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Abstract

Answering open-domain questions requires
world knowledge about in-context entities. As
pre-trained Language Models (LMs) lack the
power to store all required knowledge, exter-
nal knowledge sources, such as knowledge
graphs, are often used to augment LMs. In this
work, we propose knOwledge REasOning em-
powered Language Model (OREOLM), which
consists of a novel Knowledge Interaction
Layer that can be flexibly plugged into existing
Transformer-based LMs to interact with a differ-
entiable Knowledge Graph Reasoning module
collaboratively. In this way, LM guides KG to
walk towards the desired answer, while the re-
trieved knowledge improves LM. By adopting
OREOLM to RoBERTa and T5, we show signif-
icant performance gain, achieving state-of-art
results in the Closed-Book setting. The per-
formance enhancement is mainly from the KG
reasoning’s capacity to infer missing relational
facts. In addition, OREOLM provides reason-
ing paths as rationales to interpret the model’s
decision.

1 Introduction

Open-Domain Question Answering (ODQA), one
of the most knowledge-intensive NLP tasks, re-
quires QA models to infer out-of-context knowl-
edge to the given single question. Following the
pioneering work by Chen et al. (2017), ODQA
systems often assume to access an external text
corpus (e.g., Wikipedia) as an external knowledge
source. Due to the large scale of such textual knowl-
edge sources (e.g., 20GB for Wikipedia), it cannot
be encoded in the model parameters. Therefore,
most works retrieve relevant passages as knowl-
edge and thus named Open-Book models (Roberts
et al., 2020), with an analogy of referring to text-
books during an exam. Another line of Closed-
book models (Roberts et al., 2020) assume knowl-
edge could be stored implicitly in parameters of
Language Models (LM, e.g. BERT (Devlin et al.,

Figure 1: An Illustrative figure of OREOLM. Compared
with previous KBQA systems that stack reasoner on top
of LM, OREOLM enables interaction between the two.

2019) and T5 (Raffel et al., 2020)). These LMs
directly generate answers without retrieving from
an external corpus and thus benefit from faster in-
ference speed and simpler training. However, cur-
rent LMs still miss a large portion of factual knowl-
edge (Pörner et al., 2020; Lewis et al., 2021a), and
are not competitive with Open-Book models.

To improve the knowledge coverage of LM, one
natural choice is to leverage knowledge stored
in Knowledge Graph (KG, e.g. FreeBase (Bol-
lacker et al., 2008) and WikiData (Vrandecic and
Krötzsch, 2014)), which explicitly encodes world
knowledge via relational triplets between entities.
There are several good properties of KG: 1) a KG
triplet is a more abstract and compressed represen-
tation of knowledge than text, and thus KG could
be stored in memory and directly enhance LM with-
out using an additional retrieval model; 2) the struc-
tural nature of KG could support logical reason-
ing (Ren et al., 2020) and infer missing knowledge
through high-order paths (Lao et al., 2011; Das
et al., 2018). Taking the question “what cheese is
used to make the desert cannoli?” as an example,
even if this relational fact is missing in KG, we
could still leverage high-order relationships, e.g.,
both Ricotta Cheese and Cannoli are specialties in
Italy, to infer the answer “Ricotta Cheese.”
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In light of the good properties of KG, there are
several efforts to build Knowledge Base Question
Answering (KBQA) systems. As is illustrated in
Figure 1(a), most KBQA models use LM as a parser
to map textual questions into a structured form
(e.g., SQL query or subgraph), and then based on
KG, the queries could be executed by symbolic
reasoning (Berant et al., 2013) or neural reasoning
(e.g. Graph Neural Networks) (Sun et al., 2019)
to get the answer. Another recent line of research
(Verga et al., 2021; Yu et al., 2022b) tries to en-
code the knowledge graph as the memory into LM
parameters. However, for most methods discussed
above, LM is not interacting with KG to correctly
understand the question, and the answer is usually
restricted to a node or edge in KG.

In this paper, we propose knOwledge
REasOning empowered Language Model
(OREOLM), a model architecture that can be
applied to Transformer-based LMs to improve
Closed-Book ODQA. As is illustrated in Fig-
ure 1(b), the key component is the Knowledge
Interaction Layers (KIL) inserted amid LM layers,
which is like cream filling within two waffles,
leading to our model’s name OREO. KIL interacts
with a KG reasoning module, in which we
maintain different reasoning paths for each entity
in the question. We formulate the retrieval and
reasoning process as a contextualized random
walk over the KG, starting from the in-context
entities. Each KIL is responsible for one reasoning
step. It first predicts a relation distribution for
every in-context entity, and then the KG reasoning
module traverses the graph following the predicted
relation distribution. The reasoning result in
each step is summarized as a weighted averaged
embedding over the retrieved entities from the
traversal.

By stacking T layers of KIL, OREOLM can re-
trieve entities that are T -hop away from in-context
entities and help LM to answer open questions that
require out-of-context knowledge or multi-hop rea-
soning. The whole procedure is fully differentiable,
and thus OREOLM learns and infers in an end-to-
end manner. We further introduce how to pre-train
OREOLM over unlabelled Wikipedia corpus. In
addition to the salient entity span masking objec-
tive, we introduce two self-supervised objectives to
guide OREOLM to learn better entity and relation
representations and how to reason over them.

We test OREOLM with RoBERTa and T5 as our

base LMs. By evaluating on several single-hop
ODQA datasets in closed-book setting, we show
that OREOLM outperforms existing baselines with
fewer model parameters. Specifically, OREOLM
helps more for questions with missing relations
in KG, and questions that require multi-hop rea-
soning. We further show that OREOLM can serve
as a backbone for open-book setting and achieves
comparable performance compared with the state-
of-the-art QA systems with dedicated design. In
addition, OREOLM has better interpretability as
it can generate reasoning paths for the answered
question and summarize general relational rules to
infer missing relations.

This key contributions are as follows:
• We propose OREOLM to integrate symbolic

knowledge graph reasoning with neural LMs.
Different from prior works, OREOLM can be
seamlessly plugged into existing LMs.

• We pretrain OREOLM with RoBERTa and T5
to on the Wikipedia corpus. OREOLM can
bring significant performance gain on ODQA.

• OREOLM offers interpretable reasoning paths
for answering the question and high-order rea-
soning rules as rationales.

2 Methodology

Preliminary We denote a Knowledge Graph
KG =

(
E ,R,A = {Ar}r∈R

)
, where each e ∈ E

and r ∈ R is entity node and relation label.
Ar ∈ {0, 1}|E|×|E| is a sparse adjacency matrix
indicating whether relation r holds between a pair
of entities. The task of knowledge graph reason-
ing aims at answering a factoid query (s, r, ?), i.e.,
which target entity has relation r with the source
entity s. If KG is complete, we could simply get
answers by checking the adjacency matrix, i.e.,
{∀t : Ar[s, t] = 1}. For incomplete KG where
many relational facts are missing, path-based rea-
soning approaches (Lao et al., 2011; Xiong et al.,
2017; Das et al., 2018) have been proposed to an-
swer the one-hop query via finding multi-hop paths.
For example, to answer the query (s,Mother, ?), a
path s

Father−−−→ j
Wife−−→ t could reach the target an-

swer t. In this paper we try to integrate symbolic
KG reasoning into neural LMs and help it deal with
ODQA problems.

