot values and the slots by aggre-
gating information from multiple utterances (Fig-
ure 1(b)). Given each slot value in xi, the cor-
responding code-switched value in x̂i is selected
as the positive example. We design a slot-guided
value similarity for CL, which leverages the proba-
bility distributions on the slot set of the slot values
to achieve semantic alignment instead of comput-
ing similarity between them directly. Furthermore,
we introduce a novel algorithm to generate hard
negative examples from similar slot values.

Last, at the word level, we enhance the relation
between the words and their slot labels using the
context in an utterance (Figure 1(c)). Each word
in the slot is a positive example of its slot label.
We sample the words locally within the utterance
as negative examples, which can be either labeled
as other slot labels (type 1 negative) or out of any
slots (type 2 negative). Applying CL on such posi-
tive/negative examples can strengthen the correla-
tion between words and slot labels (through type 1
negatives) and help the model better learn the slot
boundary (through type 2 negatives).

Moreover, we propose a label-aware joint model
concatenating the slot set with the utterance as the
input. This is motivated by the observation that, al-
though the languages of utterances in cross-lingual
SLU are diverse, the slot set is language-invariant.
By listing the slot set as the context for the utter-
ances in different languages, the words and the slot
set can attend to each other’s representations in the
model. The slots are implicit anchors aligning the
semantically similar words in different languages.

We conduct extensive experiments on two bench-
mark datasets. The experimental results show
that the proposed label-aware joint model with
a multi-level CL framework significantly outper-
forms strong baselines. Further analysis demon-
strates the effectiveness of our method.

2 Related Work

2.1 Cross-lingual SLU

In general, most cross-lingual SLU methods fall
into two categories: model-based transfer methods
and data-based transfer methods.

The model-based transfer methods are based
on cross-lingual word embeddings and contextual
embeddings, such as are MUSE (Lample et al.,
2018), CoVE (McCann et al., 2017) and cross-
lingual pre-trained language models (PLMs) includ-
ing mBERT (Devlin et al., 2019), XLM-R (Con-
neau et al., 2020) and etc. A typical model-based
transfer model is first fine-tuned on the source
language data and then directly applied to target
languages (Upadhyay et al., 2018; Schuster et al.,
2019; Li et al., 2021a). More recently, additional
components and training strategies have been de-
veloped. Liu et al. (2020b) perform regularization
by label sequence and adversarial training on the la-
tent variable model (Liu et al., 2019). van der Goot
et al. (2021) propose three non-English auxiliary
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Figure 2: The architecture of LAJ-MCL for cross-lingual SLU. In (b), we take the input X0 for illustration. The
x0,j and x0,t denotes the slot value and word in the utterance x0 respectively.

tasks to improve cross-lingual transfer.
The data-based transfer methods focus on build-

ing training data in target languages. Machine
translation is widely adopted to translate utterances
from source languages to target languages and has
been shown to effectively improve model perfor-
mance (Schuster et al., 2019). Xu et al. (2020)
propose a joint attention module for aligning the
translated utterance to the slot labels to avoid label
projection errors. As translated data has inherent
errors and may be unavailable in low-resource lan-
guages, Liu et al. (2020a) and Qin et al. (2020)
construct code-switching training data with bilin-
gual dictionaries and fine-tune cross-lingual PLMs
for implicit alignment.

2.2 Contrastive Learning

Contrastive learning (Saunshi et al., 2019) targets
at learning example representations by minimiz-
ing the distance between the positive pairs in the
vector space and maximizing the distance between
the negative pairs. In NLP, CL is first applied to
learn sentence embeddings (Giorgi et al., 2021;
Gao et al., 2021). Recent studies have extended
to cross-lingual PLMs. Chi et al. (2021) unify the
cross-lingual pre-training objectives by maximiz-
ing mutual information and propose a sequence-
level contrastive pre-training task. Wei et al. (2021)
and Li et al. (2021b) design a hierarchical CL by
randomly sampling negative examples. Unlike the
above methods using unlabeled parallel data for
post-pretraining alignment, Gritta and Iacobacci
(2021) and Gritta et al. (2022) utilize the [CLS]

representation for utterance-level CL based on the
translated data for task-specific alignment.

There is a contemporaneous work (Qin et al.,
2022) that also proposes a multi-level CL method
for explicit alignment. Similarly, we both take
other utterances (source and code-switched) as neg-
ative examples at the utterance level. The differ-
ences are: (1) Qin et al. (2022) align the words
while we focus on the slot label-word relation at
the word level; (2) Qin et al. (2022) develop the
alignment between the [CLS] and the words at
the semantic level while we propose to generate
negative slot values for the slot-level CL. Further
comparison is in Appendix A.

3 Methodology

Figure 2 illustrates our method. On the left part,
the proposed Label-aware Joint Model (LAJoint)
transfers the semantics of the language-invariant
slot set across languages. On the right part, we
develop a systematic approach to Multi-level Con-
trastive Learning (MCL) by novel code-switching
schemes. The full framework is called LAJ-MCL.

3.1 Label-aware Joint Model
Given an utterance x = {xt}Tt=1 with T words,
the corresponding intent label and the slot label
sequence are yI and yS = {ySt }Tt=1, respectively.
The architecture of our label-aware joint model is
shown in Figure 2(a). We adopt a cross-lingual
PLM as the encoder M. The input sequence con-
sists of three parts: (1) the three special symbols
(sO, sB , sI ), i.e., the abstract labels representing
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outside-of-slot, beginning-of-slot, and inside-of-
slot, respectively; (2) the slot set S = {sk}Kk=1 cor-
responding to the K slots in the SLU task; and (3)
the utterance {xt}Tt=1. We concatenate the above
three parts and add the special tokens [CLS] and
[SEP]. The whole sequence is,

X =
{
[CLS]sO, sB , sI , {sk}Kk=1[SEP]{xt}Tt=1

}
(1)

Embeddings for Slot Labels We notice that the
text descriptions of slot labels often convey specific
meanings. For example, the slot fromloc in Fig-
ure 1(c) indicates that it’s related to location names.
Therefore, to initialize the embeddings of the ab-
stract labels (sO, sB , sI ) and the slot set S , the slot
labels are encoded by leveraging the semantics of
their text descriptions through the encoder. We first
feed the tokens of each slot label to M and take the
mean-pooling over the hidden states of the bottom
3 layers to obtain the token embedding. Then the
normalized mean-pooling over each token within
the slot label is utilized as the initial embedding.

