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Abstract

Event Extraction (EE) is one of the fundamen-
tal tasks in Information Extraction (IE) that
aims to recognize event mentions and their
arguments (i.e., participants) from text. Due
to its importance, extensive methods and re-
sources have been developed for Event Extrac-
tion. However, one limitation of current re-
search for EE involves the under-exploration
for non-English languages in which the lack of
high-quality multilingual EE datasets for model
training and evaluation has been the main hin-
drance. To address this limitation, we propose
a novel Multilingual Event Extraction dataset
(MEE) that provides annotation for more than
50K event mentions in 8 typologically differ-
ent languages. MEE comprehensively anno-
tates data for entity mentions, event triggers
and event arguments. We conduct extensive
experiments on the proposed dataset to reveal
challenges and opportunities for multilingual
EE.

1 Introduction

Event Extraction (EE) is one of the major tasks of
Information Extraction (IE) for text. In a complete
EE pipeline, three major goals should be pursued:
(1) Entity Mention Detection (EMD): to recognize
mentions of real world entities; (2) Event Detection
(ED): to identify event mentions/triggers and their
types. An event trigger is a word or phrase that
most clearly refers to the occurrence of an event;
and (3) Event Argument Extraction (EAE): to find
participants/arguments of an event mentioned in
text. A participant is an entity mention that has
an specific role in a given event mention. For in-
stance, in the sentence “The soldiers were hit by
the forces.”, there are two entity mentions “sol-
diers” and “forces” of types PERSON and ORGA-
NIZATION and an event trigger “hit” of type AT-
TACK. Also, the two event mentions “soldiers” and
“forces” play the argument roles of Victim and At-
tacker (respectively) in the ATTACK event. An EE

system could be employed in other downstream
applications such as Question Answering, Knowl-
edge Base Population and Text Summarization to
assist extracting information about events in text.

Multiple methods have been proposed for Event
Extraction. Early work has employed feature-based
models (Ahn, 2006; Ji and Grishman, 2008; Liao
and Grishman, 2010; Hong et al., 2011; Li et al.,
2013; Yang and Mitchell, 2016) while later meth-
ods have explored deep learning to present state-of-
the-art performance for Event Extraction (Nguyen
and Grishman, 2015; Chen et al., 2015; Nguyen
et al., 2016; Sha et al., 2018; Wang et al., 2019;
Lai et al., 2020; Veyseh et al., 2020; Lin et al.,
2020; Nguyen et al., 2021a; Liu et al., 2022). How-
ever, despite all advancements on event extraction
in recent years, a major limitation of current EE
research is to overly focus on a few popular lan-
guages, thus failing to adequately reveal challenges
and generalization of models in many other lan-
guages of the world. As such, a critical barrier
for studying EE over multiple languages is the
lack of high quality datasets that fully annotate
data for many other languages for EE. For instance,
the most popular dataset for EE, i.e., ACE 2005
(Walker et al., 2006), only provide annotations
for three languages English, Chinese and Arabic
while TAC KBP datasets (Mitamura et al., 2016,
2017) only supports English, Chinese and Spanish.
The TempEval-2 dataset (Verhagen et al., 2010)
involves 6 languages; however, it does not offer
event argument annotation. Even worse, recently
created datasets, e.g., MAVEN (Wang et al., 2020),
RAMS (Ebner et al., 2020), and WikiEvents (Li
et al., 2021), are only annotated for English. In
all, such language and task limitations prevents re-
search to comprehensively develop and evaluate
EE methods over different languages and multilin-
gual settings. Moreover, the limited size of these
datasets, i.e. less than 11K and 27K in ACE 2005
and TempEval-2 respectively, hinders training of
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data-hungry deep learning models. Finally, we
note that important multilingual datasets for EE,
e.g., ACE 2005 and TAC KBP, are not publicly
available, which further restricts research on this
domain.

To address these limitations, in this work, we pro-
pose a large-scale Multilingual Event Extraction
(MEE) dataset that covers 8 typologically different
languages from multiple language families, includ-
ing English, Spanish, Portuguese, Polish, Turkish,
Hindi, Korean, and Japanese. As such, Portuguese,
Polish, Turkish, Hindi, and Japanese are not ex-
plored in the popular multilingual datasets for EE,
i.e., ACE 2005 and TAC KBP. Importantly, to en-
able public data sharing and diversity the data, we
employ Wikipedia articles for the 8 languages in
diverse topics (i.e., Economy, Politics, Technology,
Crime, Nature and Military) for EE annotation.

