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Abstract

The term ‘spurious correlations’ has been used
in NLP to informally denote any undesirable
feature-label correlations. However, a correla-
tion can be undesirable because (i) the feature
is irrelevant to the label (e.g. punctuation in a
review), or (ii) the feature’s effect on the label
depends on the context (e.g. negation words
in a review), which is ubiquitous in language
tasks. In case (i), we want the model to be
invariant to the feature, which is neither neces-
sary nor sufficient for prediction. But in case
(ii), even an ideal model (e.g. humans) must
rely on the feature, since it is necessary (but not
sufficient) for prediction. Therefore, a more
fine-grained treatment of spurious features is
needed to specify the desired model behavior.
We formalize this distinction using a causal
model and probabilities of necessity and suf-
ficiency, which delineates the causal relations
between a feature and a label. We then show
that this distinction helps explain results of ex-
isting debiasing methods on different spurious
features, and demystifies surprising results such
as the encoding of spurious features in model
representations after debiasing.

1 Introduction

Advancements in pre-trained language models (De-
vlin et al., 2019; Radford et al., 2019) and large
datasets (Rajpurkar et al., 2016; Wang et al., 2018)
have enabled tremendous progress on natural lan-
guage understanding (NLU). This progress has
been accompanied by the concern of models rely-
ing on superficial features such as negation words
and lexical overlap (Poliak et al., 2018; Gururan-
gan et al., 2018; McCoy et al., 2019). Despite the
progress in building models robust to spurious fea-
tures (Clark et al., 2019; He et al., 2019; Sagawa*
et al., 2020; Veitch et al., 2021; Puli et al., 2022),
the term has been used to denote any feature that

∗equal contribution

Irrelevant features
Speilberg’s new film is brilliant. −→ Positive

’s new film is brilliant. −→ Positive

Necessary features
The differential compounds to a hefty sum over time.
The differential will not grow −→ Contradiction
The differential will grow −→ ?

Table 1: Difference between two spurious features: (a)
the director name can be replaced without affecting the
sentiment prediction; (b) the negation word is necessary
as it is not possible to determine the label without it.

the model should not rely on, as judged by domain
experts.

Our key observation is that a feature can be con-
sidered spurious for different reasons. Compare
two such features studied in the literature (Table 1):
(a) director names (such as ‘Spielberg’) in senti-
ment analysis (Wang and Culotta, 2020); (b) nega-
tion words in natural language inference (Gururan-
gan et al., 2018). We do not want the model to rely
on the director name because removing or chang-
ing it does not affect the sentiment. In contrast,
while models should not solely rely on the negation
word, they are still necessary for prediction—it is
impossible to determine the label without knowing
its presence.

In this work, we argue that many spurious fea-
tures studied in NLP are of the second type where
the feature is necessary (although not sufficient)
for prediction, which is more complex to deal with
than completely irrelevant features in the first case.
Current methods do not treat the two types of fea-
ture separately, and we show that this can lead to
misleading interpretation of the results.

To formalize the distinction illustrated in Table 1,
we borrow notions from causality (Wang and Jor-
dan, 2021; Pearl, 1999), and use probability of
necessity (PN) and probability of sufficiency (PS)
to describe the relation between a feature and a
label. Intuitively, high PN means that changing the
feature is likely to change the label (e.g. remov-
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ing “not” will flip the label); high PS means that
adding the feature to an example would produce
the label (e.g. adding “the movie is brilliant” to a
neutral review is likely to make it positive). Under
this framework, we define two types of spurious
features (Section 2): irrelevant features (e.g. the
director name) that have low PN and low PS, and
necessary features (e.g. the negation word) that
have high PN despite low PS.

Next, we describe the challenges in evaluating
and improving robustness to necessary spurious
features (Section 4). First, necessary features com-
pose with other features in the context to influence
the label. Thus, evaluating whether the model relies
solely on the necessary feature requires perturbing
the context. This process often introduces new fea-
tures and leads to inconsistent results depending on
how the context is perturbed.

Second, we analyze the effectiveness of two
classes of methods—data balancing and represen-
tation debiasing—on the two types of spurious
features. Data balancing breaks the correlation
between the label and the spurious feature (e.g.
Sagawa et al. (2020)); representation debiasing
directly removes the spurious feature from the
learned representation (e.g. Ravfogel et al. (2020)).
Although they are effective for irrelevant features,
we show that for necessary spurious features, (i)
data balancing does not lead to invariant perfor-
mance with respect to the spurious feature (Sec-
tion 5.1); and (ii) removing the spurious feature
from the representation significantly hurts perfor-
mance (Section 5.2).

In sum, this work provides a formal characteri-
zation of spurious features in natural language. We
highlight that many common spurious features in
NLU are necessary (despite being not sufficient) to
predict the label, which introduces new challenges
to both evaluation and learning.