Next, X is encoded by M to obtain the con-
textual embeddings for the input utterance and slot
labels, i.e., E = M(X), where E ∈ R(5+K+T )×d

is the representation matrix and d is the dimension
of the hidden states of M.

Label Compressor and Projector There are two
corresponding labels for each slot sk ∈ S. B-sk
marks the beginning of the slot and I-sk indicates
that a word is inside the slot. To learn the represen-
tation of slot labels in the BIO format (Ramshaw
and Marcus, 1999), we use a label compressor to
combine the abstract labels with the slots. First, the
encoder result Ek for sk is concatenated with the
result for abstract labels, i.e., EB for sB and EI

for sI , then fed to the label compressor:

EB
k = (EB‖Ek)Wcb + bcb (2)

EI
k = (EI‖Ek)Wci + bci (3)

where Wcb ∈ R2d×d and Wci ∈ R2d×d are weight
matrices, and bcb and bci are bias vectors.

Before calculating the association between the
words and the slot labels, we further apply a pro-
jector similar to Hou et al. (2020) as below:

Ht = EtWp + bp (4)

Hk = EkWp + bp (5)

where Wp ∈ Rd×d is the weight matrix and bp is
the bias vector. Here, Ek ∈ {EO, {EB

k }, {EI
k}},

where EO is the encoder output for sO, {EB
k } and

{EI
k} are the label compressor outputs for B labels

and I labels. Et is the encoder output for word xt.
We hope the projector learns a better representation
that the semantically related words and labels can
be mapped close to each other.

Optimization For intent detection, we lever-
age the hidden state of ECLS and take LI =
−yI log pI as the loss function. Here pI =
softmax(ECLSWI + bI) is the intent classifier
output, where WI and bI are weight matrix and
bias vector, respectively. For slot filling, the
similarity between words and slot labels, pS

t =
softmax(Ht{‖Hk‖2}T), is utilized for predic-
tion.The loss function is formulated as LS =∑T

t=1−ySt log pS
t , where ySt is the slot label for

word xt. Last, the intent detection and slot filling
are jointly optimized as:

LJ = LI + LS (6)

3.2 Multi-level Contrastive Learning

Here, we propose a novel framework that employs
the semantic structure for explicit alignment be-
tween the source language and target languages.
As shown in Figure 2(b), we apply CL at utter-
ance, slot, and word levels to capture complex re-
lations, including intent-utterance, slot-value, and
slot label-word.

Denote by D = {xi}Ni=1 a batch of the source
language training data and by D̂ = {x̂i}Ni=1 the
code-switched data, where N is the batch size.

Utterance-level CL For each source utterance
xi in D, the corresponding code-switched instance
x̂i is its positive example. As shown in Figure 1(a),
all the other source utterances and code-switched
instances serve as the in-batch negative examples.
We denote the negative example of xi as x̄i.

First, following prior studies (Wei et al., 2021;
Qin et al., 2022), we take the encoder output of
[CLS] as the utterance representation for xi, x̂i

and x̄i. Then, we map the representations to the
contrastive space by the utterance-level projection
head gu(·):

zu = gu(·) = σ((·)W u
1 )W

u
2 (7)

where · represents ei, êi, and ēi, σ is the ReLU
activation function. The purpose is to learn better
representations for the following contrastive opti-
mization and maintain more information in e. Last,

9906



the triplet loss (Wang et al., 2014) is adopted as the
utterance-level contrastive loss:

Lu(xi) = max(0, fu(z
u
i , ẑ

u
i )− fu(z

u
i , z̄

u
i ) + ru)

(8)
where the metric function fu is L2 distance and ru
is the loss margin.

Slot-level CL To conduct slot-level CL, an in-
tuitive idea is to replace each slot value with the
values that frequently appear in similar slots. In
this way, the model learns to map the multilingual
slot values to the corresponding slots in the vector
space and differentiate values for different slots.
We need to address the following questions. Q1:
Given a slot sk, how to define the similar slots and
generate the negative examples? Q2: How to eval-
uate the distance between a slot value with both its
code-switched positive and negative instance?

To answer Q1, we describe each slot sk as
its text description and the high-frequency slot
values. For example, assuming that the slot
sk is alarm_name, it is tokenized into a list
Ak. Through the training data, we can identify
some events frequently marked as alarm_name,
among which the top-pv frequent ones constitute a
list Bk. Ak and Bk are concatenated and fed to a
sentence embedding model to get the embedding
ek for sk. The similarity between the slots is then
calculated by the cosine similarity between their
representations. For each slot sk, we define the
set of hard negative values Vk as the union of Bk′ ,
where sk′ denotes the top-ps similar slots with sk.

Denote by xi,j the j-th slot value in xi and by
x̂i,j the corresponding code-switched positive ex-
ample in x̂i. As shown in Figure 1(b), negative
examples are derived by replacing each xi,j by
x̄i,j generated as follows. To maintain the consis-
tency with the context of the positive example, the
generation is conducted on x̂i. Suppose the slot of
x̂i,j is sk, we sample a value from Vk and perform
code-switching to get the hard negative example
x̄i,j . A negative utterance x̄i is then derived after
replacing the values one by one. The generation
algorithm is in Appendix B.1.

To answer Q2, a basic method is calculating the
cosine similarity between the slot values. How-
ever, there exists hard x̄i,j that are close to xi,j

and x̂i,j in the vector space but belong to different
slots. Therefore, we introduce a slot-guided value
similarity to focus on the slot-level semantics.