Overview of OREOLM We illustrate the over-
all architecture of OREOLM in Figure 2. All the
light blue blocks are our added components to
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Figure 2: Model architecture of OREOLM. Three key procedures are highlighted in red dotted box: 1) Relation
Prediction (Sec. 2.1.1): Knowledge Interaction Layers (KIL) predicts relation action for each entity mention. 2)
One-step State Transition (Sec. 2.1.2): Based on the predicted relation, KG re-weights each graph and conduct
contextualized random walk to update entity distribution state. 3) Knowledge Integration (Sec. 2.2): An weighted
aggregated entity embedding is added into a placeholder token as retrieved knowledge.

support KG reasoning, while the dark blue Trans-
former layers are knowledge-injected LM. The key
component of OREOLM for conducting KG rea-
soning is the Knowledge Interaction Layers (KIL),
which are added amid LM layers to enable deeper
interaction with the KG.

Given a question q = “The Bauhaus repre-
sented Germany’s recovery from which event?”,
QA model needs to extract knowledge about all n
in-context entity mentions M = {mi}ni=1, e.g., the
history of “Germany” at the time when “Bauhaus”
is founded, to get the answer a = “World War
I”. Such open-domain Q&A can be abstracted as
P (a|q,M).

Starting from each mentioned entity mi, we de-
sire the model to learn to walk over the graph to
retrieve relevant knowledge and form a T -length
reasoning path for answering this question, where
T is a hyper-parameter denote the longest reason-
ing path required to answer the questions. We de-
fine each reasoning path starting from the entity
mention mi as a chain of entities (states) random
variables ρi = {eti}Tt=0, where each mentioned en-
tity is the initial state, i.e., e0i = mi. The union of
all paths for this question is defined as ϱ = {ρi},
which contains the reasoning paths from each men-
tioned entity to answer the question.

OREOLM factorizes P
(
a|q,M

)
by incorporat-

ing possible paths ϱ as a latent variable, yielding:

P
(
a|q,M

)
=

∑
ϱ
P
(
ϱ|q, {mi}ni=1

)
· P

(
a|q,M,ϱ

)

=
∑

ϱ

( n∏

i=1

P
(
ρi|q,mi

))
· P

(
a|q, {mi, ρi}ni=1

)

=
∑

ϱ

( n∏

i=1

T∏

t=1

P
(
eti|q, e<t

i

)
︸ ︷︷ ︸
KG Reasoning (2.1)

)
P
(
a|q, {e0:Ti }ni=1

)

︸ ︷︷ ︸
knowledge-injected LM (2.2)

We assume (1) reasoning paths starting from dif-
ferent entities are generated independently; and (2)
reasoning paths can be generated autoregressively.

In this way, the QA problem can be decomposed
into two entangled steps: 1) KG Reasoning, which
autoregressively walks through the graph to get a
path ρi starting from each entity mention mi; and
2) knowledge-injected LM, which benefits from the
reasoning paths to obtain the out-context knowl-
edge for answer prediction.

The relational path ρi in KG Reasoning requires
the selection of next entity eti at each step t. We
further decompose it into two steps: 1.a) relation
prediction, in which LM is involved to predict the
next-hop relation based on the current state and
context; and 1.b) the non-parametric state transi-
tion, which is to predict the next-hop entity based
on the KG and the predicted relation. Formally:
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P
(
eti|q, e<t

i

)
︸ ︷︷ ︸
KG Reasoning (2.1)

=
∑

r

P rel

(
rti |q, e<t

i

)
︸ ︷︷ ︸
relation prediction (2.1.1)

· Pwalk

(
eti|rti , e<t

i

)
︸ ︷︷ ︸

contextualized random walk (2.1.2)

We keep track of the entity distribution at each
step t via the probability vector1 π

(t)
i ∈ R|E|, with

π
(t)
i [e] being the probability of staying at entity e,

i.e., P
(
eti = e|q, e<t

i

)
.

We highlight the three procedures in red dot-
ted box in Figure 2. We take the first reason-
ing step starting from entity mention “Bauhaus”
as an example. In the first red box within KIL,
we predict which relation action should be taken
for entity “Bauhaus”, and send the prediction (e.g.
“Founded”) to KG. In the second red box, KG re-
weights the graph and conducts contextualized ran-
dom walk to update entity distribution, where “Wal-
ter” has the highest probability. Finally, weighted
by the entity distribution, an aggregated entity em-
bedding is sent back to KIL and added into a place-
holder token as the knowledge, so the later LM
layer knows to focus on the retrieved “Walter”. We
introduce these steps in the following.

Input Initially, we first identify all N entity men-
tions {mi}Ni=1 in the input question q as well as
the corresponding KG entities2.. For each men-
tion mi we add three special tokens as the inter-
face for Knowledge Interaction Layers (KIL) to
send instruction and receive knowledge: we add
a [S-ENT] token before, and [REL], [T-ENT] to-
kens after each entity mention mi. KIL can be
flexibly inserted into arbitrary LM intermediate
layer. By default, we just insert each KIL every N
Transformer-based LM layers, thus the input to the
t-th KIL are contextualized embeddings of each
token k as LM(t)k , including added special tokens.

2.1 LM involved KG Reasoning

We first introduce the reasoning process
P
(
eti|q, e<t

i

)
=
∑

r P
(
rti |q, e<t

i

)
· P

(
eti|rti , e<t

i

)
.

2.1.1 Relation Prediction.
For each entity mention mi, we desire to predict
which relation action should take rti as instruction
to transit state. We define the predicted relation
probability vector γ(t)

i = P rel

(
rti |q, e<t

i

)
∈ R|R|

1Throughout the paper, all vectors are row-vectors
2For Wikipedia pretraining, we use the ground-truth entity

label as one-hot initialization for π0
i . For downstream tasks

we use GENRE (Cao et al., 2021) to get top 5 entity links.

representing the relation distribution to guide walk-
ing through the graph. Denote the corresponding
[REL] token as REL[i] (and similarly for other spe-
cial tokens). The contextual embedding LM(t)REL[i]
encode the relevant information in question q that
hints next relation. We maintain a global relation
key memory Krel ∈ R|R|×d storing each relation’s
d-dimentional embedding. To calculate similarity,
we first get relation query Q

(t)
REL[i] by projecting

relation token’s embedding into the same space
of key memory via a projection head Q-Proj3 fol-
lowed by a LayerNorm (abbreviated as LN), and
then calculate dot-product similarity followed by
softmax:

Q
(t)
REL[i] = LN(t)

(
Q-Proj(t)(LM(t)REL[i])

)
, (1)

γ
(t)
i = P rel

(
rti |q, e<t

i

)
= Softmax

(
Q

(t)
REL[i] K

T
rel

)
.

(2)

Note that the relation queries LM(t)REL[i] are dif-
ferent for every mention mi and reasoning step t
depending on the context, and thus the the relation
distributions γ(t)

i gives contextualized predictions
based on the question q. The predicted relations
are sent to the knowledge graph reasoning module
as instruction to conduct state transition.