Our dataset comprehensively annotates each doc-
ument in a language for all the three sub-tasks
EMD, ED, and EAE. To be consistent with prior EE
research, we inherit the type anthologies for such
tasks from the ACE 2005 dataset that provides well-
designed guidelines and examples for the types. In
particular, we include 7 entity types, 8 event types
and 16 event sub-types, along with 23 argument
roles in MEE to facilitate EE annotation over mul-
tiple languages. Overall, our dataset involves more
than 415K entity mentions, 50K event triggers, and
38K arguments, which are much larger than pre-
vious multilingual EE datasets to better support
model training and evaluation with deep learning.

Due to shared information schema over all the
languages, our MEE dataset enables cross-lingual
transfer learning evaluation of MEE models where
training and test data comes from different lan-
guages. To this end, we conduct comprehensive ex-
periments for both monolingual and cross-lingual
learning settings to provide insights for language-
specific challenges and cross-lingual generalization
of EE methods. By examining both pipeline and
joint inference models for EE, our experiments
show that the proposed dataset present unique chal-
lenges with less satisfactory performance of exist-
ing EE models, especially for cross-lingual settings,
thus calling for more research efforts for multilin-
gual EE in the future.

2 Data Annotation

We follow the entity/event type definition and an-
notation guidelines from the popular ACE 2005

dataset to benefit from its well-designed documen-
tation and be consistent with prior EE research. As
such, entity mentions refer to mentions of real-
world entities in text that can be expressed via
names, nominals, and pronouns. Entity Mention
Extraction (EMD) is more general than Named
Entity Recognition that only concerns names of en-
tities. In addition, an event is defined as an incident
whose occurrence changes the state of real world
entities. An event mention is the part of input text
that refers to an event that consists of two com-
ponents: (1) Event Trigger: the words that most
clearly refer to the occurrence of the event. It is
noteworthy that we allow an event trigger to span
multiple words to accommodate trigger annotation
for multiple languages. For instance, in the Turkish
phrase “tayin etmek”, both words are necessary to
indicate an event trigger of type “Appoint"; and
(2) Event Arguments: the entity mentions that are
involved in the event with some roles.

Based on the ACE 2005 dataset, our dataset an-
notates entity mentions for 7 entity types: PER-
SON (human entities), ORGANIZATION (cor-
porations, agencies, and other groups of people),
GPE (geographical regions defined by political
and/or social groups), LOCATION (geographical
entities such as landmasses or bodies of water),
FACILITY (buildings and other permanent man-
made structures), VEHICLE (physical devices pri-
marily designed to move an object from one loca-
tion to another), and WEAPON (physical devices
primarily used as instruments for physically harm-
ing). For event types, to avoid confusion and im-
prove data quality, we prune the original ACE 2005
event types to only include the types that are not
ambiguous across multiple languages. For instance,
in Turkish, the event types Sentence and Convict
are very similar (both can be evoked by the phrase
“Mahkum etmek”) so they are not retained in our
dataset. As such, we preserve 8 event types and 16
sub-types that are distinct enough for annotation
in our dataset. Finally, for event arguments, we
preserve all 23 argument roles in the ACE 2005
dataset. Table 4 shows the list of event types along
with their argument roles in our dataset.

2.1 Data Preparation

Our dataset MEE covers 8 different languages,
i.e., English, Spanish, Portuguese, Polish, Turk-
ish, Hindi, Korean and Japanese. These languages
are selected based on their diversity in terms of
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Category English Portuguese Spanish Polish Turkish Hindi Japanese Korean
Economy 1,095 112 168 315 297 189 199 250
Politics 3,202 308 772 1,270 1,233 349 232 248
Technology 2,171 189 400 712 815 295 312 249
Crimes 893 78 220 152 118 95 80 73
Nature 1,195 398 705 455 398 245 299 185
Military 4,444 415 1,003 1,575 1,619 326 378 495
Total 13,000 1,500 3,268 4,479 4,480 1,499 1,500 1,500

Table 1: Numbers of annotated segments in each Wikipedia subcategory for our 8 languages.

typology and their novelty with respect to existing
multilingual EE datasets. For each language, we
employ its latest dump of Wikipedia articles as raw
data for annotation. To focus on event data, we
select articles in the sub-categories under category
Event in Wikipedia. In particular, the following
sub-categories are considered to improve topic di-
versity: Economy, Politics, Technology, Crimes,
Nature, and Military. Note that we start with these
categories in English Wikipedia. Afterward, we
follow interlinks between the categories in differ-
ent languages to locate the intended categories for
Wikipedia for non-English languages in MEE.