First, we apply mean-pooling to the encoder

outputs of the slot value to obtain the slot repre-
sentations ei,j , êi,j , and ēi,j . Second, we evalu-
ate the affinity of each slot value with respect to
each slot and calculate the value similarity by the
KL-divergence of their affinity distributions. To
be specific, given the representations of all slots
EK = {Ek}Kk=1 from M, let EK , ei,j , êi,j and
ēi,j go through the slot-level projection head gs(·):

zs = gs(·) = σ((·)W s
1 )W

s
2 (9)

where Zs
K = gs(E

K). The affinity is defined as
aff(zs

i,j) = zs
ij(Z

s
K)T. Similarly, we can obtain

aff(ẑs
i,j) and aff(z̄s

i,j). Then the slot-guided slot
value similarity is formulated as:

fs(z
s
i,j , ẑ

s
i,j) = KL(aff(zs

i,j), aff(ẑs
i,j)) (10)

This procedure guides the model to take the prob-
ability distribution on the slot set as the semantic
information of the slot value and align this knowl-
edge between the source language and the target
languages. Finally, the slot-level contrastive loss
with the margin rs is:

Ls(xi,j) = max(0, fs(z
s
i,j , ẑ

s
i,j)−fs(z

s
i,j , z̄

s
i,j)+rs)

(11)

Word-level CL Unlike the slot-level method,
which aggregates information from multiple utter-
ances, the word-level method concentrates on the
context within an utterance. Given an input xi,
denote by xi,t the t-th word with label yS

i,t. We
consider each slot word as a positive example of its
slot label. The negative examples can be sampled
from the neighborhood of xi,t in the utterance as
shown in Figure 1(c). Suppose the negative word
belongs to another slot label (type 1 negative). In
this case, CL encourages the model to differentiate
different slot labels based on slot type (different
slot) or label transition (same slot). Furthermore, if
the negative word does not belong to any slot, i.e.,
marked as O (type 2 negative), CL improves the
model sensitivity to the slot value boundary.

To derive the negative examples x̄i,t, the words
with the same slot label as xi,t are masked. For
each remaining word xi,r, the negative sampling
probability pr is based on its relative distance to
xi,t:

pr =
qr∑
r′ qr′

where qr = sin(
1

|r − t|) (12)

We reuse the encoding of the slot labels and
words from the projector in LAJoint model. Sup-
pose yS

i,t = k. The representations for yS
i,t, xi,t
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and x̄i,t, i.e., Hk, Hi,t and H̄i,t, go through the
word-level projection head gw similar to gu and
gs, then obtain zw

k , zw
i,t and z̄w

i,t. The word-level
contrastive loss is:

Lw(xi,t) = max(0, fw(z
w
k , z

w
i,t)−fw(z

w
k , z̄

w
i,t)+rw)

(13)
where fw is cosine similarity and rw is the loss mar-
gin. In addition, our word-level method is carried
out on both source and code-switched utterances.

Finally, we derive the overall training loss of
LAJ-MCL as below:

L = LJ + λ1Lu + λ2Ls + λ3Lw (14)

where λ’s are the hyper-parameters.

4 Experiments

4.1 Experiment Settings
Datasets and Metrics We conduct our exper-
iments on two cross-lingual SLU benchmark
datasets: MultiATIS++ (Xu et al., 2020) and
MTOP (Li et al., 2021a). MultiATIS++ has 18
intents and 84 slots for each language and MTOP
has in total 117 intents and 78 slots. The details of
the datasets are provided in Appendix C.1.

We adopt the evaluation metrics in the previous
works (Xu et al., 2020; Li et al., 2021a) including
intent detection accuracy, slot filling F1 score, and
semantic exact match accuracy.

Implementation We build LAJ-MCL with the
mBERT and XLM-Rbase from Wolf et al. (2020) as
the encoder. Bilingual dictionaries of MUSE are
adopted for code-switching the same as Qin et al.
(2020). Following the zero-shot setting, we use
en training set and code-switching set for model
training and en validation set for checkpoint saving.
More details are described in Appendix C.2.

4.2 Baselines
We compare our model to the following baselines.

ZSJoint. We re-implement the zero-shot joint
model (Chen et al., 2019) (denoted as ZSJoint),
which is trained on the en training set and directly
applied to the test sets of target languages.

Ensemble-Net. Razumovskaia et al. (2021) pro-
pose an ensemble-style network whose predic-
tions are the majority voting results of 8 trained
single-source language models, which is a zero-
shot model.

CoSDA-ML. Qin et al. (2020) propose a dy-
namic code-switching method that randomly per-
forms multilingual token-level replacement. For a
fair comparison, we use both the en training data
and the code-switching data for fine-tuning.

GL-CLEF. Qin et al. (2022) propose a global-
local contrastive learning framework for explicit
alignment. It is a concurrent work of this paper.

4.3 Major Results
Table 2 shows the results on MultiATIS++. First,
CoSDA-ML and our LAJ-MCL significantly out-
perform ZSJoint and Ensemble-Net as code-
switching (CS) helps to align the representa-
tions across languages implicitly. Although both
CoSDA-ML and LAJ-MCL apply code-switching,
our framework considers the semantic structure of
SLU and develops novel code-switching schemes
in the multi-level CL. LAJ-MCL shows 21.7% and
8.8% improvements over CoSDA-ML on average
semantic EM accuracy when using mBERT and
XLM-Rbase respectively, which verifies the effec-
tiveness of leveraging multi-level CL for explicit
representation alignment. Second, LAJoint per-
forms better than ZSJoint and achieves greater
gains with code-switching. Based on mBERT, LA-
Joint beats ZSJoint with 7.4% on EM accuracy,
and it creases to 16.7% comparing w/o MCL with
CoSDA-ML. It can be attributed that LAJoint in-
troduces contextual label semantics. The replaced
target language words are not only aligned with the
source language words but also attend to the slot
labels, which is a language adaptation process of
the representations of slot labels.

In Table 3, we investigate the generalization of
LAJ-MCL on MTOP with XLM-Rbase. We find
our methods can still improve the overall accuracy
by 2.3%. The results demonstrate that our frame-
work can scale out to multiple datasets and more
languages.

For CL baselines, LAJ-MCL achieves similar
results to GL-CLEF and achieve the SOTA perfor-
mance based on code-switching on both datasets
respectively. We leave extending our framework to
translated data for future work.