2.1.2 Contextualized KG Random Walk

Next, we introduce how we conduct state transi-
tion Pwalk

(
eti|rti , e<t

i

)
. One classic transition algo-

rithm is random walk, which is a special case of
markov chain, i.e. the transition probability only
depends on previous state. Consider a state at en-
tity s, the probability walking to target t is 1

deg(s) if
A[s, t] = 1. Based on it, we define the Markov tran-
sition matrix for random walk as Mrw = D−1

A A,
where the degree matrix DA ∈ R|E|×|E| is de-
fined as the diagonal matrix with the degrees
deg(1), . . . , deg(|E|) on the diagonal. With ran-
dom walk Markov matrix Mrw we can transit the
state distribution as: π(t) = π(t−1)M , The limita-
tion of random walk is that the transition strategy is
not dependent on the question q. We thus propose
a Contextualized Random Walk (CRW).

Based on the predicted relation distribution γ
(t)
i ,

we calculate a different weighted adjacency matrix

3We denote a non-linear MLP projection as X-Proj(h) =
WX

2 σ(WX
1 h+b1)+b2, where X have different instantiations.
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Ã
(t)
i ∈ R|E|×|E| by adjusting the edge weight:

Ã
(t)
i =

∑
r∈R

wr · γ(t)
i,r ·Ar, (3)

Mcrw,i
(t) = D−1

Ã
(t)
i

Ã
(t)
i , ∀i ∈ [1, N ]. (4)

where wr is a learnable importance weight for re-
lation r that helps solving downstream tasks, and
γ
(t)
i,r is the probability corresponding to relation r

in γ
(t)
i . With the transition matrix Mcrw,i

(t), the
state transition is defined as π(t)

i = π
(t−1)
i M

(t)
crw,i.

CRW allows each reasoning path ρi to have its
transition matrix. However, as the total number of
entity nodes |E| could be huge (e.g., 5M for Wiki-
Data), we cannot afford to update the entire adja-
cency matrix for every in-batch mention. We thus
adopt a scatter-gather pipeline to implement graph
walking as shown in Algorithm 1. We first gather
the entity and relation probability to each edge, and
then scatter the probability to target nodes. This al-
lows us to simultaneously conduct message passing
with modified adjacency weight Ãt

i for all entity
mention mi in parallel.

Algorithm 1: Pytorch Pseudocode of CRW

def ContextualizedRandomWalk(
i_init, KG, # initial entity index and Graph
w_deg, w_rel, # inv(degree) and relation weights
p_ent, p_rel # entity and predicted relation dis-

# tribution tensor @ t-th step.
): -> FloatTensor

# Get <src, rel, tgt> edge list of k-hop subgraph
i_src, i_rel, i_tgt = k_hop_subgraph(i_init, KG)
# Gather entity and relation probability to edge
p_src = (p_ent * w_deg)[:, i_src] # N x n_edge
p_rel = (p_rel * w_rel)[:, i_rel] # N x n_edge
p_edge = l1_normalize(p_src * p_rel, dim=1)
# Scatter edge probability to target node
p_ent = scatter_add(src=p_edge, idx=i_tgt, dim=1)
return p_ent #(t+1)-th step’s entity distribution

The complexity is # of in-batch entities times
# of edges in T -hop subgraph starting from these
entities, i.e., O(n×#edge), and thus this operation
is not expensive. Another concern is why not us-
ing Graph Neural Networks (GNNs). We provide
discussion in Sec. C in Appendix.

2.2 Knowledge-Injected LM

After we get the updated entity distribution π
(t)
i ,

we want to inject such information back to the
LM without harming its overall structure. We
maintain a global entity embedding value mem-
ory Vent ∈ R|E|×d storing entity embeddings. We
only consider the entities within the sampled lo-
cal subgraph in each batch. We thus get an entity

index list I as the query to sparsely retrieve a set
of candidate entity embeddings and then aggregate
them weighted by entity distribution and embed-
ding table. We then use a Value Projection block
to map the aggregated entity embedding into the
space of LM, and then directly add the transformed
embedding back to the output of T-ENT.

V
(t)
i = V-Proj(t)

(
π
(t)
i · Vent[I]

)
, (5)

L̂M
(t)
T-ENT[i] = LN(t)

(
LM

(t)
T-ENT[i] + V

(t)
i

)
. (6)

Then, we just take all L̂M(t)T-ENT as input to next
Transformer-based LM layer to learn the interaction
between the retrieved knowledge with in-context
words via self-attention.

By repeating the KIL for T times, the final rep-
resentation L̂M

T is conditioned on the reasoning
paths ρi = e0:Ti , which reaches entities that are T -
hop away from initial entity mi in the question. Fi-
nally, we can predict the answer of open questions
P
(
a|q, {e0:Ti }ni=1

)
by taking knowledge-injected

representation L̂MT for span extraction, entity pre-
diction or direct answer generation.

2.3 Pre-Train OREOLM to Reason
The design of OREOLM allows end-to-end training
given QA datasets. However, due to the small cov-
erage of knowledge facts for existing QA datasets,
we need to pretrain OREOLM on a large-scale cor-
pus to get good entity embeddings.

Salient Span Masking One straightforward ap-
proach is to use Salient Span Masking (SSM) ob-
jective (Guu et al., 2020) masks out entities or noun
tokens requiring specific out-of-context knowledge.
We mainly mask out entities for guiding OREOLM
to reason. Instead of randomly masking entity men-
tions, we explicitly sample a set of entity IDs and
mask every mentions linking to these entities. This
could prevent the model copy the entity from the
context to fill in the blank. We also follow (Yang
et al., 2019) to mask out consecutive token spans.
We then calculate the cross-entropy loss on each
salient span masked (SSM) token as LSSM .

2.3.1 Weakly Supervised Training of KIL
Ideally, OREOLM can learn all the entity knowl-
edge and how to access the knowledge graph by
solely optimizing LSSM . However, without a good
initialization of entity and relation embeddings,
KIL makes a random prediction, and the retrieved
entities by KG reasoning are likely to be unrelated
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Figure 3: Pre-training sample w/ golden reasoning path.
More real examples are shown in Table 8 in Appendix.

to the question. In this situation, KIL does not
receive meaningful gradients to update the param-
eters, and LM learns to ignore the knowledge. To
avoid this cold-start problem and provide entity
and relation embedding a good initialization, We
utilize the following two external signals as self-
supervised guidance.

Entity Linking Loss To initialize the large entity
embedding tables in Vent, we use other entities that
are not masked as supervision. Similar to Févry
et al. (2020), we force the output embedding of
[S-ENT] token before the first KIL followed by a
projection head E-Proj to be close to its correspond-
ing entity embedding:

ES-ENT[i] = LN
(
E-Proj(LM(1)S-ENT[i])

)
,

P
(0)
ent

(
e|mi, q

)
= Softmax

(
ES-ENT[i] Vent[I]

T
)
,

Lent =
∑

mi

− logP
(0)
ent

(
e|mi, q

)
· π0

i [I].