We process the collected articles with the
WikiExtractor tool (Attardi, 2015) to obtain clean
textual data and meta-data for each article. The tex-
tual data is then split into sentences and tokenized
into words by the multilingual NLP toolkit Trankit
(Nguyen et al., 2021b). Afterward, to annotate the
data with entity and event mentions, one approach
is to directly ask annotators to read each article
entirely for annotation. However, as the articles
in Wikipedia might be lengthy, this approach can
be overwhelming for annotators, thus hindering
their attention and lowering quality of annotated
data. To address this issue, we follow prior dataset
creation efforts for EE, i.e., RAMS (Ebner et al.,
2020), to divide the articles into segments of five
consecutive sentences. Each segment will then be
annotated separately for EE tasks so annotators can
better capture the entire context to provide entity
and event annotation. Note that similar to RAMS,
we annotate all event arguments in a text segment
for each event trigger, thus allowing event argu-
ments to appear in different sentences from the
event trigger (i.e., document-level EAE). Finally,
to accomodate our budget, a sample of text seg-
ments is obtained for each language for annotation.
The numbers of selected text segments for each
category per language in our dataset are presented
in Table 1.

2.2 Annotation Process

To annotate the sampled article segments, we em-
ploy the crowd-sourcing platform upwork.com that
allows us to hire freelancers across the globe with
different expertise. For each language in our
dataset, we choose native speakers as annotator
candidates. In addition, we require them to be flu-
ent in English, have experience in related tasks
(i.e., data annotation for information extraction),
and have approval rate higher than 95% (i.e., pro-
vided in their profiles). The candidates are first
provided with annotation guidelines and interfaces
in English. Afterward, they are invited to an anno-
tation test for entity mentions, event triggers, and
arguments. Those candidates who correctly anno-
tate all test cases are then officially hired to work on
our annotation jobs. Table 3 shows the numbers of
annotators who are hired to annotate data for each
language in our dataset. Next, before the actual an-
notation process, the English annotation guideline
and examples are translated to each target language
by the hired annotators. Any language-specific
confusions and rules for annotation is discussed
and included in the translation to create a common
understanding. Finally, our language experts will
review the annotation guideline in each language
to avoid conflicts across languages to be used for
actual annotation.

Our annotation process is done in three separate
steps to annotate data for three EE tasks with en-
tity mentions, event triggers, and event arguments
in this order. In particular, the annotation for a
later task will be performed over the text segments
that have been annotated and finalized for previ-
ous tasks (e.g., event arguments will be annotated
over segments that are already provided with en-
tity mentions and event triggers). As such, for
each task, 20% of text segments for each language
will be co-annotated by the annotators to measure
agreement score. The remaining 80% of text seg-
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Language #Seg. Avg. Length #Entities #Triggers #Arguments Challenging Entity Type Challenging Trigger Type Language Family
English 13,000 123 190,592 17,642 13,548 GPE Personnel Germanic
Spanish 3,268 112 48,001 6,064 802 GPE Conflict Italic

Portuguese 1,500 102 25,463 1,953 12,329 Location Personnel Italic
Polish 4,479 108 62,971 10,875 3,395 Facility Transaction Balto-Slavic

Turkish 4,480 117 38,469 8,390 1,416 GPE Personnel Turkic
Hindi 1,499 98 18,797 1,810 2,117 Facility Conflict Indo-Iranian

Japanese 1,500 99 19,174 2,152 3,399 Location Personnel Japonic
Korean 1,500 103 12,508 1,125 1,742 GPE Personnel Koreanic

Total (MEE) 31,226 - 415,975 50,011 38,748 - - -

Table 2: Statistics of the MEE dataset. #Seg. represents the numbers of annotated text segments for each language.
All annotated segments consist of 5 sentences and their lengths (Avg. Length) are computed in terms of numbers of
tokens. “Challenging Type” indicates the types where entity or event trigger annotation involves largest disagreement
between annotators in each language.