2 Categorization of Spurious Features

2.1 Causal Models

We describe a structural causal model for text clas-
sification to illustrate the relation between differ-
ent spurious features and the label. Let X =
(X1, X2, .., Xn) denote a sequence of input word-
s/features1 and Y the output label. We assume a

1For illustration purposes, we assume that each feature is a
word in the input text. However, the same model and analysis
apply to cases where Xi denote a more complex feature (e.g.
named entities or text length) extracted from the input.

data generating model shown in Figure 1a. There
is a common cause C of the input (e.g. a review
writer, a PCFG or a semantic representation of the
sentence), conditioned on which the words are inde-
pendent to each other. Each word Xi may causally
affect the label Y .

Under this model, the dependence between Y
and a feature Xi can be induced by two processes.
The type 1 dependence is induced by a confounder
(in this case C) influencing both Y and Xi due
to biases in data collection, e.g. search engines
return positive reviews for famous movies; we de-
note this non-causal association by the red path in
Figure 1b. The type 2 dependence is induced by
input words that causally affect Y (the red path
in Figure 1c), e.g. negating an adjective affects
the sentiment. Importantly, the two processes can
and often do happen simultaneously. For example,
in NLI datasets, the association between negation
words and the label is also induced by crowdwork-
ers’ inclination of negating the premise to create a
contradiction example.

A type 1 dependence (“Titanic”-sentiment) is
clearly spurious because the feature and Y are as-
sociated through C while having no causal rela-
tionship.2 In contrast, a type 2 dependence (“not”-
sentiment) is not spurious per se—even a human
needs to rely on negation words to predict the label.

Now, how do we measure and differentiate the
two types of feature-label dependence? In the fol-
lowing, we describe fine-grained notions of the
relationship between a feature and a label, which
will allow us to define the spuriousness of a feature.

2.2 Sufficiency and Necessity of a Feature

We borrow notions from causality to describe
whether a feature is a necessary or sufficient cause
of a label (Pearl, 1999; Wang and Jordan, 2021).
Consider the examples in Table 1: intuitively, “not”
is necessary for the contradiction label because
in the absence of it (e.g. removing or replacing
it by other syntactically correct words) the exam-
ple would no longer be contradiction; in contrast,
“the movie is brilliant” is sufficient to produce the
positive label because adding the sentence to a neg-
ative review is likely to increase its sentiment score.
Thus, the feature’s effect on the label relies on
counterfactual outcomes.

2The two types of dependencies are also discussed in
Veitch et al. (2021), where the type 1 dependence is called
“purely spurious”.
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Figure 1: Causal models for text classification. (a) C is the common cause of words in the input. Each word Xi

may be causally influence Y . (b) Y (sentiment label) and Xi (“Titanic”) are dependent because of the confounder
C (indicated by the red path). (c) Y (sentiment label) and Xi (“not”) are dependent because of a causal relation.

We use Y (Xi = xi) to denote the counterfactual
label of an example had we set Xi to the specific
value xi.3

Definition 1 (Probability of necessity). The proba-
bility of necessity (PN) of a feature Xi = xi for the
label Y = y conditioned on context X−i = x−i is

PN(Xi=xi, Y=y | X−i=x−i) ≜
p(Y (Xi ̸= xi) ̸= y | Xi=xi, X−i=x−i, Y=y) .

Given an example (x, y), PN(xi, y | x−i)
4 is the

probability that the label y would change had we
set Xi to a value different from xi. The distribution
of the counterfactual label Y (Xi ̸= xi) is defined
to be

∫
p(Y (Xi))p(Xi | Xi ̸= xi) dXi. This cor-

responds to the label distribution when we replace
the word xi with a random word that fits in the
context (e.g. “Titanic” to “Ip Man”). In practice,
we can simulate the intervention Xi ̸= xi by text
infilling using masked language models (Devlin
et al., 2019).
Definition 2 (Probability of sufficiency). The prob-
ability of sufficiency (PS) of a feature Xi = xi
for the label Y = y conditioned on the context
X−i = x−i is

PS(Xi=xi, Y=y | X−i=x−i) ≜
p(Y (Xi=xi) = y | Xi ̸=xi, X−i=x−i, Y ̸=y) .

Similarly, PS(xi, y | x−i) is the probability that
setting Xi to xi would produce the label y on an
example where xi is absent. For example, PS of
“not” for the negative sentiment measures the prob-
ability that a positive review will become negative
had we added “not” to the input.

3The counterfactual label Y (Xi = xi) is also commonly
written as Yxi (Pearl, 2009) but we follow the notation in
Wang and Jordan (2021)

4For notational simplicity, we omit the random variables
(denoted by capital letters) when clear from the context.

