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Abstract
Well-designed diagnostic tasks have played a
key role in studying the failure of neural nets
(NNs) to generalize systematically. Famous ex-
amples include SCAN and Compositional Ta-
ble Lookup (CTL). Here we introduce CTL++,
a new diagnostic dataset based on compositions
of unary symbolic functions. While the orig-
inal CTL is used to test length generalization
or productivity, CTL++ is designed to test sys-
tematicity of NNs, that is, their capability to
generalize to unseen compositions of known
functions. CTL++ splits functions into groups
and tests performance on group elements com-
posed in a way not seen during training. We
show that recent CTL-solving Transformer vari-
ants fail on CTL++. The simplicity of the task
design allows for fine-grained control of task
difficulty, as well as many insightful analyses.
For example, we measure how much overlap
between groups is needed by tested NNs for
learning to compose. We also visualize how
learned symbol representations in outputs of
functions from different groups are compatible
in case of success but not in case of failure.
These results provide insights into failure cases
reported on more complex compositions in the
natural language domain. Our code is public.1

1 Introduction

Neural networks (NNs) should ideally learn from
training data to generalize systematically (Fodor
et al., 1988), by learning generally applicable rules
instead of pure pattern matching. Existing NNs,
however, typically don’t. For example, in the con-
text of sequence processing NNs, superficial differ-
ences between training and test distributions, e.g.,
with respect to input sequence length or unseen
input/word combinations, are enough to prevent
current NNs from generalizing (Lake and Baroni,
2018). Training on a large amounts of data might
alleviate the problem, but it is infeasible to cover
all possible lengths and combinations.

1https://github.com/robertcsordas/ctlpp

Indeed, while large language models trained on
a large amounts of data have obtained impressive
results (Brown et al., 2020), they often fail on
tasks requiring simple algorithmic reasoning, e.g.,
simple arithmetics (Rae et al., 2021). A promis-
ing way to achieve systematic generalization is
to make NNs more compositional (Schmidhuber,
1990), by reflecting and exploiting the hierarchi-
cal structure of many problems either within some
NN’s learned weights, or through tailored NN ar-
chitectures. For example, recent work by Csordás
et al. (2022) proposes architectural modifications
to the standard Transformer (Vaswani et al., 2017)
motivated by the principles of compositionality.
The resulting Neural Data Router (NDR) exhibits
strong length generalization or productivity on rep-
resentative datasets such as Compositional Table
Lookup (CTL; Liska et al. (2018); Hupkes et al.
(2019)).

The focus of the present work is on systematicity:
the capability to generalize to unseen compositions
of known functions/words. That is crucial for learn-
ing to process natural language or to reason on
algorithmic problems without an excessive amount
of training examples. Some of the existing bench-
marks (such as COGS (Kim and Linzen, 2020) and
PCFG (Hupkes et al., 2020)) are almost solvable
by plain NNs with careful tuning (Csordás et al.,
2021), while others, such as CFQ (Keysers et al.,
2020), are much harder. A recent analysis of CFQ
by Bogin et al. (2022) suggests that the difficult
examples have a common characteristic: they con-
tain some local structures (describable by parse
trees) which are not present in the training exam-
ples. These findings provide hints for constructing
both challenging and intuitive (simple to define and
analyze) diagnostic tasks for testing systematicity.
We propose CTL++, a new diagnostic dataset build-
ing upon CTL. CTL++ is basically as simple as the
original CTL in terms of task definition, but adds
the core challenge of compositional generalization
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absent in CTL. Such simplicity allows for insight-
ful analyses: one low-level reason for the failure to
generalize compositionally appears to be the failure
to learn functions whose outputs are symbol repre-
sentations compatible with inputs of other learned
neural functions. We will visualize this.

Well-designed diagnostic datasets have histori-
cally contributed to studies of systematic general-
ization in NNs. Our CTL++ strives to continue this
tradition.