Similar to Section 2.2, we only consider entities
within the batch, denoted by index I . This con-
trastive loss guides each entity’s embedding Vent[e]
closer to all its previously mentioned contextual-
ized embedding, and thus memorizes those context
as a good initialization for later knowledge integra-
tion.

Weakly Supervised Relation Path Loss Entity
mentions within each Wikipedia passage are natu-
rally grounded to WikiData KG. Therefore, after
we mask out several entities, we can utilize the KG
to get all reasoning paths from other in-context en-
tities to the masked entities as weakly supervised
relation labels.

Formally, we define a Grounded Dependency
Graph DG, which contains all reasoning paths
within T -step from other in-context entities to
masked entities, and then define RDG(mi, t) as

Name Number dimension #param (M)

Number of Entity 4,947,397 128 633
Number of Relation 2,008 768 1.5
Number of Edges 45,217,947 - 47

Table 1: Statistics and parameter of KG Memory.

the set of all relations over every edges for entity
mention mi at t-th hop. Based on it, we define
the weakly supervised relation label q(t)i ∈ R|R|

as the probabilistic vector which uniformly dis-
tributed on each relation in set. Note that we call
uniformly-weighted q

(t)
i as weakly supervised be-

cause 1) some paths lead to multiple entities rather
than only the target masked entity; 2) the correct re-
lation is dependent on the context. Therefore, q(t)i

only provides all potential candidates for reacha-
bility, and more fine-grained signals for reasoning
should be learned from unsupervised LSSM . We
adopt a list-wise ranking loss to guide the model to
assign a higher score on these relations than others.

Lrel =
∑

mi

∑T

t=1
− logP

(t)
rel

(
r|mi, q

)
· q(t)i .

Overall, Lent and Lrel provide OREOLM with
good initialization of the large KG memory. After-
ward, via optimizing LSSM , the reasoning paths
that provide informative knowledge receive a posi-
tive gradient, guiding OREOLM to reason.

3 Experiments

The proposed KIL layers can be pugged into most
Transformer-based Language Models without hurt-
ing its original structure. In this paper, we experi-
ment with both encoder-based LM, i.e. RoBERTa-
base (d = 768, l = 12), and encoder-decoder
LM, i.e. T5-base (d = 768, l = 12) and T5-large
(d = 1024, l = 24). For all LMs, add 1 KIL layer
or 2 KIL layers to the encoder layers. The statistics
of KG are shown in Table 1. Altogether, it takes
about 0.67B parameter for KG memory, which is
affordable to load as model parameter. We pre-
train all LMs using the combination of LSSM , Lent

and Lrel for 200k steps on 8 V100 GPUs, with a
batch size of 128 and default optimizer and learning
rate in the original paper, taking approximately one
week to finish pre-training of T5-large model, and
1-2 days for base model. Implementation details
are elaborated in Appendix A.

3.1 Evaluate for Closed-Book QA
OREOLM is designed for improving Closed-Book
QA, so we first evaluate it in this setting.
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Models #param NQ WQ TQA ComplexWQ HotpotQA

T5 (Base) 0.22B 25.9 27.9 29.1 11.6 22.8
+ OREOLM (T=1) 0.23B + 0.68B 28.3 30.6 32.4 20.8 24.1
+ OREOLM (T=2) 0.24B + 0.68B 28.9 31.2 33.7 23.7 26.3

T5 (Large) 0.74B 28.5 30.6 35.9 16.7 25.3
+ OREOLM (T=1) 0.75B + 0.68B 30.6 32.8 39.1 24.5 28.2
+ OREOLM (T=2) 0.76B + 0.68B 31.0 34.3 40.0 27.1 31.4

T5-3B (Roberts et al., 2020) 3B 30.4 33.6 43.4 - 27.8
T5-11B (Roberts et al., 2020) 11B 32.6 37.2 50.1 - 30.2

Table 2: Closed-Book Generative QA performance of Encoder-Decoder LM on Single- and Multi-hop Dataset.

Generative QA Task Following the hyperpa-
rameters and setting in (Roberts et al., 2020),
we directly fine-tune the T5-base and T5-large
augmented by our OREOLM on the three
single-hop ODQA datasets: Natural Question
(NQ) (Kwiatkowski et al., 2019), WebQues-
tions (WQ) (Berant et al., 2013) and TriviaQA
(TQA) (Joshi et al., 2017). To test OREOLM’s abil-
ity to solve complex questions, we also evaluate on
two multi-hop QA datasets, i.e. Complex WQ (Tal-
mor and Berant, 2018) and HotpotQA (Yang et al.,
2018). Detailed dataset statistics and experimental
setups are in Appendix B.

Experimental results are shown in Table 7. We
use Exact Match accuracy as the metric for all the
datasets. On the three single-hop ODQA datasets,
OREOLM with 2 KIL blocks achieves 3.3 abso-
lute accuracy improvement to T5-base, and 3.4 im-
provement to T5-large. Compared with T5 model
with more model parameters (e.g., T5-3B and T5-
11B), our T5-large augmented by OREOLM could
outperform T5-3B on NQ and WQ datasets. In ad-
dition, OREOLM could use the generated reasoning
path to interpret the model’s prediction. We show
examples in Table 10 in Appendix.

For the two multi-hop QA datasets, the per-
formance improvement brought by OREOLM is
more significant, i.e., 7.8 to T5-base and 8.2 to T5-
large. Notably, by comparing the T5-3B and T5-
11B’s performance on HotpotQA (we take results
from (Chen et al., 2022)), T5-large augmented by
OREOLM achieves 1.2 higher than T5-11B. This
shows that OREOLM is indeed very effective for im-
proving Closed-Book QA performance, especially
for complex questions.

Entity Prediction Task Encoder-based LM (i.e.
RoBERTa) in most cases cannot be directly used
for Closed-Book QA, but more serve as reader to
extract answer span. However, Verga et al. (2021)

propose a special evaluation setting as Closed-Book
Entity Prediction. They add a single [MASK] token
after the question, and use its output embedding
to classify WikiData entity ID. This restricts that
answers must be entities that are covered by Wiki-
Data, which they call WikiData-Answerable ques-
tions. We follow Verga et al. (2021) to use such re-
duced version of WebQuestionsSP (WQ-SP) (Yih
et al., 2015) and TriviaQA (TQA) as evaluation
dataset, and finetune the RoBERTa (base) model
augmented by OREOLM to classify entity ID. We
mainly compare OREOLM with EaE (Févry et al.,
2020) and FILM (Verga et al., 2021), which are two
KG memory augmented LM. We also run experi-
ments on KEPLER (Wang et al., 2019), a RoBERTa
model pre-trained with knowledge augmented task.

Experimental results are shown in Table 3. Sim-
ilar to the observation reported by Verga et al.
(2021), adding KG memory for this entity predic-
tion task could significantly improve over vanilla
LM, as most of the factual knowledge required to
predict entities are stored in KG. By comparing
with FILM (Verga et al., 2021), which is the state-
of-the-art model in this setup, OREOLM with rea-
soning step (T = 2) outperforms FILM by 2.9,
with smaller memory consumption.

