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Abstract

Building pretrained language models is con-
sidered expensive and data-intensive, but must
we increase dataset size to achieve better
performance? We propose an alternative to
larger training sets by automatically identify-
ing smaller yet domain-representative subsets.
We extend Cynical Data Selection, a statistical
sentence scoring method that conditions on a
representative target domain corpus. As an ex-
ample, we treat the OntoNotes corpus as a tar-
get domain and pretrain a RoBERTa-like en-
coder from a cynically selected subset of the
Pile. On both perplexity and across several
downstream tasks in the target domain, it con-
sistently outperforms random selection with
20x less data, 3x fewer training iterations, and
2x less estimated cloud compute cost, validat-
ing the recipe of automatic document selection
for LM pretraining.

1 Introduction

Large pretrained language models have achieved
state-of-the-art performance in NLP tasks (Devlin
et al., 2019; Liu et al., 2019, i.a.). These studies
find that increasing pretraining data size usually
leads to better task performance. For many tasks,
additional task (in-domain) data helps improve the
performance further (Gururangan et al., 2020; Dery
et al., 2021; Li et al., 2022). Several studies have
found that directly pretraining on task data is more
effective : science texts (Beltagy et al., 2019),
tweets (Nguyen et al., 2020), legal texts (Chalkidis
et al., 2020) or code (Tabassum et al., 2020; Chen
et al., 2021). Notably, these domains are known
a priori, and identifying data sources for curation
is straightforward. In other instances where the
domain is less clear, like “offensive online content”
(Bai et al., 2021), more complicated data sampling
is employed to guess at the desired data distribution
suitable for training a downstream classifier.

To address such scenarios, we propose automat-
ically identifying relevant domain-specific train-
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Figure 1: This figure highlights the efficiency of the au-
tomatic cynical selection of documents in the target do-
main. Scores are averaged from 8 Edge Probing tasks.
Cynically selected 2.5GB data achieves the best score.
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ing data for a large corpus and subsequently pre-
training a model on the selected data. Specifi-
cally, we use Cynical Data Selection (Axelrod,
2017), an approach that advanced Moore-Lewis
sampling (Moore and Lewis, 2010), to select data
from the Pile dataset (Gao et al., 2021). This auto-
matic selection method can include possibly over-
looked yet relevant documents from domains that
may not be too close to the target domain. Figure 1
illustrates this method which achieves higher per-
formance on tasks in the target domain by using
only 2.5GB (0.5%) of cynically selected data.

Specifically, we experiment with pretraining en-
coders with varying amounts of data sampled from
the Pile.! With our “target corpus” of OntoNotes
(Weischedel et al., 2013), we compare language
models trained with cynical and random selection
at various data levels. We find that the cynically
selected encoder achieves consistently lower target
corpus perplexity than one trained with random
selection. We further finetune the encoders on a
suite of tasks, some of which are derived from
OntoNotes. Again, we find that models pretrained
with cynical selection perform best. We suggest
this as a viable method for inexpensively pretrain-
ing effective domain-specific encoders.

"The Pile consists of 800GB raw text but for this paper,
we refer to its “effective” size, which is 1250GB.
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2 Cynical Data Selection

Methods for data selection for language-related
tasks have been widely studied, usually to select
in-domain data (Axelrod et al., 2011; van der Wees
et al., 2017; Dai et al., 2020; Killamsetty et al.,
2020). One such method is Cynical Data Selection
(Axelrod, 2017). The intuition behind cynical se-
lection is greedily ranking sentences from the text
corpus, based on its score computed against text
representative of the target domain, which is based
on how much information gained by selecting it.
Concretely, given representative text from the
target domain, cynical selection uses the cross-
entropy of the selected text against the representa-
tive text and calculates the information gain of each
sentence in the general corpus. It then picks the
most useful sentence relative to what has already
been selected and its similarity to the representative
text. This also leads to a bias towards shorter sen-
tences and preferring sentences that contain words
with high probability in the representative text.
Our work extends the cynical selection to the
document level selection. Sentences are still scored
at the sentence level, but the average sentence-level
gain determines the information gain of a docu-
ment.> We demonstrate its advantages in efficiently
selecting related documents to the target domain.