4.4 Further Analysis
In this section, unless otherwise specified, all the
methods use mBERT encoder on MutliATIS++.

Ablation Study To manifest the contribution of
each component in LAJ-MCL, we conduct abla-

9908



Data Methods mBERT XLM-Rbase
Intent Acc Slot F1 Sem EM Intent Acc Slot F1 Sem EM

EN
ZSJoint* 87.00 68.08 38.02 90.94 66.79 38.85
Ensemble-Net 87.20 55.78 - - - -
LAJoint (ours) 88.96 69.96 40.85 88.42 67.65 37.35

EN+CS

CoSDA-ML* 90.87 68.08 43.15 93.04 70.01 43.72
GL-CLEF 91.95 80.00 54.09 94.05 74.81 46.35
LAJ-MCL (ours) 92.41 78.23 52.50 93.49 75.69 47.58

w/o MCL 92.01 76.11 50.37 91.86 75.33 46.41

Table 2: Average results of all the languages on MultiATIS++. Results with * are from our re-implementation. The
full language breakdowns are shown in Appendix D.1.

Data Methods Intent Acc Slot F1 Sem EM

EN
ZSJoint* 85.56 67.03 50.35
LAJoint (ours) 82.61 64.22 46.55

EN+CS
CoSDA-ML* 90.72 73.34 58.77
LAJ-MCL (ours) 91.04 74.50 60.11

w/o MCL 90.67 73.61 58.92

Table 3: Average results of all the languages on MTOP.
Results with * are from our re-implementation. The full
language breakdowns are shown in Appendix D.1.

Methods Intent Acc Slot F1 Sem EM

LAJoint 88.96 69.96 40.85

- Compressor 89.21 69.64 40.01
- Projector 88.54 69.69 40.35
- Comp&Proj 87.95 68.74 39.90

LAJoint+CS 92.01 76.11 50.37

+ UCL 92.42 77.28 51.36
+ SCL 92.04 77.29 51.21
+ WCL 92.18 77.00 50.89
+ UCL&SCL 92.57 77.54 51.83
+ UCL&WCL 92.51 77.62 51.69
+ SCL&WCL 92.55 77.64 51.84
+ MCL 92.41 78.23 52.50

Table 4: Ablation study of difference components. UCL,
SCL, and WCL denote utterance-level, slot-level, and
word-level CL, respectively.

tion experiments, and the average results are in
Table 15.

Both the label compressor and the projector play
crucial roles in LAJoint. Intuitively, the label com-
pressor learns the combination of abstract labels
and slots, and then the projector learns to map
the words closer to their corresponding slot labels.
The average EM accuracy drops by 2.3% without
additional layers (- Comp&Proj). When compar-
ing LAJoint with ZSJoint, the clear improvements
demonstrate the indispensability of our LAJoint
model that leverages the language-invariant slot set
to align representations implicitly.

Figure 3: t-SNE visualization of utterance vector space.
Dots in the same color denotes the utterance representa-
tions with the same intent.

Furthermore, we find that adding every single
CL outperforms LAJoint+CS. Specifically, UCL
encodes intent semantics and makes coarse-grained
alignment between English and code-switched ut-
terances by pulling the utterance representations
close. Thus UCL achieves the highest intent accu-
racy among them. SCL and WCL leverage label
semantics to perform fine-grained alignment across
and within utterances by focusing on slot-value
and slot label-word relations, respectively. When
combined in pairs, the coupled CL outperforms
the single CL, which demonstrates UCL, SCL, and
WCL are complementary. Consequently, our MCL
framework can achieve consistent improvements
based on various cross-lingual PLMs.

The details about the full performance on all the
languages are given in Appendix D.2.

Visualization To intuitively verify whether LAJ-
MCL improves the alignment of model represen-
tations between languages, we select 100 parallel
utterances with the same intent from all the test
sets except hi and tr of MultiATIS++. It is hard
to automatically extract parallel utterances with
other languages since hi and tr utterances are fil-
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Errors es de zh ja pt fr hi tr Avg.

Method: CoSDA-ML

#utterance 420 465 359 612 378 432 798 602 509.5
#slot_num 231 342 201 171 228 202 308 386 258.6
†slot_type 118 119 183 541 112 118 646 227 258.0
†slot_bound 47 15 6 12 27 85 48 44 35.5
†slot_both 106 55 47 102 97 131 70 86 86.8

Method: LAJoint+CS

#utterance 337 289 346 538 357 369 720 581 442.1
#slot_num 159 179 186 147 215 208 296 331 215.1
†slot_type 106 108 176 472 87 66 512 243 221.3
†slot_bound 84 14 12 8 41 85 93 60 49.6
†slot_both 44 33 59 129 80 95 103 142 85.6

Method: LAJ-MCL

#utterance 353 282 346 566 328 372 645 479 421.4
#slot_num 156 166 148 197 189 210 346 231 205.4
†slot_type 106 110 227 459 189 70 349 247 219.6
†slot_bound 86 15 13 4 36 75 52 70 43.9
†slot_both 77 45 34 85 101 110 78 59 73.6

Table 5: Error statistics of CoSDA-ML and our methods
on the slot filling sub-task.

Hyper-params pv=0 pv=10 pv=20

ps=5 49.78 50.91 51.21
ps=10 49.75 51.05 51.15

Table 6: Slot-level CL hyper-parameters selection. We
take LAJoint+SCL for example (Sem EM).

tered. Specifically, the encoder output of [CLS] is
obtained as the utterance representation and visual-
ized by t-SNE. The results are shown in Figure 3.
It can be seen that there is only a small overlap be-
tween different languages in ZSJoint, i.e., the dis-
tance between different language representations
is quite far. This problem is mitigated in CoSDA-
ML where many dots overlaps, but there are some
outliers. For our proposed methods, LAJoint+CS
has better representation alignment than CoSDA-
ML. In LAJ-MCL, the overlap region is further ex-
panded and the internal distance of each language
is reduced, which fully confirms the effectiveness
of explicit alignment of our MCL framework.

Error Statistics We conduct error statistics on
the prediction results of slot filling as shown in Ta-
ble 5. In each block, #utterance is the number of
utterances with errors, and #slot_num is the num-
ber of utterances in which the number of predicted
slots are inconsistent with the ground truth. Fur-
thermore, †slot errors are counted from the utter-
ances without #slot_num. Specifically, †slot_type,
†slot_bound, and †slot_both denote slot type error,
slot value boundary error, and both errors, respec-
tively. We have considered including the utterances
with #slot_num errors in the statistics. However,

Figure 4: Comparison between ZSJoint and LAJoint by
varying the proportion of training data (Sem EM).

when the model reduces #slot_num, the newly in-
volved slot predictions affect the number of †slot
errors, leading to confusing results.