Language #Annotator EMD ED EAE
English 10 0.792 0.834 0.820
Spanish 10 0.788 0.812 0.823
Portuguese 5 0.791 0.803 0.799
Polish 8 0.780 0.799 0.813
Turkish 10 0.785 0.813 0.822
Hindi 6 0.790 0.803 0.812
Japanese 5 0.793 0.789 0.780
Korean 6 0.802 0.810 0.825

Table 3: Number of annotators and agreement scores
for 8 languages in MEE for Entity Mention Detection
(EMD), Event Detection (ED) and Event Argument Ex-
traction (EAE).

ments will be distributed and annotated separately
by the annotators for each language. Based on the
Krippendorff’s alpha (Krippendorff, 2011) with
MASI distance metric (Passonneau, 2006), we re-
port the inter-annotator agreements (IAA) for each
task and language in Table 3, showing high agree-
ment scores and quality of our MEE dataset. Note
that after independent annotation for each EE task,
the annotators also share their annotations and com-
municate with each other to resolve any conflicts
and finalize our data.

2.3 Data Analysis

Table 2 shows the main statistics of MEE for each
language. As such, comparing to the popular mul-
tilingual ACE 2005 dataset (Walker et al., 2006)
for EE, our MEE dataset provides more languages
(i.e., 3 vs. 8) and much more event mentions (i.e.,
11K vs. 50K). For other multilingual datasets for
EE, i.e., TAC KBP (with three languages and 6.5K
event mentions) (Mitamura et al., 2016, 2017) and
TempEval-2 (with 6 languages and 27K event men-
tions) (Verhagen et al., 2010), they do not annotate
entity mentions and event arguments. In contrast,
our MEE dataset fully annotates texts for three EE
tasks (i.e., EMD, ED, and EAE) and also with more
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Figure 1: Distributions of event types in each language.
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Figure 2: Distributions of entity types in each language.

languages and event mentions. This clearly demon-
strates the advantages of our dataset over existing
multilingual datasets for EE.

In addition, from the table, we find that the lan-
guages in our dataset exhibits diverse densities for
entity mentions, event triggers, and arguments in
texts. In particular, while the average number of
entities in a text segment in Portuguese is 16.9, this
number is only 8.3 in Korean. For event density,
in Polish, there are 2.4 event mentions per arti-
cle segment on average while the average number
in Korean is only 0.75. Similarly for event argu-
ments, the average number of arguments per event
is 6.1 in Portuguese and only 0.75 in English. Fur-
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ID Event Arguments
1 Life_Be-Born Person, Time, Place
2 Life_Marry Person, Time, Place
3 Life_Divorce Person, Time, Place
4 Life_Injure Agent, Victim, Instrument, Time, Place
5 Life_Die Agent, Victim, Instrument, Time, Place
6 Movement_Transport Agent, Artifact, Vehicle, Price, Origin, Destination, Time
7 Transaction_Transfer-Ownership Buyer, Seller, Beneficiary, Price, Artifact, Time, Place
8 Transaction_Transfer-Money Giver, Recipient, Beneficiary, Money, Time, Place
9 Business_Start-Organization Agent, Organization, Time, Place
10 Conflict_Attack Attacker, Target, Instrument, Time, Place
11 Conflict_Attack Entity, Time, Place
12 Contact_Meet Entity, Time, Place
13 Contact_Phone-Write Entity, Time
14 Personnel_Start-Position Person, Entity, Position, Time, Place
15 Personnel_End-Position Person, Entity, Position, Time, Place
16 Justice_Arrest-Jail Person, Agent, Crime, Time, Place

Table 4: Event types and argument roles for each type in MEE. The types and roles are inherited from the event
extraction annotation guideline in the ACE 2005 dataset (Walker et al., 2006).
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Figure 3: Distributions of most argument roles for each
language.

ther, Table 2 highlights the divergences between
languages regarding challenging entity and event
types. Specifically, we employ the disagreement
rates (i.e., number of disagreements divided by fre-
quency of mentions) between annotators for each
entity and event types. Those types that have high-
est disagreement rates are selected as challenging
entity or event types. Finally, Figures 2, 1, and 3
present the distributions of entity types, event types,
and argument roles (respectively) for each language
in our dataset, which further demonstrate the dif-
ferences between languages in MEE. In all, such
differences over various dimensions will cause sig-
nificant challenges for EE models to adapt to new
languages (e.g., for cross-lingual transfer learning),
thus presenting ample opportunities for multilin-

gual EE research with our dataset.