2 Original CTL

Our new task (Sec. 3) is based on the CTL task
(Liska et al., 2018; Hupkes et al., 2019; Dubois
et al., 2020) whose examples consist of composi-
tions of bijective unary functions defined over a set
of symbols. Each example in the original CTL is
defined by one input symbol and a list of functions
to be applied sequentially, i.e., the first function is
applied to the input symbol and the resulting output
becomes the input to the second function, and so
forth. The functions are bijective and randomly
generated. The original CTL uses eight different
symbols. We represent each symbol by a natural
number, and each function by a letter. For example,
‘d a b 3’ corresponds to the expression d(a(b(3))).
The model has to predict the corresponding output
symbol (this can be viewed as a sequence clas-
sification task). When the train/test distributions
are independent and identically distributed (IID),
even the basic Transformer achieves perfect test
accuracy (Csordás et al., 2022). The task becomes
more interesting when test examples are longer
than training examples. In such a productivity split,
which is the common setting of the original CTL
(Dubois et al., 2020; Csordás et al., 2022), standard
Transformers fail, while NDR and bi-directional
LSTM work perfectly.

3 Extensions for Systematicity: CTL++

To introduce a systematicity split to the CTL frame-
work, we divide the set of functions into disjoint
groups and restrict the sampling process such that
some patterns of compositions between group el-
ements are never sampled for training, only for
testing. Based on this simple principle, we derive
three variations of CTL++. They differ from each
other in terms of compositional patterns used for
testing (excluded from training) as described below.
We’ll also visualize the difference using sampling
graphs in which the nodes represent the groups,
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Figure 1: Sampling graph for variant ‘A.’

and the edges specify possible compositional pat-
terns. The colors of the edges reflect when the
edges are used: black for both training and testing,
blue for training, and red only for testing.

Variation ‘A’ (as in ‘Alternating’). Here func-
tions are divided in groups Ga and Gb. During
training, successively composed functions are sam-
pled from different groups in an alternating way—
i.e., successive functions cannot be from the same
group. During testing, however, only functions
from the same group can be composed. The sam-
pling graph is shown in Fig. 1. Importantly, the sin-
gle function applications are part of the training set,
to allow the model to learn common input/output
symbol representations for the interface between
different groups.

Variation ‘R’ (as in ‘Repeating’). This variant
is the complement of variation ‘A’ above. To get
a training example, either Ga or Gb is sampled,
and all functions in that example are sampled from
that same group for the whole sequence. In test
examples, functions are sampled in an alternating
way. There is thus no exchange of information
between the groups, except for the shared input
embeddings and the output classification weight
matrix. The sampling graph is like in Fig. 1 for ‘A’
except that blue edges should become red and vice
versa (see Fig. 5 in the appendix).

Variation ‘S’ (as in ‘Staged’). In this variant,
functions are divided into five disjoint groups: Ga1,
Ga2, Gb1, Gb2 and Go. As indicated by the indices,
each group belongs to one of the two paths (‘a’
or ‘b’) and one of the two stages (‘1’ or ‘2’), ex-
cept for Go which only belongs to stage ‘2’ shared
between paths ‘a’ and ‘b’ during training. The cor-
responding sampling graph is shown in Fig. 2. To
get a training example, we sample an integer K
which defines the sequence length as 2K + 1, and
iterate the following process for k ∈ [0, ..,K] and
i = 2k: we first sample a path p ∈ {a, b} and
then a function fi from Gp1 and a function fi+1
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from Gp2 ∪Go. Each example always contains an
even number of functions, and no isolated single
function application is part of training, unlike in
the previous two variants. For testing, we sam-
ple a path p ∈ {a, b} and a function fi from Gp1,
but then sample a function fi+1 from G{a,b}\{p}2,
which results in a compositional pattern never seen
during training.

The unique feature of this variant is the use of
two stages: as can be seen in Fig. 2, during training,
given a path p ∈ {a, b}, outputs of any functions
belonging to Gp1 are only observed by the func-
tions belonging to Gp2, i.e., the stage ‘2’ group
belonging to the same path p, or Go. Hence, if
Go = ∅, the model has no incentive to learn com-
mon representations for the interface between Ga1

and Gb1: to solve the training examples, it suffices
to learn output representations of Ga1 which are
‘compatible’ with the input representations of Ga2;
similarly for Gb1 and Gb2. There is no reason for
outputs of Ga1 to be compatible with the inputs
of Gb2 (analogously for Gb1 and Ga2) which is
required at test time. The size of Go is our first
parameter for controlling task difficulty (the y-axis
of Fig. 4 which we will present later).