We note that both PN and PS are context-
dependent—they measure the counterfactual out-
come of individual data points. For example, while
“not” has high PN for contradiction in the example
in Table 1, there are examples where it has low
PN.5 Similarly, there can be examples where the
word “Titanic” has high PN.6 To consider the av-
erage effect of a feature, we marginalize over the
context X−i:

PN(xi, y) ≜
∫

PN(xi, y | X−i)p(X−i | xi, y) dX−i,

and similarly for PS.

Definition 3 (Spuriousness of a feature). The spu-
riousness of a feature Xi = xi for a label Y = y is
1− PS(xi, y). We say a feature is spurious to the
label if its spuriousness is positive.

Our definition of the spuriousness of a feature
follows directly from the definition of PS, which
measures the extent to which a feature is a suf-
ficient cause of the label (marginalized over the
context X−i). Following this definition, a feature
is non-spurious only if it is sufficient in any con-
text. Admittedly, this definition may be too strict
for NLP tasks as arguably the effect of any feature
can be modulated by context, making all features
spurious. Therefore, practically we may consider a
feature non-spurious if it has low spuriousness (i.e.
high PS).

Feature categorization. The above definitions
provide a framework for categorizing features by
their necessity and sufficiency to the label as shown
in Figure 2.

5Consider the premise “The woman was happy” and the hy-
pothesis “The woman angrily remarked ‘This will not work!”’.

6For example in sentiment analysis, consider ‘This movie
was on a similar level as Titanic’.
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Figure 2: Categorization of features based on their PN
and PS. Spurious features have low PS. Among them,
the high PN ones are part of the features needed for
prediction but they alone are not sufficient; and the low
PN ones are irrelevant to prediction.

Estimating PN and PS. Calculating PN and PS
of a feature requires knowing how the label would
change when the feature is removed or added to an
instance. Sometimes we can reason about it with
domain knowledge. Consider the feature “Titanic”
in Figure 1b, it has zero PN and PS since removing
or adding it would not change the label.

In more complex cases, we might need to esti-
mate the probabilities using an experiment. For
example, consider the lexical overlap between the
premise and hypothesis in NLI. Given an entail-
ment example with high word overlap, changing
the overlapped words is likely to cause label change
(H1–3) unless it is replaced by a synonym (H4):

P: The doctor was paid by the actor.
H0: The actor paid the doctor. L0: Entailment

H1: The teacher paid the doctor. L1: Neutral
H2: The actor liked the doctor. L2: Neutral
H3: The actor paid the guard. L3: Neutral
H4: An actor paid the doctor. L4: Entailment

Since a non-synonym is more likely to be sampled
during intervention thus causing a label change,
we conclude that word overlap has high PN to en-
tailment. On the other hand, it is not a completely
sufficient feature (i.e. spuriousness > 0) since there
are plenty of examples with high lexical overlap
but non-entailment labels (McCoy et al., 2019).

We can partially automate this process by inter-
vening examples using masked language models
and then collecting labels for the perturbed exam-
ples. We discuss this method in more detail and
provide preliminary results in Appendix A. How-
ever, we note that while PN/PS can be estimated
through careful intervention, as a conceptual frame-
work, domain knowledge often suffices to judge

whether a feature has high or low PN/PS.

3 Experiment Setup

Before diving into the implications of our catego-
rization of spurious features, we explain the com-
mon setup of experiments that we use to support
our arguments.

Spurious features. Typical features considered
in the literature (such as word overlap and negation
words) fall into the high PN and low PS category.
Therefore, in the following discussion, we will fo-
cus on two types of spurious features: low PN
features that are irrelevant to prediction, and high
PN features that are necessary but need additional
context to decide the label.

Datasets. We use the following datasets that con-
tain the spurious features. (i) Low PN spurious
features: we inject synthetic bias to MNLI exam-
ples by associating a punctuation (‘!!’) with the
neutral label. Following Dranker et al. (2021), we
set bias prevalence (i.e. examples where ‘!!’ is
present) to 25% and set bias strength (i.e. percent-
age of examples with ‘!!’ and the neutral label) to
90%. The dataset is created by modifying MNLI
examples through adding/deleting the feature at
the end of the hypothesis. (ii) High PN spuri-
ous features: we consider the negation bias (Po-
liak et al., 2018) and the lexical overlap bias in
MNLI (Williams et al., 2018) for which we use the
HANS challenge set (McCoy et al., 2019) during
evaluation.

Models. For all our experiments, unless other-
wise stated, we use RoBERTa-large (Liu et al.,
2019) from Huggingface (Wolf et al., 2019) as the
backbone model.