3 Experiments

This section evaluates the state-of-the-art models
for Event Extraction to reveal challenges in our new
dataset MEE. To this end, the annotated article seg-
ments for each language in MEE are randomly split
into training/development/test portions with the ra-
tios of 80/10/10. Here, to prevent any information
leakage, we ensure that different segments of an
article (if any) are only assigned to one portion of
the data split for each language. We examine EE
models in two different settings: (1) monolingual
learning where training and test data of models
comes from the same language; (2) cross-lingual
transfer learning where models are trained on train-
ing data of one language (i.e., the source language),
but evaluated directly on test data of the other lan-
guages (i.e., the target languages).
Models: We evaluate two typical approaches for
EE models with pipeline and joint inference in this
work. First, for the pipeline approach, a model is
trained separately for each of the three tasks in EE,
i.e., entity mention detection (EMD), event detec-
tion (ED), and event argument extraction (EAE).
Here, the EMD and ED tasks are modeled as se-
quence labeling problems, aiming to predict BIO
tag sequences for each input sentence to capture
spans and types of entity and event mentions. As
such, motivated by previous work (Wang et al.,
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Language Pipeline OneIE FourIE
Entity Event Argument Entity Event Argument Entity Event Argument

English 70.32 70.58 61.14 62.18 70.09 62.94 69.72 72.19 65.89
Spanish 70.39 66.19 60.16 70.27 65.00 60.31 71.89 67.49 62.19
Portuguese 75.13 71.33 69.15 73.19 70.13 71.27 74.98 72.99 70.17
Polish 69.27 59.12 60.09 60.09 59.44 60.14 68.23 60.98 61.32
Turkish 71.88 66.09 56.19 71.98 61.27 58.72 72.33 65.13 59.80
Hindi 66.22 57.77 57.78 61.72 58.18 59.44 65.23 59.88 60.82
Japanese 68.19 67.89 68.19 71.40 65.01 63.17 70.88 66.88 70.19
Korean 57.17 61.26 67.87 55.87 61.10 65.41 58.18 60.09 69.23
Avg. 68.57 65.03 62.57 65.84 63.78 62.68 68.93 65.70 64.95

Table 5: Performance (F1 scores) of models in the monolingual setting using mBERT on MEE.

Language Pipeline OneIE FourIE
Entity Event Argument Entity Event Argument Entity Event Argument

English 70.22 71.28 66.34 70.39 70.29 68.68 71.19 73.14 68.23
Spanish 70.33 64.32 61.12 70.18 62.46 62.23 72.87 65.90 63.11
Portuguese 70.39 71.88 71.75 72.16 69.43 70.33 73.98 70.43 72.23
Polish 69.14 60.45 61.23 72.22 63.77 60.15 70.25 62.87 62.84
Turkish 76.13 67.18 55.78 74.45 65.31 57.40 75.19 67.29 58.23
Hindi 65.14 59.34 58.22 61.72 58.18 59.44 66.69 61.99 62.19
Japanese 71.34 67.77 69.19 68.20 62.89 70.90 72.82 65.27 73.55
Korean 59.13 62.34 69.70 59.99 60.55 66.89 60.24 61.18 70.09
Avg. 68.98 65.57 64.17 68.84 64.36 64.57 70.40 66.01 66.31

Table 6: Performance (F1 scores) of models in the monolingual setting using XLM-RoBERTa on MEE.

2020), our EMD and ED models leverage a pre-
trained transformer-based language model to en-
code the input text. The representation for each
token in input text (obtained via average of hidden
vectors of word-pieces in the last transformer layer)
is then sent into a feed-forward network to com-
pute a tag distribution for the token for training and
decoding. For EAE, the task is formulated as a text
classification problem in which the input consists
of an input text and two word indices for the po-
sitions of an event trigger and an entity mention
of interest. The goal is to predict the argument
role that the entity mention plays for the event. To
this end, we also use a pre-trained language model
to obtain representations for the tokens in input
text. Next, the representations for the event trig-
ger and entity mention words are concatenated and
sent to a feed-forward network to predict argument
role. Note that the EAE model employs golden en-
tity mentions and event triggers during the training
process while the outputs from the EMD and ED
models are fed into the EAE model in the test time.