3.2 Analyze KG Reasoning Module

In our previous studies, we find that using a higher
reasoning step, i.e. T = 2, generally performs
better than T = 1. We hypothesize that the KG
we use has many missing one-hop facts, and high-
order reasoning helps recover them and empow-
ers the model to answer related questions. To test
whether OREOLM indeed can infer missing facts,
we use EntityQuestions (EQ) (Sciavolino et al.,
2021), which is a synthetic dataset by mapping
each WikiData triplet to natural questions. We take
RoBERTa-base model augmented by OREOLM
trained on NQ as entity predictor and directly test
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its transfer performance on EQ dataset without fur-
ther fine-tuning.

To test whether OREOLM could recover missing
relation, we mask all the edges corresponding to
each relation separately and make the prediction
again. The average results before and after remov-
ing edges are shown on the left part of Figure 4.
When we remove all the edges to each relation,
OREOLM with T = 1 drops significantly, while
T = 2 could still have good accuracy. To under-
stand why OREOLM (T = 2) is less influenced, in
the right part of Figure 4, we generate a reasoning
path for each relation by averaging the predicted
probability score at each reasoning step and pick
the relation with the top score. For example, to
predict the “Capital” of a country, the model learns
to find the living place of the president, or the lo-
cation of a country’s central bank. Both are very
reasonable guesses. Many previous works (Xiong
et al., 2017) could also learn such rules in an ad-hoc
manner and require costly searching or reinforce-
ment learning. In contrast, OREOLM could learn
such reasoning capacity for all relations end-to-end
during pre-training.

Ablation Studies We conduct several ablation
studies to evaluate which model design indeed con-
tributes to the model. As shown in the bottom
blocks in Table 3, we first remove the KG reason-
ing component and provide RoBERTa base model
via concatenated KB triplets and train such a model
using LSSM over the same WikiDataset. Such a
model’s results are close to the KEPLER results
but much lower than other models with explicit
knowledge memory. We further investigate the
role of pre-training tasks. Without pre-training,
the OREOLM only performs slightly better than
RoBERTa baseline, due to the cold-start problem
of entity and relation embedding. We further show
that removing Lent and Lent could significantly
influence final performance. The current combina-
tion is the best choice to train OREOLM to reason.

3.3 Evaluate for Open-Book QA

Though OREOLM is designed for Closed-Book QA,
the learned model can serve as backbone for Open-
Book QA. We take DPR and FiD models as base-
line. For DPR retriever, we replace the question
encoder to RoBERTa + OREOLM, fixing the pas-
sage embedding and only finetune on each down-
stream QA dataset. For FiD model, we replace the
T5 + OREOLM. We also changed the retriever with

Models #param (B) WQ-SP TQA

EaE (Févry et al., 2020) 0.11 + 0.26 62.4 24.4
FILM (Verga et al., 2021) 0.11 + 0.72 78.1 37.3
KEPLER (Wang et al., 2019) 0.12 48.3 24.1

RoBERTa (Base) 0.12 43.5 21.3
+ OREOLM (T=1) 0.12 + 0.68 80.1 39.7
+ OREOLM (T=2) 0.13 + 0.68 80.9 40.3

Ablation Studies

RoBERTa + Concat KB + LSSM 0.12 47.1 22.6

+ OREOLM (T=2) w/o PT 0.13 + 0.68 46.9 22.7
w. LSSM 0.13 + 0.68 51.9 26.8
w. LSSM + Lent 0.13 + 0.68 68.4 35.7

Table 3: Closed-Book Entity Prediction performance
of Encoder LM on WikiData-Answerable Dataset.

Models #param (B) NQ TQA

Graph-Retriever (Min et al., 2019) 0.11 34.7 55.8
REALM (Guu et al., 2020) 0.33 + 16 40.4 -

DPR (Karpukhin et al., 2020) + BERT 0.56 + 16 41.5 56.8
+ OREOLM (DPR, T=2) 0.57 + 17 43.7 58.5

FiD (Base) = DPR + T5 (Base) 0.44 + 16 48.2 65.0
+ OREOLM (T5, T=2) 0.45 + 17 49.3 67.1
+ OREOLM (DPR & T5, T=2) 0.46 + 17 51.1 68.4

FiD (Large) = DPR + T5 (Large) 0.99 + 16 51.4 67.6
+ OREOLM (T5, T=2) 0.99 + 17 52.4 68.9
+ OREOLM (DPR & T5, T=2) 1.00 + 17 53.2 69.5

KG-FiD (Base) (Yu et al., 2022a) 0.44 + 16 49.6 66.7
KG-FiD (Large) (Yu et al., 2022a) 0.99 + 16 53.2 69.8
EMDR2 (Sachan et al., 2021b) 0.44 + 16 52.5 71.4

Table 4: Open-Book QA Evaluation.

our tuned DPR. Results in Table 4 show that by
augmenting both retriever and generator, OREOLM
improves a strong baseline like FiD, for about 3.1%
for Base and 1.8% for Large, and it outperforms the
very recent KG-FiD model for 1.6% in base setting,
and achieve comparative performance in a large set-
ting. Note that though our results is still lower than
some recent models (e.g., EMDR2), these methods
are dedicated architecture or training framework for
Open-Book QA. We may integrate OREOLM with
these models to further improve their performance.

4 Related Work

Open-Domain Question Answering (ODQA)
gives QA model a single question without any con-
text and asks the model to infer out-of-context
knowledge. Following the pioneering work
by Chen et al. (2017), most ODQA systems as-
sume the model can access an external text corpus
(e.g. Wikipedia). Due to the large scale of web
corpus (20GB for Wikipedia), it could not be sim-
ply encoded in the QA model parameters, and thus
most works propose a Retrieval-Reader pipeline,
by firstly index the whole corpus and use a re-
triever model to identify which passage is relevant
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Figure 4: Testing the reasoning capacity of OREOLM to infer missing relations. On the left, the barplot shows
the transfer performance on EQ before and after removing relation edges, OREOLM (T = 2) is less influenced. On
the right shows reasoning paths (rules) automatically generated by OREOLM for each missing relation.

to the question; then the retrieved text passage con-
catenate with question is re-encoded by a seperate
reader model (e.g., LM) to predict answer. As the
knowledge is outside of model parameter, Roberts
et al. (2020) defines these methods as Open-book,
with an analogy to referring textbooks during exam.
Closed-book QA models (mostly a single LM) try
to answer open questions without accessing exter-
nal knowledge. This setting is much harder as it
requires LM to memorize all pertinent knowledge
in its parameters, and even recent LMs with much
larger model parameters is still not competitive to
state-of-the-art Open-book models.

Knowledge-augmented Language Models explic-
itly incorporate external knowledge (e.g. knowl-
edge graph) into LM (Yu et al., 2022d). Over-
all, these approaches can be grouped into two
categories: The first one is to explicitly inject
knowledge representation into language model
pre-training, where the representations are pre-
computed from external sources (Zhang et al.,
2019; Liu et al., 2021; Hu et al., 2021). For ex-
ample, ERNIE (Zhang et al., 2019) encodes the
pre-trained TransE (Bordes et al., 2013) embed-
dings as input. The second one is to implicitly
model knowledge information into language model
by performing knowledge-related tasks, such as
entity category prediction (Yu et al., 2022b) and
graph-text alignment (Ke et al., 2021). For exam-
ple, JAKET (Yu et al., 2022b) jointly pre-trained
both the KG representation and language represen-
tation by adding entity category and relation type
prediction self-supervised tasks.