We introduce further restrictions: for each func-
tion f ∈ Go, we define a set of symbols Sf

a for
Ga1 (and Sf

b for Gb1), and we only allow for sam-
pling f if the output symbol of function from Ga1

(or Gb1) belongs to Sf
a (or Sf

b ). This allows for
defining another control parameter: the number of
overlapping symbols between Sf

a and Sf
b (same for

all f ; the x-axis of Fig. 4). Note that we ensure that
the union of shared symbols defined for functions
in Go cover all possible symbols. This might not
be the case in a more realistic scenario, but as we’ll
see, the standard models already struggle in this
setting. By controlling these two parameters, we
precisely control the degree of overlap offered by
Go in terms of both the number of functions and
symbols. Ideal models should be “sample efficient”
in terms of this overlap, since we cannot expect
the training set to contain all combinations of such
overlaps in a practical scenario with semantically
rich domains such as natural language.

4 Results

We evaluate standard CTL-tested models on the
new CTL++ task, including: the Transformer
(Vaswani et al., 2017) with shared layers (Dehghani
et al., 2019), the neural data router (NDR) (Csordás
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Figure 2: Sampling graph for Variant ‘S’

et al., 2022), and the bi-directional LSTM (Hochre-
iter and Schmidhuber, 1997; Schuster and Paliwal,
1997; Graves et al., 2005). Recall that both NDR
and bi-directional LSTM are reported to perfectly
solve the original CTL’s length generalization split
(Csordás et al., 2022), unlike the Transformer. Fur-
ther experimental details can be found in Appendix
A.

Table 1: Results on the task variants ‘A’ and ‘R.’ Mean
and standard deviation are computed using 25 seeds.

Model Dataset
Accuracy

IID OOD

Bi-LSTM A 1.00± 0.00 0.95± 0.03
R 1.00± 0.00 1.00± 0.00

Transformer A 1.00± 0.00 0.21± 0.09
R 1.00± 0.00 0.75± 0.25

NDR A 1.00± 0.00 0.34± 0.26
R 1.00± 0.01 0.75± 0.27

4.1 Results on Variants ‘A’ and ‘R’

Table 1 shows the performance overview for ‘A’
and ‘R.’ The OOD (out-of-distribution) column
indicates the train/test data sampling processes de-
scribed above. As a reference, we also report the
IID cases where the training example sampling
graph is also used for testing. Our initial expecta-
tion was that the pressure from shared input/output
embeddings is sufficient for these models to learn
common symbol representations for all functions.
However, we observe that only the bi-LSTM solves
these tasks consistently across seeds. Interestingly,
the NDR, which perfectly performs on the length
generalization split of CTL and beyond (Csordás
et al., 2022), performs poorly on both the ‘A’ and
‘R’ variants of CTL++. Tested with 25 seeds, only
32% of the seeds (out of 25) achieve over 95%
accuracy for NDR on ‘R’ (20% for the standard
Transformer). The success rate is 0% for the ‘A’
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(a) Example for symbol ‘6’.
Perfect clustering w.r.t. the
function groups is observed.
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(b) Example for symbol ‘3’.
Partial clustering w.r.t. the
function groups is observed.

Figure 3: Cosine similarity of output representations of
different functions representing the same symbol for the
NDR with a seed that fails on ‘R.’

variant2. These simple tasks thus turn out to be
good first diagnostic tasks for testing systematicity.

Analysis. The small input/output space of this
task allows for an exhaustive analysis of the learned
symbol representations. Specifically, given an out-
put symbol s′, for each function f ∈ Ga ∪ Gb,
we can find a unique input symbol s such that
s′ = f(s) (because all functions defined for this
task are bijective). Hence, for a fixed symbol s′, for
all functions f , we can extract the learned vector
representation of this symbol s′ at the output of f
as the vector of the layer beneath the final classifica-
tion layer when we feed ‘f s’ to the network. Then
we can compare the extracted representations (of a
fixed symbol for different functions) by computing
their cosine similarities.