Training methods. Our baseline algorithm fine-
tunes the pretrained model on the original dataset
with cross-entropy loss. We also experiment with
debiasing methods including Subsampling (Sagawa
et al., 2020), Product-of-Expert (POE) and Debi-
ased Focal Loss (DFL) (Karimi Mahabadi et al.,
2020) for comparison. Hyperparameters and train-
ing details can be found in Appendix B.7

4 Implications on Model Robustness

Under the causal framework, we say a model is
non-robust if it fails on the interventional distribu-

7Our code can be found at https://github.com/
joshinh/spurious-correlations-nlp
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Models HANS MNLI subsets
Ent/Non-ent ∆ Ent/Non-ent ∆

BERT-base 99.2/12.9 86.3 96.4/82.5 13.9
RoBERTa-large 99.9/56.2 43.7 97.1/93.6 3.5

Table 2: Results on two challenge sets for lexical over-
lap. Both indicate significantly different extent to which
the models rely on the spurious correlation.

tion. For example, in Figure 1b the movie name
has no causal effect on the label; if intervening on
it (e.g. changing “Titanic”) nevertheless incurs a
prediction change, we say the model is not robust.

Is relying on spurious features always bad?
Prior work has suggested that if the model predic-
tion relies on a single feature in any way, it is un-
desired (Gardner et al., 2021). However, for a high
PN feature, the label and the model output should
depend on it (Figure 1c). Such dependency only be-
comes undesirable when other necessary features
are ignored by the model (e.g. predicting negative
sentiment whenever “not” is present). This can be
caused by two reasons: first, the model may overly
rely on a spurious feature Xi due to confounding
between Y and Xi in the training data (e.g. “not”
appears in all negative examples but not positive
examples); second, even without confounding, the
model may fail to learn how Xi interacts with other
features to affect the label (e.g. not understanding
double negation).

How to evaluate models’ robustness? A typi-
cal way to test models’ robustness is to construct
a “challenge set” that tests if perturbations of the
input cause model predictions to change in an ex-
pected way. The challenge here is that the expected
behavior of a model depends on the type of the
spurious feature. For low PN spurious features,
we can simply perturb them directly and check
if the model prediction is invariant, e.g. replac-
ing named entities with another entity of the same
type (Balasubramanian et al., 2020). Performance
drop on this test set then implies that the model is
non-robust. However, intervention on the spurious
feature only tells us if the feature is necessary, thus
it cannot be used to evaluate robustness to high PN
spurious features, where the model prediction is
likely (and expected) to flip if we perturb the fea-
ture (e.g. replacing “not” with “also” in Figure 1c).

For high PN spurious features like negation
words, we instead want to test if they are sufficient
for the model prediction. An alternate method is to

create two sets of examples with the same spurious
feature but different labels. For example, HANS
(McCoy et al., 2019) consists of entailment and
non-entailment examples, both having complete
lexical overlap; this tests if high word overlap alone
is sufficient to produce an entailment prediction.
However, this process inevitably introduces a new
variable. Consider the causal graph in Figure 1c.
With the spurious feature (“not”) fixed, to change
Y we must change other features (e.g. “good” →
“bad”) that affect the label by interacting with “not”.
To make a correct prediction, the model must learn
the composite feature formed by the spurious fea-
ture and the newly introduced features. As a result,
its performance depends not only on the spurious
feature but also on the features introduced during
the perturbation.

Inconsistent results on different challenge sets.
To illustrate this problem, we evaluate models’ ro-
bustness to lexical overlap on two challenge sets
constructed differently: (a) HANS; (b) subsets of
high lexical overlap examples in the MNLI dev
set (where > 0.8 fraction of words in the hypoth-
esis are also in the premise). Compared to (b),
HANS non-entailment examples require linguis-
tic knowledge such as understanding passive voice
(e.g. “The senators were helped by the managers”
does not imply “the senators helped the managers”)
or adverbs of probability (e.g. “Probably the artists
saw the authors” does not imply “the artists saw
the authors”), which are rare in MNLI.

We fine-tune pre-trained models on MNLI and
report their results in Table 2. While models per-
form poorly on high overlap non-entailment ex-
amples from HANS, their performance is much
higher on such examples from MNLI (56.2% vs
93.6%), leading to inconsistent conclusions.8 Thus,
we should be careful when interpreting the magni-
tude of the problem on challenge sets, as the per-
formance drop could also be attributed to unseen
features introduced during dataset construction.

5 Implications on Learning Methods

In this section, we discuss two common classes of
methods to train robust models and their effective-
ness for spurious features with high/low PN.