There also exists several QA works using KG to
help ODQA. For example, Asai et al. (2020) and
Min et al. (2019) expand the entity graph following
wikipedia hyperlinks or triplets in knowledge base.
Ding et al. (2019) extract entities from current con-
text via entity-linking and turn them into a cogni-
tive graph, and a graph neural network is applied
on top of it to extract answer. Dhingra et al. (2020)
and Lin et al. (2020) construct an entity-mention

bipartite graph and then model the QA reasoning
as graph traversal by filtering only the contexts
that are relevant to the question. Lin et al. (2019),
Feng et al. (2020) and Yasunaga et al. (2021) parse
the question into a sub-graph of knowledge base,
and apply graph neural networks as reasoner for
extracting one of the entities as the answer.

To encode knowledge (significantly smaller than
the web corpus) as memory into LM parameter, a
line of works try compressed knowledge including
QA pairs (Chen et al., 2022; Lewis et al., 2021b;
Yu et al., 2022c), entity embedding (Févry et al.,
2020) and reasoning cases (Das et al., 2021, 2022).
There’s also several works utilizing Knowledge
Graph (KG) to augment LM. FILM (Verga et al.,
2021) turns KG triplets into memory. Given a ques-
tion, LM retrieves most relevant triplet as answer.
GreaseLM (Zhang et al., 2022) propose to interact
LM with KG via a interaction node.

5 Conclusion

We presented OREOLM, a novel model that in-
corporates symbolic KG reasoning with existing
LMs. We showed that OREOLM can bring signifi-
cant performance gain to open-domain QA bench-
marks, both for closed-book and open-book set-
tings, as well as encoder-only and encoder-decoder
models. Additionally, OREOLM produces reason-
ing paths that helps interpret the model prediction.
In future, we’d like to improve OREOLM by train-
ing to conduct more reasoning steps, supporting
locial reasoning, and apply OREOLM to a broader
range of knowledge-intensive NLP tasks.
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6 Limitations

Limited Reasoning Steps In our experiments,
we show that using reasoning step T = 2 has better
performance to T = 1 on one-hop and multi-hop
(mostly two) QA datasets. Thus, it’s a natural ques-
tion about whether we could extending reasoning
steps more? As previous KG reasoning mostly
could support very long path (with LSTM design)

Though we didn’t spend much time exploring
before the paper submission, we indeed try using
T = 3, but currently it didn’t get better results. We
hypothesize the following reasons: 1) A large por-
tion of our current model’s improvement relies on
the weakly supervised relation pre-training. To do
it, we construct a K-hop (K=2 now) subgraph, and
sample dependency graph based on it. The larger
K we choose, the more noise is included into the
generated relation label, in an exponential increas-
ing speed. Thus, it’s harder to get accurate reason-
ing path ground-truth for high-order T . Another
potential reason is that within Transformer model,
the representation space in lower and upper layer
might be very different, say, encode more syntax
and surface knowledge at lower layers, while more
semantic knowledge at upper layers. Currently we
adopt a MLP projection head, wishing to map inte-
grated knowledge into the same space, but it might
have many flaws and need further improvement.

Large Entity Embedding Table requires Pre-
Training and GPU resources Our current design
has a huge entity embedding table, which should be
learned through additional supervision and could
not directly fine-tune to downstream tasks. This is
restricts our approach’s usage.

Require Entity Linking Current model design
requires an additional step of entity linking for
incoming questions, and then add special tokens as
interface. A truly end-to-end model should identify
which elements to start conducting reasoning by its
own without relying on external models.

Only support relational path-based reasoning
Though there are lots of potential reasoning tasks,
such as logical reasoning, commonsense reasoning,
physical reasoning, temporal reasoning, etc. Our
current model design mainly focus on path-based
relational reasoning, and it should not work for
other reasoning tasks at current stage.

Unreasonable Assumption of Path In-
dependency When we derive equation 1,

we have the assumption that reasoning paths
starting from different entities should be inde-
pendent. This is not always correct, especially
for questions that require logical reasoning, say,
have conjunction or disjunction operation over
each entity state. And thus our current methods
might not work for those complex QA with logical
dependencies.
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A Implementation Details

Entity Linking durine pre-training We use
the 2021 Jan. English dump of Wikidata and
Wikipedia. For each wikipedia page, we link all
entity mentions with hyperlinks to WikiData en-
tity entry, augment all other mentions with same
aliases, tokenize via each LM’s tokenizer and split
into chunks with maximum token length allowed.
We then construct induced k-hop subgraphs con-
necting entities within each chunk for quickly get
grounded computational graph.

For entities, Wikipedia provides hyperlinks with
ground-truth entity ID, but it doesn’t cover all the
entity mentions, mostly hyperlinks only appear
when this entity appears for the first time. There-
fore, we first collect all entities appeared in hy-
perlinks as well as their aliases stored in WikiData,
and then search any mentions that have any of these
alias and link it to the corresponding entity.

Hyperparameters In this work, we don’t have
too much hyperparmaters to be tuned, as most pa-
rameters as well as optimizing setting of LM is
fixed. Our random walk part is non-parametric.
The only tunable hyperparamter is hidden dimen-
sion size. We simply choose one setting, which
is 128 for entity embedding, and 768 for relation
embedding. The former is because entity is super
large (over 5M), so we use a reletively smaller di-
mension size. Detailed statistics about wikidata
memory is in Table 1.

B Dataset Details

Below shows details for each dataset, and the
detailed dataset split is shown in Figure 5

Natural Questions (Kwiatkowski et al., 2019)
contains questions from Google search queries, and
the answers are text spans in Wikipedia. We report
short answer Exact Match (EM) performance. The
open version of this dataset is obtained by discard-
ing answers with more than 5 tokens.

WebQuestions (WQ) (Berant et al., 2013) con-
tains questions from Google Suggest API, and the
answers are entities in Freebase.

TriviaQA (Joshi et al., 2017) contains trivia ques-
tions and answers are text spans from the Web. We
report Exact Match (EM) performance. We use its
unfiltered version for evaluation.

HotpotQA (Yang et al., 2018) is a multi-hop QA
dataset. There are two evaluation settings. In the
distractor setting, 10 candidate paragraphs are pro-
vided for each question, of which there are two
golden paragraphs. In the full-wiki setting, a model
is required to extract paragraphs from the entire
Wikipedia. We report Exact Match (EM) on full-
wiki setting.

Complex WebQuestions (Talmor and Berant,
2018) is a dataset that composite simple one-hot
questions in WebQuestionsSP by extending enti-
ties or adding constraints, so that each question
eequires complex reasoning to solve.

WebQuestionsSP (Yih et al., 2015) is annotated
dataset from WebQuestions, such taht each quet-
sion is answerable using Freebase via a SQL query.