The statistics show that: (1) Comparing CoSDA-
ML and LAJoint+CS, the statistical results are al-
most consistent with the experimental results. By
introducing label semantics, the average numbers
of #utterance and #slot_num are significantly re-
duced by 13.2% and 16.8%, which proves that
taking the slot set as the implicit anchor is effec-
tive for identifying slots in utterances on target
languages. (2) LAJ-MCL continues to reduce the
number of errors. Specifically, the average numbers
of †slot_bound and †slot_both drop by 11.6% and
14.0%, which is exactly where LAJoint+CS did not
improve compared with CoSDA-ML. Intuitively,
†slot_type and †slot_bound errors benefit from slot-
level and word-level CL, respectively. Our pro-
posed SCL semantically enhances the relationship
between slots and values, and WCL improves the
the model’s boundary detection and slots differen-
tiation capability. In this way, both of them also
contribute to reducing #utterance.

Hyper-parameters of SCL To evaluate our
model’s sensitivity to the negative examples gen-
eration related hyper-parameters of slot-level CL,
i.e., top-ps similar slots and top-pv similar values,
we conduct a grid-search experiment including
the ranges: ps = {5, 10} and pv = {0, 10, 20}
as shown in Table 6. We can observe that: (1)
When not concatenating Bk for slot representation
(pv = 0), the average EM accuracy drops by 2.9%
compared with pv = 20 which confirms the effec-
tiveness of high-frequency values; (2) Except for
pv = 0, the average EM accuracy is 51.08± 0.017
which indicates our slot-level CL is robust and not
sensitive to the above hyper-parameters.
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Methods ATIS SNIPS
Intent Acc Slot F1 Sem EM Intent Acc Slot F1 Sem EM

Stack-Propagation (Qin et al., 2019) 97.50 96.10 88.60 99.00 97.00 92.90
Co-Interactive Trans (Qin et al., 2021) 98.00 96.10 88.80 97.10 98.80 93.10
SlotRefine (Wu et al., 2020) 97.74 96.16 88.64 99.04 97.05 92.96
SLG (Cheng et al., 2021) 98.30 96.20 88.70 99.10 97.10 93.10
LAJoint 98.88 96.08 89.03 99.00 97.02 93.00

Table 7: Results on ATIS and SNIPS. All the baseline results are from the original papers.

Effectiveness of LAJoint We conduct experi-
ments to verify whether leveraging label seman-
tics to facilitate the interaction between words and
slots in LAJoint is effective. In Figure 4, LA-
Joint shows consistent improvements over ZSJoint
with respect to different sizes and training data.
The performance gap generally increases as the
proportion decrease. Specifically, after applying
code-switching (EN+CS), our model outperforms
ZSJoint (i.e., CoSDA-ML) and increases EM accu-
racy by a large margin.

We further investigate whether LAJoint
works for traditional SLU tasks, including
AITS (Hemphill et al., 1990) and SNIPS (Coucke
et al., 2018). Following the setting of current
SOTA methods, we take BERTbase (Devlin et al.,
2019) as the encoder. The batch size is set to 32
and 64 for ATIS and SNIPS, respectively. The
learning rate is selected from {5e-5, 6e-5, 7e-5,
8e-5, 9e-5} and the proportion of warm-up steps
is 5%. Other details remain consistent with the
multilingual experiment. As the results in Table 7,
LAJoint shows competitive performance compared
to both autoregressive (Qin et al., 2019, 2021) and
non-autoregressive (Wu et al., 2020; Cheng et al.,
2021) methods. As we don’t incorporate the side
information such as task-interaction (Qin et al.,
2019, 2021) and sequential dependency (Cheng
et al., 2021), it demonstrates that leveraging slot
labels as the context of utterances is a simple and
effective design.

5 Conclusion

In this paper, we propose a novel Label-aware Joint
model (LAJoint) with a Multi-level Contrastive
Learning framework (MCL) for zero-shot cross-
lingual SLU. The former leverages the language-
invariant slot set to transfer knowledge across lan-
guages and the latter exploits the semantic structure
of SLU and develops contrastive learning based on
novel code-switching schemes for explicit align-
ment. The results of extensive experiments demon-

strate the effectiveness of our methods.

Limitations

The main contributions of this paper are towards
aligning the representations of cross-lingual PLMs
implicitly and explicitly by label semantics and
multi-level contrastive learning. Our methods can
be extend to other cross-lingual sequence labeling
tasks. Nevertheless, we summarize two limitations
for further discussion and investigation of the re-
search community:

(1) The improvement of LAJ-MCL on MTOP
is not much significant as that on MultiATIS++.
MTOP has more intent labels than slot labels, and
6.5 times as many as MultiATIS++. We conjecture
that it leads to a biased training process for LA-
Joint. In the future work, we plan to incorporate
the intent labels to make full use of label semantics
and achieve an unbiased training process.

(2) The training and inference runtime of LAJ-
MCL is larger than that of baselines. The detailed
results are in Table 10. We attribute the extra cost to
the fact that LAJoint has longer input than ZSJoint,
and LAJ-MCL dynamically generates negative ex-
amples in every batch. In the future work, we
plan to design a new paradigm to replace the con-
catenation, thus reducing the requirement for GPU
resources.
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A Related Work

Here we discuss in depth the differences from the
contemporaneous work (Qin et al., 2022). To im-
prove cross-lingual SLU task, although both (Qin
et al., 2022) and we propose contrastive learning
frameworks for explicit alignment, the details are
the same only at the sentence (utterance) level. And
the differences include: (1) For the token-level
CL, GL-CLEF aligns each en token with its code-
switched token across sentences and take all the
other tokens as negative samples. Our MCL aligns
slot labels with the corresponding tokens in the en
and code-switched sentences respectively. We de-
velop a negative sampling strategy to strengthen
the correlation between slot labels and tokens and
help the model better learn the slot boundary; (2)
GL-CLEF introduces semantic-level CL aligns the
[CLS] token with all the other tokens in the en
and code-switched sentences respectively. While
the slot-level CL of MCL focuses on the anno-
tation targets: slot values. First, negative values
pool is generated for each slot. Then, we propose
the slot-guided value similarity based on label se-
mantics and align slot values across the en and
code-switched sentences.