8Large variance in performance across different subcases
of non-entailment examples as reported in McCoy et al. (2019)
is another example of the unreliability.
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5.1 Decorrelating the Spurious Feature and
the Label

A straightforward idea to remove undesirable cor-
relation between the label Y and a spurious feature
Xi due to confounding is to balance the training
data such that Y and Xi are independent (Japkow-
icz, 2000; Austin, 2011; Li and Vasconcelos, 2019).
In practice, this amounts to subsampling the dataset
to balance the classes conditioned on the spuri-
ous feature (e.g. “Titanic is good/bad” are equally
likely) (Sagawa et al., 2020), or upweighting exam-
ples where the spurious feature is not predictive for
the label (Karimi Mahabadi et al., 2020). While
these methods have shown promise for spurious
features with both high and low PN, there is a key
difference between the underlying mechanisms.

For a low PN spurious feature, the dependence
between model prediction and the feature arises
from a confounder that affects both Y and Xi. As
shown in Figure 1b, assuming independence be-
tween the spurious feature and other features that
affect the label (i.e. there is no path from Xi to Y
through C),9 Xi and Y are independent without
confounding. Thus, enforcing the independence
through data balancing matches the independence
condition on the data generating distribution. As a
result, the model prediction will be independent of
Xi and we expect its performance to be invariant
across examples grouped by Xi values (e.g. similar
accuracy on reviews about famous vs. non-famous
movies).

On the other hand, for high PN spurious features,
even without confounding, Xi is not independent
of Y on the data generating distribution (Figure
1c). Then why do these methods work for high PN
features? Note that Xi is not sufficient to decide
Y alone but forms a composite feature with other
features that affect the label together (e.g. a double
negation construction). Therefore, within the same
class, examples with different Xi are likely to form
different composite features. In real data, certain
combinations of Xi and Y (e.g. positive examples
with negation) often correlate with composite fea-
tures that are difficult to learn (e.g. double negation
or comparison). By balancing the (Xi, Y ) groups,
we allow the model to learn the minority examples
more effectively. However, the model performance
is not necessarily invariant across groups because

9While this is not true in general due to the complex gram-
mar constraints in natural language, we use a simplified model
for our analysis.
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Figure 3: Model performance across groups. Left: train
on high overlap examples. Right: train on examples
with punctuation. We show both the in-distribution per-
formance where the model is tested on the same group as
training, and the out-of-distribution performance where
the model is tested on the unseen group. Performance is
invariant to groups if the feature has low PN (right) but
has large variation if the feature has high PN (left).

the model must rely on different (composite) fea-
tures.

Data balancing leads to invariance to low
PN spurious features but not high PN ones.

Experiments. We create balanced datasets for
two spurious features in MNLI: (a) punctuation,
where examples are grouped by whether they end
with ‘!!’ as described in Section 4; and (b) lexical
overlap, where examples are grouped by lexical
overlap (‘high overlap’ if more than 0.8 fraction of
the words in the hypothesis are also in the premise,
and ‘low-overlap’ if less than 0.2). For both groups,
we subsample the training set such that the label
distribution is uniform in each group.

To test models’ invariance to groups, we train
RoBERTa-large on one group and test on the other,
e.g. training only on high-overlap examples and
evaluating on low-overlap examples — a model
that is invariant to the spurious feature should gen-
eralize equally well to both groups.

Results. In Figure 3, we observe that for the punc-
tuation feature (low PN), there is no large variance
in performance across groups. But models have
very different performances between the low and
high overlap groups. Specifically, models trained
on high overlap examples perform poorly on low
overlap examples, in particular the entailment class,
despite seeing no correlation between lexical over-
lap and label during training. This could happen
because entailment examples within the high and
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low overlap groups require different features, such
as lexical semantics in the high overlap group (“It
stayed cold for the whole week” implies ‘It stayed
cold for the entire week”), and world knowledge
in the low overlap group (“He lives in the northern
part of Canada” implies “He stays in a cold place”)
(Joshi et al., 2020). The result highlights that for
high PN spurious features, balancing the dataset
might not be enough—we additionally need more
examples (or larger models (Tu et al., 2020)) to
learn the minority patterns.

5.2 Removing Spurious Features from the
Representation

A different class of methods focuses on removing
the spurious feature from the learned representa-
tions, e.g. iterative null-space projection (Ravfogel
et al., 2020, INLP) and adversarial learning (Zhang
et al., 2018). As argued in the previous section,
high PN spurious features form composite features
with other necessary features. Therefore, removing
them also leads to the removal of the composite
features, which ends up hurting performance.

Removing high PN spurious features from
the representation hurts performance.