C Discussion with Previous Works

Compare with FILM Though FILM has the ad-
vantage of end-to-end training and easily modifi-
cation of knowledge memory, it simply stacks KG
module on top of LM without interaction, and can
only handle one-hop relational query that is an-
swerable by KG. Our approach, OREOLM, follows
the same memory idea by encoding KG into LM
parameter, and we desire LM and KG reasoning
module could interact and collaboratively improve
each other.

Notably, OREOLM with T = 1 shares a similar
design with FILM. The major differences are: 1)
they store every triplet as a key-value pair, while
we explicitly keep the KG adjacency matrix and
conduct a random walk, which has smaller search
space and is more controllable. 2) They add the
memory on top of LM, and thus the knowledge
could not help language understanding, and FILM
could mainly help wikipedia-answerable questions.
Instead, we insert the KIL layer amid LM layers
to encourage interaction, and thus the model could
also benefit encoder-decoder model (as shown
above).

Compare with Previous Path-Based Reasoning
and Retrieval Pre-Training Note that as our def-
inition of entity state πi and relation action γi are
both continuous probabilistic vector, the whole KG
Reasoning is fully differentiable and thus could be
integrated into LM seamlessly and trained end-to-
end. This is different from previous path traversal
works such as DeepPath (Xiong et al., 2017) and
MINERVA (Das et al., 2018), which defines state
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Dataset Train Dev Test

Natural Questions 58880 8757, 3610
Trivia QA 60413 8837 11313
Web Questions 2474 361 2032
Complex WebQ 27623 3518 3531
WebQ-SP (Wiki-answerable) 1388 153 841
FreebaseQA (Wiki-answerable) 12535 2464 2440

Table 5: Dataset Train/Valid/Test splits.

Models #param (B) WQ-SP TQA

RoBERTa (Base) 0.12 47.5 40.3
+ OREOLM (T=1) 0.12 + 0.68 89.7 61.4
+ OREOLM (T=2) 0.13 + 0.68 92.4 66.8

Table 6: Closed-Book Entity Prediction valida-
tion performance of Encoder RoBERTa on WikiData-
Answerable Dataset.

and action as discrete and could only be trained
via reinforcement learning rewards. The reasoner
training is also different from passage retrieval pre-
training (Guu et al., 2020; Sachan et al., 2021a),
as the passage are naturally consisted of discrete
tokens, and thus the reader is still required to re-
encode the question with each passage, and differ-
ent objectives are required to train retriever and
reader separately.

Discussion of Graph Walking-based Reasoning
vs Graph Neural Networks Recently, Graph
Neural Networks (GNNs) have shown superior
performance for structured representation learning.
There’s also a lot of works trying to use GNNs for
Question Answering (Yasunaga et al., 2021; Zhang
et al., 2022). The one that has very similar moti-
vation with us is GreaseLM. Therefore, a natural
question is, whether could we use GNN instead
of the non-parametric random walk module, for
ODQA?

To answer this question, let’s consider a simplest
setup of GNN. We could identify initial entities,
connected them via a k-hop subgraph, and encode
graph with text (Zhang et al., 2022) or indepen-
dently (Yu et al., 2022b). When we want to retrieve
knowledge from graph to LM, normally we just
take the contextualized node embedding as input
for knowledge fusion.

In this setup, say the answer is K-hop away
from an initial entity, the ground-truth reasoning
path is e0, r1, e1, r2, ..., ek−1, rk, ek = a. Using

our method, we first predict r1, transit to e1, and
step by step conduct reasoning via walking. How-
ever, if we use GNN’s final embedding, it requires
to pass information from neighbor to itself. There-
fore, suppose we have a K-layer GNN, the first step
should be identify rk, and pass information from
answer ek = a to ek−1. This is conter-intuitive
as we normally cannot assume to know the an-
swer, nor knowling the last step to reach the an-
swer. In situations where all candidate answer is
given, like CommonSenseQA, where GreaseLM
mainly works on, this problem is less harmful as
it’s guaranteed to contain the answer in a restricted
small graph. However, in open-domain setup, we
need to try best to narrow down the search space
by following the forward reasoning instead of the
backward manner. Therefore, in this work we adopt
walking-based reasoning.

D Illustration of Pre-Trained Data and
Reasoning Paths

The pre-training samples and reasoning paths
(generated by T5-large on NQ dataset) is shown
from Table 8-11.
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Models #param NQ WQ TQA ComplexWQ HotpotQA

T5 (Large) 0.74B - - - - -
+ OREOLM (T=2) 0.76B + 0.68B 33.6 38.9 42.7 29.6 35.5

Table 7: Closed-Book Generative QA validation performance of T5.
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Title Masked Text Ground Truth Dependency Graph 2-Hop Graph

Poolbeg the lighthouse was [mask] [s-
ent] [mask] [rel] [t-ent] com-
pleted in 1795. overview.
the [s-ent] poolbeg[rel] [t-ent]
“peninsula” is home to a num-
ber of landmarks including
the [s-ent] [mask][rel] [t-ent]
, the [s-ent] pool[mask] light-
house[rel] [t-ent] , the [s-ent]
irishtown nature park[rel] [t-
ent] , the southern part of [s-
ent] [mask][rel] [t-ent] ...

[ ’ connected to land
by the’, ’ great south
wall’, ’ great south
wall’, ’beg’, ’ dublin
port’, "’s main
power station,", ’
structures in’, ’48’, ’
a process to list the’,
’ after the station’,
’, including 3,’, ’
dublin city council’,
’ quarter” on the’]

Rylstone it is situated very
near to [s-ent]
[mask][rel] [t-
ent] and about
6 miles south
west[mask] [s-ent]
[mask]ington[rel] [t-
ent] . the population
of the [s-ent] civil
parish[rel] [t-ent] as
of the 2011 census
was 160. [s-ent]
rylstone railway
station[rel] [t-ent]
opened in 1902,
closed to passen-
gers in 1930, and
closed completely in
1969....

[’ craven’, ’ cracoe’,
’ of’, ’ grass’, ’
the inspiration for’,
’ tour de france’,
’stone’, ’ by will’...]

Karpinsk ologist [s-ent]
[mask] [rel] [t-ent]
. history.[mask]the
settlement of bo-
goslovsk () was
founded in either
1759 or in 1769. it
remained one of
the largest [s-ent]
copper[rel] [t-ent]
production cen-
ters in the [s-ent]
urals[rel] [t-ent]
[mask] [s-ent]
[mask][rel] [t-ent]
deposits started to
be mined in 1911.....

[’ alexander karpin-
sky’, ’ until 1917.’,
’ coal’, ’erman civil-
ians, who’, ’ and’, ’
years of’, ’ forest la-
borers. moreover’, ’
in’, ’ the’, ’ frame-
work of the’, ’ dis-
tricts’, ’ karpinsk’,
’insk’...]