B Method

B.1 Algorithm of Slot-level CL
The Algorithm 1 illustrates the process of generat-
ing negative examples in our slot-level CL. Here,
pv, ps, and Ns are the hyper-parameters. For pv
and ps, we empirically set them as 20 and 5, respec-
tively. And for the negative examples, in order to
balance the learning effectiveness and GPU mem-
ory usage, we set Ns = 2. In our word-level CL,
for the negative examples |{x̄i,t}| = Nw, we usu-
ally set Nw = 2.

C Experiment Settings

C.1 Datasets

MultiATIS++ is an extension of Multilingual
ATIS (Table 8). Human-translated data for six lan-
guages including Spanish (es), German (de), Chi-
nese (zh), Japanese (ja), Portuguese (pt), French
(fr) are added to Multilingual ATIS which initially
has Hindi (hi) and Turkish (tr). There are 4478
utterances in the train set, 500 in the valid set, and
893 in the test set, with 18 intents and 84 slots for
each language.

Algorithm 1 : Generating Slot-level Negative Ex-
amples.

Input: English utterance xi, Code-switched utter-
ance x̂i, Slot set S = {sk}Kk=1.

Output: Negative utterances |{x̄i}| = Ns.
1: for k = 1 to K do
2: Tokenize sk into words and symbols to ob-

tain Ak

3: Find the top-pv frequent slot values of sk to
obtain Bk

4: Concatenating Ak and Bk as the input of
MPNet provided by SentenceTransformers 1

to obtain the representation ek for sk
5: end for
6: for k = 1 to K do
7: Select top-ps similar slots for sk by calculat-

ing the cosine similarity between the repre-
sentations

8: Vk = [slot values Bk′ of each negative slot
sk′]

9: end for
10: for each slot value x̂i,j in x̂i do
11: Suppose the slot of x̂i,j is sk
12: Randomly sample Ns instances from Nk as

negative slot values
13: Replace x̂i,j with code-switched negative

slot values iteratively to generate x̄i,j

14: end for

MTOP is collected from the interactions between
human and assistant systems (Table 9). MTOP
contains totally 100k+ human-translated utterances
in 6 languages (English (en), German (de), Span-
ish (es), French (fr), Thai (th), Hindi (hi)) across
11 domains. We use the flat version divided into
70:10:20 percentage splits for train, valid and test.

C.2 Implement Details

For code-switching, the sentence replacement ra-
tio is set to 1.0 and the word replacement ratio is
set to 0.9. We set the batch size N to 32 and train
the model for 20 epochs. We apply the AdamW
optimizer with the linear scheduler. We select the
best hyper-parameters by grid search including the
ranges: learning rate of the encoder {1e-5, 2e-5,
3e-5, 4e-5, 5e-5}; weight decay {0, 1e-3}; margin
r’s in triplet loss r’s {0.1, 0.3, 0.5, 0.7}; loss co-
efficient λ’s {0.3, 0.5, 0.7, 1.0}. The learning rate
of the intent classifier and contrastive learning pro-
jection heads is 1e-3. The proportion of warm-up
steps is 10%.
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Language Utterances Intent Slot
train valid test types types

en 4488 490 893 18 84
es 4488 490 893 18 84
pt 4488 490 893 18 84
de 4488 490 893 18 84
fr 4488 490 893 18 84
zh 4488 490 893 18 84
ja 4488 490 893 18 84
hi 1440 160 893 17 75
tr 578 60 715 17 71

Table 8: Statistics of MultiATIS++

Number of utterances (train/valid/test) Intent Slot
en de fr es hi th types types

22288 18788 16584 15459 16131 15195 117 78

Table 9: Statistics of MTOP

Following the zero-shot setting, we fine-tune the
model on en training set and use en validation set
for the hyper-parameters search. The best model
checkpoint is decided by the semantic EM accuracy
on en validation set. All the experiments are con-
ducted on NVIDIA A100 and A6000 GPUs with
NVIDIA’s Automatic Mixed Precision. Our code
is based on PyTorch and Transformers 2.

D Further Discussions

D.1 Full Major Results

The full comparison results on MultiATIS++ (Ta-
ble 12, 13) and MTOP (Table 14).

D.2 Full Ablation Study

The full ablation results on MultiATIS++ are
shown in Table 15. We observe that: (1) Differ-
ent level CL methods show different sensitivity to
the target languages. For example, WCL outper-
forms SCL on western languages, i.e., es, de, and
fr, but significantly falls behind on ja, hi, and tr.
In real scenarios, one can flexibly combine them
according to the target languages. (2) The main per-
formance improvement comes from the slot filling
task. MCL shows 0.4% and 2.8% average improve-
ments over LAJoint+CS on intent detection accu-
racy and slot filling F1 score, respectively. (3) Even
though single CL, coupled CL, or MCL can not al-
ways perform better than LAJoint+CS on every
target language, they achieve consistent improve-
ment in average results of the three metrics, which
indicates the generalization of our framework.

2https://github.com/huggingface/transformers

Methods training inference

ZSJoint 14 9
CoSDA-ML 15 9
LAJoint 18 16
LAJoint+CS 30 16
LAJ-MCL 65 16

Table 10: Comparison of training and inference runtime
(second/epoch).

D.3 Case Study
Table 11 lists several examples to illus-

trate the rationale behind our MCL method.
In the first case, mittag means “noon"
in English, and depart_time.time is
the most frequently misclassified slot of
depart_time.period_of_day according
to our empirical study on the results of the baseline
methods. Such errors can be addressed by our
slot-level CL, which replaces the words in a slot
span with the words frequently in similar slots.

In the second case, más temprano means “ear-
lier" in English. By word-level CL, the model
reduces the error in slot boundary detection and
changes from beginning-of-slot (B) to inside-of-
slot (I).