Here we compare representations learned with
successful/failed seeds for NDR in variation ‘R.’
Fig. 3a and 3b show the results for two different
(output) symbols ‘6’ and ‘3’ from the same failed
seed. In both cases we observe two clusters (C1

and C2): two separate/different representations are
learned for the same symbol (by abuse of notation,
we also refer to the corresponding representations
as C1 and C2). In the case of symbol ‘6’ in Fig. 3a,
we observe perfect/strict clustering in line with the
group of the applied function; C1 and C2 are rep-
resentations of symbol ‘6‘ learned by functions
belonging to Ga and Gb respectively. This is prob-
lematic since functions in Ga never see symbol ‘6’

2‘A’ turns out to be harder than ‘R.’ We speculate that in
both ‘A’ and ‘R’, given that the training set contains single
function applications with shared input/ouput embeddings,
the learned symbol representation of all functions should be
compatible with each other to some extent, but with some
“deviation” from perfect compatibility in case of failure. Such
“deviations” might accumulate in case of ‘A’ where we sample
all functions in each sequence from a single group at test time.
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No. of symbols/function
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0.12± 0.0 0.15± 0.0 0.16± 0.0 0.24± 0.1 0.27± 0.0

0.18± 0.0 0.23± 0.0 0.33± 0.1 0.35± 0.1 0.63± 0.1

0.20± 0.0 0.27± 0.1 0.37± 0.1 0.63± 0.1 0.97± 0.0

0.30± 0.0 0.43± 0.1 0.76± 0.1 0.93± 0.1 1.00± 0.0

Figure 4: Test accuracy of NDR on the ‘S’ variant. The
total number of symbols is 8, and the number of func-
tions is 32. The y-axis shows the number of overlapping
functions, while the x-axis shows the number of sym-
bols shared between two groups for each function in Go

during training (Sec. 3). Results for the Transformer
and LSTM are reported in the appendix (Figs. 7 and 8).

represented as C2 during training (analogously for
functions in Gb with representation C1). As a con-
sequence, during testing, when a function fa ∈ Ga

is applied after a function fb ∈ Gb, fb may output
symbol ‘6’ represented as C2, and pass it to fa, but
in principle, fa can not “understand/interpret” C2

as representing symbol ‘6.’ This naturally prevents
cross-group generalization. In the case of symbol
‘3’ shown in Fig. 3b, some of the functions yield
the same symbol representations as certain func-
tions from the other group (see the cluster C2 at the
lower right: a good trend), but we still have a small
cluster (C1 at the upper left) consistent only among
elements of Ga. Hence, cross-group generaliza-
tion can still fail because the functions in Gb never
see symbol ‘3’ represented as C1 during training
but only during testing. In contrast, for successful
seeds, we do not observe any of these clusters for
any symbols (see Fig. 9 in the appendix). A single
representation shared across all functions is learned
for each symbol. Further quantitative analysis can
be found in Appendix B.

4.2 Results of Staged Variant ‘S’

As described in Sec. 3, variant ‘S’ is designed to
evaluate models at different task difficulty levels
determined by the number of overlapping functions
and symbols during training. Fig. 4 shows the cor-
responding performance overview for NDR. The
overall picture is similar for bi-LSTM and Trans-
former (see Figs. 7 and 8 in the appendix). We
observe that to achieve 100% accuracy, half of the
possible functions should overlap (16/32), as well
as most of the possible symbols seen for each func-
tion (6/8). This implies an unrealistically large
amount of data for real world scenarios, where the
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“functions” might correspond to more complex op-
erations with multiple input arguments (as in the
CFQ case). This calls for developing approaches
that achieve higher accuracy in the upper left part
of Fig. 4.