Second, for the joint inference approach, EE
models simultaneously predicts entity mentions,
event triggers, and arguments in end-to-end fash-
ion to avoid error propagation and leverage inter-

dependencies between tasks. To this end, we eval-
uate two state-of-the-art (SOTA) joint EE models,
OneIE (Lin et al., 2020) and FourIE (Nguyen et al.,
2021a), in this work due to their language-agnostic
nature. Both OneIE and FourIE utilize pre-trained
language models to represent input texts and cap-
ture cross-task dependencies for joint inference.
Note that these models are original designed to in-
clude the relation extraction task between entities.
To adapt them to EE, we obtain their implemen-
tations from the original papers and remove the
relation extraction components. Finally, for per-
formance measure, we report the performance (F1
scores) of EE models over three tasks EMD (En-
tity), ED (Event), and EAE (Argument) using the
same correctness criteria as in prior work (Lin et al.,
2020) (i.e., requiring correct prediction for both off-
sets and types of entity mentions, event triggers,
and argument roles).

Hyper-parameters: To facilitate evaluation with
multiple languages, we leverage the multilingual
pre-trained language models (PLMs) mBERT (De-
vlin et al., 2019) and XLM-RoBERTa (Conneau
et al., 2020) (base versions) to encode texts for EE
models. For the pipeline approach, we fine-tune the
hyper-parameters for the EMD, ED, and EAE mod-
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Language XLM-RoBERTa mBERT
Entity Event Argument Entity Event Argument

English 69.72 72.19 65.89 71.19 73.14 68.23
Spanish 61.96 59.70 52.23 60.72 60.06 50.77
Portuguese 59.98 54.80 52.23 56.17 52.98 50.28
Polish 52.89 51.78 52.44 53.44 50.29 53.56
Turkish 60.13 53.32 52.19 59.19 52.76 53.10
Hindi 56.32 59.76 57.17 55.39 58.44 55.65
Japanese 41.13 44.95 40.13 42.43 43.76 41.18
Korean 45.78 42.99 43.04 44.78 40.22 41.14

Table 7: Cross-lingual performance (F1 scores) of
FourIE when it is trained on English training data and
evaluated on test data of other languages in MEE.

els over development data for English and apply the
selected values for all experiments for consistency.
In particular, our hyper-parameters for the pipeline
model include: 2 hidden layers with 250 hidden
units in each layer for the feed-forward networks, 8
for mini-batch size, and 1e-2 for learning rate with
the Adam optimizer. For the joint IE models, we
utilize the same hyper-parameters suggested in the
original papers, i.e., OneIE (Lin et al., 2020) and
FourIE (Nguyen et al., 2021a).
Results: The results for monolingual experiments
over different languages in MEE are presented
in Tables 5 and 6 (i.e., with mBERT and XLM-
RoBERTa encoders respectively). There are several
observations from the tables. First, the models’ per-
formance on individual languages and on average
for all three tasks EMD, ED, and EAE is still far
from being perfect (i.e., all average performance is
less than 69%), thus indicating considerable chal-
lenges in our multilingual EE dataset for future
research. In addition, comparing the current state-
of-the-art joint IE model (i.e., FourIE) with the
pipeline method, we find that FourIE is better than
the pipeline model on average, especially for the
EAE task with significant performance gap. As
such, we attribute this to the ability of joint models
to mitigate error propagation to EAE from EMD
and ED to boost the performance. Due to its best
average performance, FourIE will be leveraged in
our next experiments. Finally, we find that XLM-
RoBERTa generally has better performance than
mBERT (i.e., on average) for EE models. Future
research can thus focus on XLM-RoBERTa to de-
velop better EE models for multilingual settings.
Cross-lingual Evaluation: To further understand
the cross-lingual generalization challenges in MEE,
Table 7 reports the performance of FourIE in the
cross-lingual transfer learning settings where the
model is trained on English training data (source
language) and tested on test data of the other lan-

Language Entity Event Argument
English (Devlin et al., 2019) 70.21 73.18 66.19
Spanish (Cañete et al., 2020) 67.29 65.14 60.13
Portuguese (Souza et al., 2020) 70.21 68.88 67.13
Polish (Kłeczek, 2021) 65.78 61.23 59.14
Turkish (MDZ, 2021) 67.34 64.19 58.72

Table 8: Test data performance (F1) of FourIE in mono-
lingual learning using available language-specific BERT
models on MEE. The citations indicate the sources of
the language-specific models.