For the last case, tacoma havaalani means
“tacoma airport" in English. Our method learns
to extend the slot value (through WCL). Moreover,
the slot type is further corrected from city_name
to airport_name, which can be attributed to
SCL. This case demonstrates the effectiveness of
applying multi-level contrastive learning jointly.
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Case w/o MCL Result Method MCL Result

(1) Ich brauche Fluginformationen für
einen Flug von Indianapolis nach Cleve-
land , der am Dienstag mittag abfliegt

B-depart_time.time + SCL B-depart_time.period_of_day

(2) cuál es el vuelo más temprano entre
baltimore y oakland con desayuno

B-flight_mod B-flight_mod + WCL B-flight_mod I-flight_mod

(3) tacoma havaalani , havalanindan sehir
merkezine ulasim sagliyor mu ?

B-city_name O + WCL&SCL B-airport_name I-airport_name

Table 11: Case study of our MCL on MutliATIS++. Bold span in the case is the target slot value. Red and Blue
indicate the false and true parts in the results, respectively.

Intent Acc en es de zh ja pt fr hi tr Avg.

ZSJoint* 98.54 93.28 90.48 84.55 76.59 94.62 94.51 77.15 73.29 87.00
Ensemble-Net 90.26 96.64 92.50 84.99 77.04 95.30 95.18 77.88 75.04 87.20
LAJoint 98.54 96.30 93.17 89.25 83.31 95.41 95.97 82.53 66.15 88.96

CoSDA-ML* 97.98 95.07 95.07 91.04 85.67 95.18 95.97 84.88 76.92 90.87
GL-CLEF 98.77 97.05 97.53 87.68 82.84 96.08 97.72 86.00 83.92 91.95
LAJ-MCL 98.77 98.10 98.10 89.03 81.86 97.09 98.77 84.54 85.45 92.41

w/o MCL 98.32 97.87 97.31 91.60 86.67 96.86 97.76 88.58 73.15 92.01

Slot F1 en es de zh ja pt fr hi tr Avg.

ZSJoint* 95.20 76.52 74.79 66.91 70.10 72.56 74.25 52.73 29.66 68.08
Ensemble-Net 85.05 77.56 82.75 37.29 9.44 74.00 76.19 14.14 45.63 55.78
LAJoint 95.80 80.69 76.63 67.24 74.47 72.20 76.23 54.22 32.12 69.96

CoSDA-ML* 95.32 80.82 79.63 80.40 65.69 79.30 79.21 49.29 50.53 73.36
GL-CLEF 95.39 85.22 86.30 77.61 73.12 81.83 84.31 70.34 65.85 80.00
LAJ-MCL 96.02 83.03 86.59 82.00 68.52 81.49 82.11 61.04 65.20 78.23

w/o MCL 95.39 85.85 86.13 81.35 69.45 81.17 82.42 54.01 49.24 76.11

Semantic EM en es de zh ja pt fr hi tr Avg.

ZSJoint 87.23 44.46 41.43 30.80 33.59 43.90 43.67 16.01 1.12 38.02
LAJoint 88.24 43.56 47.03 38.86 44.46 40.99 41.77 20.94 1.82 40.85

CoSDA-ML 87.23 50.28 45.35 55.10 26.32 55.21 49.38 8.29 11.61 43.15
GL-CLEF 88.02 59.53 66.03 50.62 41.42 60.43 57.02 34.83 28.95 54.09
LAJ-MCL 89.81 59.13 67.75 54.76 29.34 61.93 57.56 23.29 28.95 52.50

w/o MCL 87.46 61.03 66.97 56.44 34.83 58.68 57.56 16.35 13.99 50.37

Table 12: MultiATIS++ results as average Intent Detection Accuracy/Slot Filling F1 score/Semantic Exact Match
Accuracy (mBERT encoder). Results with * are from our re-implementation.
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Intent Acc en es de zh ja pt fr hi tr Avg.

ZSJoint* 98.99 98.10 92.83 87.91 84.43 93.95 97.09 87.12 78.04 90.94
LAJoint 98.77 92.72 89.81 86.45 81.97 93.73 92.61 84.66 75.10 88.42

CoSDA-ML* 98.99 98.99 98.32 89.70 83.76 97.98 98.66 89.70 81.26 93.04
GL-CLEF 98.66 98.04 98.43 91.38 88.83 97.76 97.85 93.84 81.68 94.05
LAJ-MCL 98.77 98.88 98.32 90.59 86.23 97.31 97.98 91.38 81.96 93.49

w/o MCL 98.88 98.88 97.98 84.99 85.11 93.62 98.54 89.14 79.58 91.86

Slot F1 en es de zh ja pt fr hi tr Avg.

ZSJoint* 95.32 81.55 82.12 68.92 39.77 79.20 78.64 39.83 35.73 66.79
LAJoint 95.87 77.29 79.89 70.56 49.49 76.76 77.77 45.74 35.50 67.65

CoSDA-ML* 95.32 84.98 83.92 77.74 42.40 80.50 81.13 41.11 42.44 70.01
GL-CLEF 95.88 82.47 84.91 80.5 55.57 77.27 80.99 61.11 54.55 74.81
LAJ-MCL 95.87 83.10 83.88 79.55 64.30 79.31 81.43 54.96 58.80 75.69

w/o MCL 95.35 84.87 81.46 80.78 67.72 79.10 81.37 54.66 52.67 75.33

Semantic EM en es de zh ja pt fr hi tr Avg.

ZSJoint 88.24 52.18 57.89 30.01 4.59 54.20 52.41 7.05 3.08 38.85
LAJoint 88.91 43.23 49.94 31.13 12.43 49.27 47.93 11.31 1.96 37.35

CoSDA-ML 88.24 60.47 62.93 45.24 6.72 58.01 57.78 6.27 7.41 43.72
GL-CLEF 88.24 53.51 64.91 52.07 13.77 52.35 58.28 19.49 14.55 46.35
LAJ-MCL 88.58 57.22 55.99 53.75 27.88 55.10 55.66 12.09 21.96 47.58

w/o MCL 88.24 58.57 50.06 51.40 30.46 52.86 58.34 14.22 13.57 46.41

Table 13: MultiATIS++ results as average Intent Detection Accuracy/Slot Filling F1 score/Semantic Exact Match
Accuracy (XLM-Rbase encoder). Results with * are from our re-implementation.