5 Conclusion

Motivated by the historically crucial role of diag-
nostic datasets for research on systematic general-
ization of NNs, we propose a new dataset called
CTL++. Unlike the classic CTL dataset, typically
used for testing productivity, CTL++ is designed
for testing systematicity. We propose three variants,
‘A,’ ‘R,’ and ‘S.’ Despite their simplicity, even the
CTL-solving Transformer variant fails on ‘A’ and
‘R.’ Using ‘S,’ we show that existing approaches
require impractically large amounts of examples to
achieve perfect compositional generalization. The
small task size allows for conducting exhaustive vi-
sualizations of (in)compatibility of learned symbol
representations in outputs of functions with inputs
of subsequent functions. Of course, the ultimate
goal is to go beyond just solving CTL++. Never-
theless, we hope CTL++ will become one of the
standard diagnostic datasets for testing systematic-
ity of NNs.

Limitations

Achieving 100% on this dataset may be a necessary
condition for NNs capable of systematic generaliza-
tion, but certainly not a sufficient one. In practice,
there may be many reasons which prevent NNs
from generalizing systematically in other tasks or
more generally on real world data. Compare the
original CTL dataset for evaluating productivity:
Csordás et al. (2022) show that some models that
achieve 100% on CTL still fail in other tasks such
as ListOps. This is why we refer to CTL++ as a
simple diagnostic dataset for testing systematicity
of NNs. Nevertheless, it allows for uncovering
certain important failure modes of NNs.
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Figure 5: Sampling graph for variant ‘R.’

A Experimental Details

A.1 Modified NDR architecture

We experimentally found some architectural modi-
fications to the original NDR (Csordás et al., 2022)
that yield faster convergence and produce more
stable results than the original architecture. Here
we describe our modifications. We use the GELU
activation function (Hendrycks and Gimpel, 2016)
instead of ReLU, and a residual connection in the
feedforward data path. Concretely, Eq. 5 in Csor-
dás et al. (2022) is replaced by Eq. 1 below, while
Eq. 2 is replaced by Eq. 2 below. We do not use
any dropout in Eq. 1.

FFN(x) = W2GELU(W1x+ b1) + b2 (1)

u(i,t+1) = LN(FFNdata(a(i,t+1)) + a(i,t+1))
(2)

where LN denotes layer normalization (Ba et al.,
2016).

A.2 Hyperparameters

Dataset. The train set in all of our experiments
consists of 300k examples. The maximum number
of composed functions is 6. We make sure that we
obtain an equal number of samples for different
lengths whenever possible (in some cases this is
impossible because by construction, there are fewer
short examples than long ones). In ‘A’ and ‘R’
variants, single functions are always part of the
training set with all possible symbols. There are in
total 8 symbols and 32 functions. All samples are
presented in a right-to-left manner (e.g. “c b a 3”).
The IID and OOD test sets contain 1000 examples
in all cases. Our code generates the data for given
dataset specifications (number of functions etc).
The seed for data generation is fixed.

Training. Unless noted otherwise, for all of our
models, we use a batch size of 512, a learning rate

of 0.00015, and a dropout rate (Hanson, 1990; Sri-
vastava et al., 2014) of 0.5. We also use a linear
learning rate warmup for the first 500 iterations.
We use PyTorch’s (Paszke et al., 2019) adaptive
mixed precision and bin the batches by length for
greater efficiency. We use the AdamW optimizer
(Loshchilov and Hutter, 2019). The NDR and bi-
LSTM is trained for 80k and the Transformers for
300k iterations. We find the standard Transformer
to be very unstable even in the IID setting. In
fact, for Table 1, unlike other models trained for 25
seeds, we train the Transformer for 50 seeds: the
25 seeds used to report mean and std in Table 1 are
those among 50 which converged within 300k train-
ing iterations. For Figs. 4, 7 and 8, five seeds were
used for each configuration. All of our models are
trained on a single P100 GPU. The corresponding
number of parameters, training steps and average
wall-clock time is shown in Table 2.

Table 2: Training details for different models. Runtime
is in hour:min.