3 (The X-
Files)

[s-ent]
[mask][mask][rel]
[t-ent] ". [s-ent]
gillian ander-
son[rel] [t-ent] is
absent[mask][mask]
episode as she was
on leave to give
birth to her daughter
piper at the time.
this episode was
the first[mask] not
appear. reception.
ratings. "3" pre-
miered on the [s-ent]
fox network[rel]
[t-ent] on, and was
first broadcast in the
[s-ent] united king-
dom[rel] [t-ent].....

[ ’ny had’, ’
episode’, ’born
again’, ’ from the’, ’
in which scully did’,
’. it was’, ’egall’,
’ metacritic’, ’ as
"wretched’, ’ fact
that’, ’ background
noise for a’, ’ heavy-
handed attempts
at’, ’ glen morgan’,
’ doing an episode
on’]

Table 8: Example of Pre-training data points (Part 1).
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Title Masked Text Ground Truth Dependency Graph K-Hop Graph

Shen
Chun-
shan

his memoirs, he
suffered his second
stroke[mask][mask],
even after his second
stroke, he continued
writing; his series of
biographies of five
go masters [s-ent]
[mask][mask][mask][rel]
[t-ent] , [s-ent] mi-
noru kit[mask][rel]
[t-ent] .....

[’. however’, ’
go seigen’, ’ani’, ’
2007, he’, ’ was hos-
pital’, ’ hsinchu’, ’af-
ter surgery’, ’ scale’,
’ continuing to im-
prove.’, ’ his coma.
in’...]

2007
Florida
Gators
football
team

[s-ent]
tim[mask][mask][rel]
[t-ent] completed 22
of 27 passes for 281
yards passing and
also ran for[mask]
yards on 6 carries.
[s-ent] [mask] [rel]
[t-ent] carried the
ball 11 times for 113
yards[mask] two
touchdowns and also
caught 9 passes for
110[mask] receiving,
becoming the first
player in school
history .....

[’ tebow’, ’ 35’, ’
percy harvin’, ’ and’,
’ yards’, ’ 30–9’, ’
renewed their bud-
ding’, ’ gamecocks’,
’gator’, ’ quarter-
back’, ’ set a career-
high’, ’ of these five
rushing’, ’.’, ’ percy
harvin’, ’ sinus in-
fection.’, ’ators’, ’
touchdown’]

Judgment
Day
(Awe-
some
Comics)

[s-ent] alan
moore[rel] [t-
ent] used "judgment
day" to reject the
violent, deconstruc-
tive clichés of 1990s
comics inadvertently
caused by his own
work on " [s-ent]
watchmen[rel]
[t-ent] ", "" and
" [s-ent] saga of
the[mask][mask][rel]
[t-ent] " and uphold
the values of classic
superhero comics.
the series deals with
a metacommentary
of the notion of ret-
cons to super-hero
histories as [s-ent]
alan moore[rel] [t-
ent] [mask] for the
characters of [s-ent]
[mask][mask][rel]
[t-ent] , to replace
the shared universe
they left when [s-
ent] rob liefeld[rel]
[t-ent] left image
several years earlier.
plot. in[mask],
mick tombs/ [s-ent]
knightsabre[rel]
[t-ent].....

[ ’ swamp thing’,
’ himself creates a
new backstory’, ’
awesome comics’,
’ 1997’, ’riptide’,
’ knightsabre ap-
pears to be’, ’ and
sw’, ’ badrock’, ’
supreme’, ’by’, ’
analyzing’, ’ cyber-
netic young’, ’ it,
and it has’, ’ue out’,
’, administrator for
youngblood’]

Table 9: Example of Pre-training data points (Part 2).
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Question Answer Reasoning Paths as Rationale

southern soul was consid-
ered the sound of what in-
dependent record label

[’Motown’] soul music
genre-R−−−−→ ?

label−−→ ?

independent record label
belong−−−→ ?

is a-R−−−→ ?

who is the bad guy in lord
of the rings

[’Sauron’] the lord of the rings (film series) theme−−−→ ?
characters−−−−−→ ?

where was the mona lisa
kept during ww2

[’the Ingres
Museum’,
"Château
d’Amboise",
’Château
de Cham-
bord’, ’the
Loc - Dieu
Abbey’]

mona lisa creator−−−→ ?
tomb−−→ ?

world war 2
take place−−−−−→ ?

located-R−−−−−→ ?

who have won the world
cup the most times

[’Brazil’] fifa world cup
parts−−→ ?

land−−→ ?

who wrote the song the
beat goes on

[’Sonny
Bono’]

song
album type-R−−−−−−−→ ?

author−−−→ ?

who plays mrs. potato
head in toy story

[’Estelle Har-
ris’]

toy story series−−−→ ?
VO−−→ ?

who plays caroline on the
bold and beautiful

[’Linsey
Godfrey’]

the bold and the beautiful in work-R−−−−−→ ?
actor−−→ ?

where are the fruits of the
spirit found in the bible

[’Epistle to
the Gala-
tians’]

bible
parts−−→ ?

parts−−→ ?

who is the only kaurava
who survived the kuruk-
shetra war

[’Yuyutsu’] kaurava in work−−−−→ ?
in work-R−−−−−→ ?

Kurukshetra War location−−−−→ live in-R−−−−→

what is the deepest depth
in the oceans

[’Mariana
Trench’]

ocean in−→ ?
lowest point−−−−−−→ ?

where did the french na-
tional anthem come from

[’Strasbourg’] national anthem is a-R−−−→ ?
released in−−−−−→ ?

Table 10: Example of QA prediction with reasoning path on NQ (part 1).
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Question Answer Generated Reasoning Paths as Rationale

who sings the song where
have all the flowers gone

[’Pete
Seeger’]

song
album type-R−−−−−−−→ ?

actor−−→ ?

who discovered some is-
lands in the bahamas in
1492

[’Christopher
Columbus’]

the bahamas
entry−−→ ?

entry-R−−−−→ ?

which type of wave re-
quires a medium for trans-
mission

[’mechanical
waves’, ’heat
energy’,
’Sound’]

wave
belong-R−−−−−→ ?

belong-R−−−−−→ ?

land conversion through
burning of biomass re-
leases which gas

[’traces of
methane’,
’carbon
monoxide’,
’hydrogen’]

gas
belong-R−−−−−→ ?

as-R−−→ ?

the sum of the kinetic and
potential energies of all
particles in the system is
called the

[’internal en-
ergy’]

kinetic energy
belong−−−→ ?

belong-R−−−−−→ ?

potential energy
belong−−−→ ?

belong-R−−−−−→ ?

who did seattle beat in the
super bowl

[’Denver
Broncos’]

super bowl
organizer−−−−−→ ?

league-R−−−−−→ ?

what is the name of the
girl romeo loved before
juliet

[’Rosaline’] romeo in work−−−−→ ?
in work-R−−−−−→ ?

who will get relegated
from the premier league
2016/17

[ ’Hull
City’, ’Sun-
derland’,
’Middles-
brough’]

premier league
league-R−−−−−→ ?

POB−−→ ?

actress in the girl with the
dragon tattoo swedish

[’Noomi Ra-
pace’]

sweden
speaking−−−−→ ?

mother tongue-R−−−−−−−−−→ ?

Table 11: Example of QA prediction with reasoning path on NQ (part 2).
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