Experiments. We test our hypothesis by remov-
ing two spurious features (lexical overlap and punc-
tuation) using INLP, a debiasing method that re-
moves linearly encoded spurious features by iter-
atively projecting the learned representation. We
fine-tune RoBERTa-large on subsampled datasets
where the label and the spurious feature are inde-
pendent. Over iterations of INLP, we measure the
extractability of the spurious feature by its prob-
ing accuracy and measure the model performance
by its task accuracy, where both are from linear
classifiers trained on the debiased representations.
Following Mendelson and Belinkov (2021), the
linear classifiers are also trained and evaluated on
balanced datasets. For task accuracy, we report
results on the minority group (e.g. high lexical
overlap examples with non-entailment label) since
we find that this group is most affected by debias-
ing.10

Results. Figure 4 shows the results for two spuri-
ous features. We observe that for high PN features
(lexical overlap), when the probing accuracy drops
significantly around 300 iterations (i.e. the feature

10Full results are in Appendix C.
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Figure 4: Extractability (probing accuracy) of the spuri-
ous feature (shown in dashed lines) and the task accu-
racy (shown in solid lines) as a function of iterations in
INLP. For high PN features (word-overlap), its removal
(decreasing probing accuracy) is accompanied by large
drop in the task accuracy.

is largely removed from representation), there is a
significant drop in task accuracy. In contrast, re-
moving the low PN feature does not affect task
accuracy significantly.

5.3 What Features does the Model Learn with
Data Balancing?

We have seen that directly removing spurious fea-
tures from the representation may hurt perfor-
mance, whereas data balancing generally helps.
Then what features do models learn from balanced
data? Mendelson and Belinkov (2021) recently
found that, quite counter-intuitively, it is easier to
extract the spurious feature from the representation
of models trained on balanced data. We argue that
this occurs for high PN spurious features because
they form composite features with other features,
which a probe can rely on (e.g. from “not good”
we can still predict the existence of “not”). In con-
trast, a low PN spurious feature that is not useful
for prediction may become less extractable in the
representation.

Data balancing does not remove high PN
spurious features from the representation.

To understand the relation between a feature’s
correlation with the label (in the training set) and
its prominence in the learned representation, we
first conduct experiments on a synthetic dataset
where we can control the strength of feature-label
correlations precisely.
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Figure 5: Extractability (compression) of the spurious
feature as a function of bias strength on the synthetic
data. The high PN feature is easily extractable regard-
less of its correlation with the label, whereas the low PN
feature becomes less extractable when the bias strength
drops.

Synthetic data results. We create a binary se-
quence classification task similar to Lovering et al.
(2020), where each input is of length 10 from a vo-
cabulary V of integers (|V | = 1k). We create spu-
rious features with low and high PN as follows. In
the first task, the label is 1 if the first two characters
are identical; the spurious feature is the presence
of the symbol 2 in the sequence, which has zero
PN. In the second task, the label is 1 if the first
two characters are identical XOR 2 is present; the
spurious feature is again the presence of 2, but in
this case it has high PN (since removing 2 will flip
the label).

We generate a sequence of synthetic datasets
with increasing bias strength by varying the corre-
lation between the label and the spurious feature.
We then train LSTM models (embedding layer, a
1-layer LSTM and an MLP with 1 hidden layer
with tanh activation) on each dataset and measure
the extractability of the spurious feature from the
model’s representation. Following Mendelson and
Belinkov (2021), we train linear probes on bal-
anced datasets to predict the feature from the last
layer embeddings of each model. We then measure
extractability using two metrics: probing accuracy
and compression C based on minimum description
length (Voita and Titov, 2020).11

Figure 5 plots the extractability of the spurious
feature (measured by compression C) as a function
of the bias strength. We observe that the extractabil-
ity of the high PN spurious feature remains high
across varying bias strengths, including when the

11For both metrics, higher value indicates higher extractabil-
ity. See Appendix B for more details about training.

Lexical-overlap bias Punctuation Bias
C Acc. C Acc.

Baseline 3.5 90.5 47.6 100.0

Subsampled 3.6 91.5 10.2 97.7
POE 4.2 91.3 42.9 99.9
DFL 3.9 88.3 48.5 100.0

Table 3: Extractability of the spurious feature for vari-
ous robust training methods. Blue denotes an increase
whereas red denotes a decrease in extractability from
the baseline. For high PN spurious features (lexical
overlap), the feature is as easy if not easier to extract
after debiasing, as compared to the baseline, in contrast
to the low PN feature (punctuation).

spurious feature and the label are independent (bias
strength=0.5). In contrast, for low PN spurious fea-
tures, we observe that its extractability decreases as
the bias strength decreases. In other words, they be-
come less prominent in the representation as their
correlation with the label drops.