Language Entity Event Argument
English (Liu et al., 2019) 70.32 72.28 69.19
Spanish (MMG, 2021) 70.23 61.34 60.28
Polish (CLARIN-PL, 2021) 68.12 60.89 60.34
Hindi (Parmar, 2021) 64.91 59.09 60.38
Japanese (Wongso, 2021) 69.72 60.45 71.45

Table 9: Test data performance (F1) of FourIE in
monolingual learning using available language-specific
RoBERTa models on MEE. The citations indicate the
sources of the language-specific models.

guages in MEE. As can be seen, compared to per-
formance on English test set, FourIE suffers from
significant performance drops over different tasks
and multilingual encoders when it is evaluated on
other languages. It thus demonstrates inherent chal-
lenges of cross-lingual generalization for complete
EE models that can be further studied with MEE.
In addition, the performance loss due to cross-
lingual testing varies across different target lan-
guages (e.g., 10.88% loss for Spanish vs. 33.42%
loss for Japanese in EAE task). These variations
can be attributed to different levels of divergence
between languages (e.g., sentence structures and
morphology) that hinder cross-lingual knowledge
transfer for EE.
Language-Specific Encoders: To study the effec-
tiveness of pre-trained language models as text en-
coders for EE models, we compare the performance
of FourIE when the multilingual encoders mBERT
or XLM-RoBERTa are replaced with comparable
language-specific encoders (i.e., BERT-based mod-
els for mBERT and RoBERTa-based models for
XLM-RoBERTa). Using publicly available pre-
trained language models for our languages in MEE,
Tables 8 and 9 show the monolingual performance
over test data of the languages for BERT-based and
RoBERTa-based models (respectively). Compar-
ing corresponding performance in Tables 5, 6, 8
and 9, it is clear that language-specific language
models all under-perform their multilingual coun-
terparts over different EE tasks and languages, thus
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Language Trained on English Trained on Polish
Entity Event Argument Entity Event Argument

Portuguese 53.22 50.79 40.21 54.17 51.70 42.33
Spanish 50.76 43.72 41.16 51.72 45.22 45.81
Turkish 54.44 50.12 55.71 53.99 50.78 56.15
Hindi 51.44 52.78 45.27 52.21 53.00 47.24
Japanese 36.16 41.23 38.13 37.17 40.13 39.28
Korean 43.72 40.08 37.29 42.08 39.78 37.10

Table 10: Cross-lingual performance (F1) of FourIE
with XLM-RoBERTa encoder when it is trained on En-
glish or Polish training data, and tested on test data of
the other languages in MEE. We use 3,500 random an-
notated segments from the training sets of English and
Polish to train the model.

suggesting the benefits of multilingual data to train
language model encoders to boost EE performance
over different languages.

Source Language Impact: Finally, to study the
impact of the source language for cross-lingual
transfer learning for EE, we compare the perfor-
mance of FourIE when either English or another
comparable language is used as the source language
to provide training data to train the model. In par-
ticular, we choose Polish as a comparable language
for English as it has the same sentence structure
(i.e., both languages have Subject-Verb-Object or-
der) and entails similar density and type distribu-
tions for entity/event mentions as English. Table
10 shows the performance of the models when they
are tested over test data of the other 6 languages
in MEE. Here, to make it comparable, we use the
same number of annotated segments (i.e., 3,500)
sampled from training data of English and Polish to
train the FourIE model. Interestingly, we find that
Polish can lead to better performance for FourIE
than English over a majority of task and target lan-
guage pairs (i.e., over 4 languages for EMD and
ED, and 5 languages for EAE). A possible explana-
tion for this issue comes from richer event patterns
that Polish might introduce to produce allow bet-
ter cross-lingual generalization for EE than those
for English. As such, this superior performance
of Polish challenges the common practice of us-
ing English as the source language in cross-lingual
transfer learning studies for EE and NLP. Future
research can explore this direction to better under-
stand the differences between languages to best
select a source language to optimize performance
over a target language for EE.