Model Num. params Num. steps Runtime

Bi-LSTM 408k 80k 0:18
Transformer 672k 300k 3:37
NDR 679k 80k 1:22

Models. For Transformer and NDR, we use 8 lay-
ers, and 4 heads. NDR uses a gate dropout of 0.1,
state size of 256, feedforward size of 1024. Trans-
formers use a state size of 128 and feedforward
size of 512, layer sharing (Dehghani et al., 2019),
and Transformer-XL-style (Dai et al., 2019) rela-
tive positional encoding. For bidirectional LSTM,
we use 1 layer with 256 units (128 per direction).
The gradient is clipped to max norm of 1 for NDR
and 5 for Transformer and LSTM. Transformers
use a weight decay of 0.0025.

B More Analyses and Plots

B.1 Quantitative Analysis of Incompatibility

Here we provide additional results on the analysis
of Sec. 4.1 conducted for variant ‘R.’ To quantify
the correlation between the clusters (C1 and C2)
identified in Fig. 3b and the compatibility of repre-
sentations, we measured the proportion of correct
output classifications, by taking the first function
from a given cluster and the second one from a
given group, for all pairs of functions for each pair
of the form (cluster, group). The results are shown
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in Fig. 6. Fig. 6a shows that the first cluster C1

is effectively compatible only with functions from
Ga, while the second one C2 works with both Ga

and Gb, as predicted by Fig. 3b. Fig. 6b shows the
same analysis, but uses the groups to define the
cluster. As predicted by Fig. 3b, only roughly half
of the functions from Ga generate representations
compatible with Gb, while all representations gen-
erated by functions in Gb are compatible with all
in Ga.

Ga Gb

C1

C2

1.00 0.15

1.00 1.00

0.0

0.5

1.0

(a) Performance of each
cluster vs. each group

Ga Gb

Ga

Gb

1.00 0.52

1.00 1.00

0.0

0.5

1.0

(b) Performance for each
pair of groups

Figure 6: Accuracy measured after two successive
function applications, for the symbol corresponding to
Fig. 3b. (a) shows the proportion of correct outputs
when the first function is taken from a given cluster
(y-axis), and the second from a given group (x-axis).
Clusters are shown in the main diagonal of Fig. 3b. (b)
is analogous to (a) but using groups as clusters.

B.2 Representative Cosine Similarities
Here we show additional visualizations similar to
those of Fig. 3. In Fig. 9 and 10, we plot cosine
similarities of functional outputs for all possible
symbols for successful and failed seeds of NDR on
variant ‘R.’ The symbol representations are taken
from the layer right below the final classification
layer. They are representative examples; the obser-
vation holds over all seeds we inspected. Fig. 11
shows a similar example for variant ‘A.’
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0.14± 0.0 0.15± 0.0 0.33± 0.1 0.38± 0.1 0.53± 0.1

0.17± 0.0 0.20± 0.1 0.31± 0.1 0.59± 0.2 0.97± 0.0

0.27± 0.0 0.63± 0.2 0.82± 0.2 1.00± 0.0 1.00± 0.0

Figure 7: Final test performance of the Transformer on
variant ‘S.’ The behavior is similar to the one shown in
Fig. 4. For lower numbers of shared functions, perfor-
mance is worse. Interestingly, however, with 16 shared
functions, it outperforms NDR.
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0.23± 0.0 0.32± 0.0 0.45± 0.1 0.68± 0.1 0.92± 0.1

0.23± 0.0 0.31± 0.0 0.64± 0.1 0.83± 0.0 0.97± 0.0

Figure 8: Final test performance of bi-directional LSTM
on variant ‘S.’ The behavior is similar to the one shown
in Fig. 4. For lower numbers of shared functions, the
performance is worse. Interestingly, however, with 16
shared functions, it significantly underperforms NDR.
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Figure 9: Symbol cosine similarity between different functions for NDR on variant ‘R.’ A representative example
from a seed that performs perfectly on unseen compositions. Functions indicated by red belong to Ga, by blue to
Gb.
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Figure 10: Symbol cosine similarity between different functions for NDR on variant ‘R.’ A representative example
from a seed that performs poorly on unseen compositions. Functions indicated by red belong to Ga, by blue to Gb.
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Figure 11: Symbol cosine similarity between different functions for NDR on variant ‘A.’ A representative example
from a seed that performs poorly on unseen compositions. Functions indicated by red belong to Ga, by blue to Gb.
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