Real data results. Next, we study the effect of de-
biasing algorithms on the extractability of spurious
features in real datasets. We evaluate the follow-
ing methods: Subsampling (Sagawa et al., 2020),
Product-of-Expert (POE) and Debiased Focal Loss
(DFL) (Karimi Mahabadi et al., 2020), all of which
explicitly or implicitly break the feature-label corre-
lation during training. We also train using ERM on
the original biased dataset as a baseline. All meth-
ods use RoBERTa-large as the backbone model.
We test on the low PN spurious feature (punctua-
tion, ‘!!’) and the high PN spurious feature (lexical
overlap) in Table 3.12

We observe that the high PN feature, lexical
overlap, is still easily extractable after debiasing.
In contrast, for the low PN feature, punctuation,
although its probing accuracy is high, its compres-
sion is larger in the baseline models, i.e. the feature
becomes harder to extract after debiasing, which
is consistent with what we observe in the synthetic
case.

In sum, we show that breaking the correlation
between a feature and the label (e.g. through data
balancing) does not necessarily remove the fea-
ture from the learned representation. The high PN
features can still be detected from the composite
features on which the label depends.

12The results for negation bias can be found in Appendix
D.
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6 Related Work

While there is a large body of work on improv-
ing model robustness to spurious correlations, the
question of what spurious features are in natural
language is less studied.

Veitch et al. (2021) formalize spurious correla-
tions from a causal perspective and argued that the
right objective is counterfactual invariance (CI)—
the prediction of a model should be invariant to
perturbations of the spurious feature. They also
make a distinction between purely spurious and
non-purely spurious correlations, which are similar
to the type 1 and type 2 dependencies we defined.
However, their main approach and results assumed
purely spurious correlations. Here, we argue that
high PN features, or non-purely spurious correla-
tions, are more common in NLP tasks, and the label
is not invariant to these features.

Gardner et al. (2021) consider all single features/-
words that correlate with the label as spurious. Un-
der this definition, the learning algorithm should
enforce a uniform distribution of the prediction
conditioned on any feature, i.e. Y |Xi = xi should
follow a uniform distribution (termed uninforma-
tive input features or UIF by Eisenstein (2022)). To
connect PN/PS (counterfactual quantities) with the
conditional probability (an observational quantity),
we must marginalize over the context. If the feature
has zero PN and PS (i.e. it has no effect on the label
in any context), p(Y | Xi = xi) is uniform for all
xi. However, we cannot say the same for features
with non-zero PN/PS.

Recently, Eisenstein (2022) used a toy exam-
ple to demonstrate the disconnect between UIF
and CI, showing that neither objective implies the
other. Along similar lines, Schwartz and Stanovsky
(2022) argued that UIF is hard to achieve in prac-
tice; further, enforcing a uniform label distribution
for one feature may skew the label distribution for
other features. Our work complements the two
by adding more clarity to the relation between a
feature and the label in NLP tasks. Additionally,
we highlight that neither the CI nor the UIF prin-
ciple holds for high PN spurious features, which
the label depends on in the true data generating
distribution.

Finally, formal notions of necessity and suffi-
ciency from causality have also been used in the
context of explanations. Mothilal et al. (2021)
and Galhotra et al. (2021) use a causal framework
and counterfactual examples to estimate necessity

and sufficiency of explanations. Wang and Jordan
(2021) used the notions to formalize the desired
properties of representations—they should be non-
spurious (capturing sufficient features) and efficient
(every feature should be necessary). We use notions
of probability of causation to formalize two differ-
ent types of spurious features present in natural
language.

7 Conclusion

In this work, we showed that all spurious features
in natural language are not alike—many spurious
features in NLU are necessary but not sufficient
to predict the label. We further showed how this
distinction makes it challenging to evaluate model
robustness and to learn robust models. In particular,
unlike low PN spurious features that are irrelevant
to prediction, high PN features interact with other
features to influence the label. Therefore, they do
not have a clean relationship with the label that
allows us to enforce independence or invariance
during training.

Perhaps a pessimistic takeaway is that there is
not much we can do about high PN spurious fea-
tures. The key problem is that the model fails to
learn the rare or unseen compositions of the neces-
sary spurious feature and other features (e.g. differ-
ent constructions that involve negation). That said,
we believe large language models suggest promis-
ing solutions because 1) they have good representa-
tions of various constructions in natural language;
2) they can bypass the problem of dataset bias in
supervised learning through few-shot in-context
learning; 3) they can take additional inductive bias
for the task through natural language prompting
(e.g. chain-of-thought). We hope that our result
will spur future work on training and evaluating
spurious correlations that are more suited for spuri-
ous features arising in natural language.

Limitations

While our definition helps put spurious features
into perspective, it has some limitations:

1. Our definition relies on counterfactual quan-
tities which are not observed. Thus, actually
computing PN and PS is expensive and needs
a human to, at the very least, go through the
perturbed examples.