4 Related Works

Due to its importance, various datasets have been
recently developed for EE in different domains,
including CySecED (Man et al., 2020) (for cyber-
security domain), LitBank (for literacy) (Sims et al.,
2019), MAVEN (Wang et al., 2020), RAMS (Ebner
et al., 2020), and WikiEvents (Li et al., 2021) (for
Wikipedia texts). However, these datasets are only
annotated for English texts. There exist several
multilingual datasets for EE, ACE (Walker et al.,
2006), TAC KBP (Mitamura et al., 2016, 2017),
and TempEval-2 (Verhagen et al., 2010); however,
such datasets only provide annotation for a handful
of popular languages with limited number of event
mentions and might not fully support all EE tasks
(e.g., missing EAE in TAC KBP and TempEval-2).

Regarding model development, existing EE
methods can be categorized into feature-based
(Ahn, 2006; Ji and Grishman, 2008; Liao and Gr-
ishman, 2010; Hong et al., 2011; Li et al., 2013;
Yang and Mitchell, 2016) or deep learning (Chen
et al., 2015; Nguyen et al., 2016; Sha et al., 2018;
Wang et al., 2019; Lin et al., 2020; Veyseh et al.,
2021a,b; Liu et al., 2022; Veyseh and Nguyen,
2022; Nguyen et al., 2022) methods. While most
prior EE methods have been designed for one pop-
ular language, there have been growing interests
in multilingual and cross-lingual learning for EE
in recent work, featuring multilingual PLMs (i.e.,
mBERT and XLMR) as the key component for rep-
resentation learning (Chen and Ji, 2009; M’hamdi
et al., 2019; Ahmad et al., 2021; Nguyen et al.,
2021c; Huang et al., 2022; Guzman-Nateras et al.,
2022). However, as such works only rely on ex-
isting multilingual EE datasets, their evaluation is
limited to a few popular languages and fails to eval-
uate the generalization over many other languages.

5 Conclusion

We present a novel multilingual EE dataset, i.e.,
MEE, that covers 8 typologically different lan-
guages with more than 50K event mentions to sup-
port training of large deep learning models. MEE
provides complete annotation for three EE sub-
tasks, i.e., entity mention detection, event detec-
tion, and event argument extraction. To study the
challenges in MEE, we conduct extensive analy-
sis and experiments with different EE methods in
the monolingual and cross-lingual learning settings.
Our results demonstrate various challenges for EE
in the multilingual settings that can be further pur-
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sued with MEE. In the future, we will extend our
dataset to include more languages and tasks for IE.

Limitations

In this work we present a novel large-scale multi-
lingual dataset for Event Extraction. As it is shown
in the experiments, our dataset introduces many
challenges that can inform future research on mul-
tilingual Event Extraction. However, there are still
some limitations in the current work that can be
improved in future research. First, cross-lingual
transfer learning for EE is a challenging task that
requires specifically designed models and methods.
However, in this work, we have mainly focused on
existing state-of-the-art EE models that are origi-
nally developed for the monolingual settings. As
such, future work can study cross-lingual transfer
models that are specifically designed to address
the gaps between languages to better understand
the challenges in our multilingual EE dataset. Sec-
ond, in addition to data scarcity for multilingual
EE, another challenge for this problem is the lack
of resources for text encoding and processing in
multiple languages. In particular, pre-trained lan-
guage models and text processing tools might not
be available for some languages (e.g., low-resource
languages) that hinder dataset creation and model
development efforts. As such, our work has not ex-
plored datasets and methods for low-resource lan-
guages for EE. In addition, as shown in our experi-
ments, a majority of existing language-specific text
encoders under-perform their multilingual coun-
terparts for EE models. However, our work has
not studied methods to improve such language-
specific language models for EE. Finally, although
our experiments empirically challenge English as
the main source language for cross-lingual learning,
we have not explored why other languages might
be better options for the source language in this
setting. Future research can perform more compre-
hensive analysis to shed light on this direction.
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