Intent Acc en es fr de hi th Avg.

ZSJoint 96.83 87.86 83.12 83.91 79.74 81.92 85.56
LAJoint 96.53 86.66 83.65 76.61 75.33 76.85 82.61

CoSDA-ML 96.92 94.16 91.23 92.76 80.75 88.50 90.72
LAJ-MCL 96.83 94.20 92.52 93.46 82.43 86.80 91.04

w/o MCL 96.85 93.86 91.79 92.76 81.93 86.84 90.67

Slot F1 en es fr de hi th Avg.

ZSJoint 91.88 70.93 72.94 67.16 49.88 49.37 67.03
LAJoint 91.58 68.60 68.46 61.14 49.72 45.85 64.22

CoSDA-ML 91.43 78.22 78.17 77.68 57.27 57.24 73.34
LAJ-MCL 91.78 78.11 78.16 78.35 61.79 58.82 74.50

w/o MCL 91.30 78.27 77.05 77.80 59.45 57.56 73.61

Semantic EM en es fr de hi th Avg.

ZSJoint 84.65 54.70 52.02 46.18 32.20 32.33 50.35
LAJoint 84.34 49.90 46.45 39.19 31.52 27.92 46.55

CoSDA-ML 84.02 65.24 60.82 62.78 38.72 41.01 58.77
LAJ-MCL 84.59 65.68 63.98 63.57 40.59 42.28 60.11

w/o MCL 83.81 65.28 61.17 60.52 41.91 40.83 58.92

Table 14: MTOP results as average Intent Detection Accuracy/Slot Filling F1 score/Semantic Exact Match Accuracy
(XLM-Rbase encoder). Results with * are from our re-implementation.
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Intent Acc en es de zh ja pt fr hi tr Avg.

LAJoint 98.54 96.30 93.17 89.25 83.31 95.41 95.97 82.53 66.15 88.96

-Compressor 98.43 96.98 89.59 88.13 83.87 94.40 94.96 81.86 74.69 89.21
-Projector 98.32 96.30 91.27 89.70 81.97 93.17 97.42 83.99 64.76 88.54
-Comp&Proj 98.10 96.19 93.17 88.24 84.77 96.08 95.86 84.43 54.69 87.95

LAJoint+CS 98.32 97.87 97.31 91.60 86.67 96.86 97.76 88.58 73.15 92.01

+UCL 98.43 97.65 96.98 90.93 88.13 96.98 98.54 87.12 77.06 92.42
+SCL 97.98 97.09 97.42 91.83 86.90 96.86 98.10 88.91 73.29 92.04
+WCL 98.32 97.65 97.54 90.03 88.58 96.64 97.98 87.35 75.52 92.18
+UCL&SCL 98.43 97.31 97.31 91.71 89.36 96.08 98.32 88.35 76.22 92.57
+UCL&WCL 98.43 97.98 97.54 90.15 85.67 96.75 98.10 86.45 81.54 92.51
+SCL&WCL 98.43 97.98 97.87 92.27 85.78 96.86 98.43 87.01 78.32 92.55
+MCL 98.77 98.10 98.10 89.03 81.86 97.09 98.77 84.54 85.45 92.41

Slot F1 en es de zh ja pt fr hi tr Avg.

LAJoint 95.80 80.69 76.63 67.24 74.47 72.20 76.23 54.22 32.12 69.96

-Compressor 95.59 77.10 76.36 70.50 73.83 70.30 73.42 50.56 39.07 69.64
-Projector 95.75 76.18 77.56 69.21 71.82 74.90 76.64 49.98 35.18 69.69
-Comp&Proj 95.57 75.50 74.26 69.16 73.97 72.96 73.67 56.38 27.23 68.74

LAJoint+CS 95.39 85.85 86.13 81.35 69.45 81.17 82.42 54.01 49.24 76.11

+UCL 95.83 84.03 84.70 82.28 76.10 80.99 81.45 55.00 55.18 77.28
+SCL 95.61 84.22 85.11 81.26 76.20 81.25 81.79 56.58 53.63 77.29
+WCL 95.73 83.83 85.15 82.50 72.85 80.34 82.14 55.74 54.68 77.00
+UCL&SCL 95.81 85.71 84.72 82.23 73.82 81.70 81.41 57.10 55.35 77.54
+UCL&WCL 95.76 84.43 84.39 81.63 74.39 81.91 82.39 55.82 57.88 77.62
+SCL&WCL 95.85 83.15 83.69 81.45 73.48 80.60 78.35 62.07 60.12 77.64
+MCL 96.02 83.03 86.59 82.00 68.52 81.49 82.11 61.04 65.20 78.23

Sem EM en es de zh ja pt fr hi tr Avg.

LAJoint 88.24 52.74 50.84 34.60 43.23 42.89 39.31 18.48 2.10 40.85

-Compressor 88.24 44.34 46.25 36.95 44.68 40.31 37.96 15.45 5.87 40.01
-Projector 88.24 43.78 46.36 36.73 38.41 42.55 48.04 13.55 5.45 40.35
-Comp&Proj 88.58 40.87 44.34 37.63 44.23 42.67 37.07 21.50 2.24 39.90

LAJoint+CS 87.46 61.03 66.97 56.44 34.83 58.68 57.56 16.35 13.99 50.37

+UCL 88.58 59.91 65.96 55.43 40.20 58.23 52.97 21.39 19.58 51.36
+SCL 89.03 55.43 61.59 58.79 41.88 57.89 45.69 27.10 23.50 51.21
+WCL 88.80 58.23 65.29 58.45 39.53 56.33 57.78 15.45 18.18 50.89
+UCL&SCL 87.57 53.53 63.83 55.99 50.06 56.66 52.41 28.11 18.32 51.83
+UCL&WCL 88.69 55.77 66.29 55.54 44.01 58.68 55.88 21.84 18.18 51.69
+SCL&WCL 89.03 58.45 63.61 57.11 43.45 58.68 54.98 21.28 20.00 51.84
+MCL 89.81 59.13 67.75 54.76 29.34 61.93 57.56 23.29 28.95 52.50

Table 15: Ablation study of difference components on MutliATIS++ (mBERT encoder).
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