2. While the definitions and categorization help
interpret experiment results, they do not di-
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rectly tell us what training & evaluation meth-
ods are suitable for the high PN spurious fea-
tures in particular. One straightforward idea
to enforce models to match the PN and PS
of features in the data generating distribution.
This would require collecting counterfactual
examples with control for a specific feature
(as opposed to generic counterfactuals as in
Kaushik et al. (2020)). We believe that more
research is needed to understand how to train
models robust to spurious correlations. Both
our work and Schwartz and Stanovsky (2022)
argue that subsampling training data to en-
sure the independence between the spurious
feature and the label might not work. Nev-
ertheless, we believe that our definitions are
important to put the results in perspective and
make progress.
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A Measuring PN

To provide a more concrete method for measuring
PN of any feature, we use the following method:
We use masked language models (MLMs) (Devlin
et al., 2019) to intervene on the feature Xi by mask-
ing and in-filling while ensuring that x′i ̸= xi i.e.
the replaced word is different from the original one.
We can then annotate these examples (either us-
ing experts or through crowdsourcing) to check if
the new label is the same. We use this method to
compute PN over a small set of randomly sampled
examples (20) which were annotated by the authors.
We used RoBERTa-large for mask in-filling. Using
this method, the estimated PN for negation features
is 0.8, for lexical overlap it is 0.7 and for punctua-
tion bias in NLI it is 0. This shows that, as expected,
lexical overlap and negation features have much
higher PN than punctuation. We note that while
such a method is useful to estimate PN/PS, as a
conceptual framework, domain knowledge often
suffices to judge whether a feature has high or low
PN/PS.

B Experimental Details

In all the experiments, the model is trained for 3
epochs, with a maximum sequence length of 128
tokens. We use a learning rate of 1e-5 with the
Adam Optimizer (Kingma and Ba, 2015) with a
batch size of 32. All experiments were run on a
single RTX8000 GPU with run-time of < 12 hours
for each experiment. We use the default train/dev
split in MNLI dataset.

Probing Experiments (Section 5.2): We use set-
ting similar to Mendelson and Belinkov (2021)
where we train linear probes on subsampled
datasets where the probing label is balanced. The
probe is trained with a batch size of 64 for 50
epochs with a learning rate 1e-3 using Adam opti-
mizer.

C INLP: Extended Results

Training Details For INLP, we use the 1024 di-
mensional representation of the first token from
RoBERTa-Large as the representation of the in-
put. The linear model is trained and evaluated on
subsets of the dataset where the probing label is
balanced.

In Figure 4 we observed that for the lexical over-
lap spurious correlation, the performance for the
main task drops significantly on the minority ex-
amples. Here, we show that we also observe a
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Figure 6: Extractability of the spurious feature (probing
accuracy) and the main task accuracy (task accuracy) as
a function of iterations in INLP. The high PN feature
(word-overlap) is more difficult to remove (noisier prob-
ing accuracy), and is accompanied by drop in the task
accuracy.
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Figure 7: Extractability of the spurious feature (probing
accuracy) and the main task accuracy (task accuracy) as
a function of iterations in INLP. The high PN feature
(negation) is more difficult to remove (noisier probing
accuracy), and is accompanied by drop in the task accu-
racy.

decrease in the average performance albeit less
than that for the minority group. One potential
explanation for why we observe larger drop on
the minority examples is that learning an invariant
representation leads the model to solve the easier
examples in the majority group (e.g. high lexical
overlap examples with entailment label) at the cost
of the minority examples. The performance for the
main task on all dev examples for lexical overlap is
shown in Figure 6. We additionally also compare
to the negation spurious correlation which also has
a type 2 dependency in Figure 7 — we observe that
the main task accuracy remains much higher than
that for lexical overlap but eventually drops down
suddenly.
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Negation-bias Word-overlap bias Synthetic-NLI
C Acc. C Acc. C Acc.

Baseline 2.6 86.7 3.5 90.5 47.6 100
Subsampling (Sagawa et al., 2020) 2.6 87.8 3.6 91.5 10.2 97.7

POE (Karimi Mahabadi et al., 2020) 2.8 88.9 4.2 91.3 42.9 99.9
DFL (Karimi Mahabadi et al., 2020) 2.9 89.2 3.9 88.3 48.5 100
Group-DRO (Sagawa* et al., 2020) 2.8 89.8 4.7 91.5 14.7 100

Table 4: Extractability of the spurious feature for various robust training methods. In general, the representation is
more invariant to the feature if it has low PN (synthetic NLI) than if it has high PN (negation and word-overlap bias).

D Encoding of Spurious Feature:
Extended Results

In addition to the results reported for lexical over-
lap and synthetic bias in NLI, we also verify the
hypothesis for negation spurious correlation and
evaluate Group-DRO (Sagawa* et al., 2020) on all
spurious correlations in Table 4.
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