3 Experiments and Results

In this work, we set OntoNotes 5.0 (Weischedel
et al., 2013) as our target corpus, and we use a
smaller sample from the training corpus of the
CoNLL 2012 Shared Task (Pradhan et al., 2012)
as the representative corpus for data selection. We
first train an encoder based on the selected data and
use the Edge Probing suite (Tenney et al., 2019b)
for the downstream task evaluation, which has pre-
viously been used to probe and evaluate language
models (Clark et al., 2019; Tenney et al., 2019a;
Jiang et al., 2020; Zhang et al., 2021).

3.1 Data Selection

Dataset We adopt the Pile (Gao et al., 2021) for
data selection, which consists of 1250GB text from
22 domains. Cynical selection naturally prefers
text data based on the target corpus. To make a
more fair comparison, we exclude 100GB data
from “DM Mathematics” and “Github” to eliminate
the noise of non-text data in random selection.

2A formal explanation of Cynical selection and its exten-
sion is in Appendix B.
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Figure 2: Validation perplexity on held-out set (left),
and OntoNotes (right) at 100k training steps.

Selection Strategy Encoder pretraining is natu-
rally a document-level task, as context contributes
critically to improved representations. Thus, we
need to extend the sentence selection into the doc-
ument selection to achieve a better-contextualized
representation at the pretraining stage.> We apply
our extended document-level cynical selection to
the Pile and extract the top {0.5%, 1%, 2%, 5%}
scored documents.* We also randomly sample the
same percentage of documents from Pile to use as
a corresponding baseline. As a baseline for manual
selection, we use 30GB text from "Wikipedia" and
"BookCorpus" subsets, following Liu et al. (2019).

3.2 Encoder Pretraining

We set up a BERT-base model and follow the
pretraining objective and settings described in
RoBERTa(Liu et al., 2019).° In Figure 2, we plot
the validation perplexity on both the representative
corpus (CoNLL 2012 Shared Task) and a held-out
set of the Pile. The perplexity on the held-out set
decreases when there is more training data for both
the cynical and random selection. Cynical selection
attains a higher perplexity, which shows that while
the selected documents are more adapted to the
target domain, it is not better adapted to the general
corpus. As each encoder needs different training
steps for different corpus sizes, we try to make a
fair comparison by assuming a fixed training bud-
get of 100k update steps. In Figure 2, we find that
at 100k steps, 2% of the cynically selected data
achieves the lowest perplexity, and more training
data does not help the adaptation to the target cor-
pus. Also, cynical selected documents consistently
outperforms the random selection, demonstrating
the effectiveness of adapting to the target domain.

3We unsurprisingly find that selection at the document-
level works better than at the sentence-level (Appendix A).

*Our code repository is publicly available at ht tps: //
github.com/jsedoc/DL-CynDS.

>We adopt the training scripts from FairSeq for encoder
pretraining, https://github.com/facebookresearch/fairseq.
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Figure 3: Evaluation on 8 Edge Probing tasks (Tenney et al., 2019b). The cynical selection consistently outper-
forms both the random and manual selection in most cases, even with only 0.5% selected documents.

3.3 Edge Probing Evaluation

We evaluate the effectiveness of the pretrained en-
coders on 8 Edge Probing tasks (Tenney et al.,
2019b),° for which the metric and architecture are
uniformed to evaluate the span-level contextual rep-
resentation of the language model, and it has been
widely studied in the past few years. Results are
plotted in Figure 3. We find:

Observation 1: Models trained on cynically
selected documents show consistent performance
gain on all tasks compared to the random selection.

Observation 2: In most tasks, even using only
0.5% (2.5GB) of cynically selected documents out-
performs the manually selected baseline (30GB).

Observation 3: Compared to random sampling,
the performance gain of the cynical selected doc-
uments is larger with only 0.5% to 1% of training
data, and decreases for larger training sets as ran-
dom selection catches up.

Observation 4: For some tasks, especially
"const" and "pos," which are two tasks exactly
based on the OntoNotes dataset, cynical selected
documents yield good task performance with only
0.5% data, and the scores decrease when increasing
the selection size to 2%, but increase again with
5%. This could suggest that in cynical selection,
the top-scored documents are strongly related and
helpful to the target task domain, while the others
may not contribute as much or even hurt. However,
more data ultimately does improve performance.

Overall, we could achieve promising results with
only 0.5% documents of the entire corpus, demon-
strating the effectiveness and efficiency of cynical

SWe adopt the jiant for edge probing data processing and
finetuning, https://github.com/nyu-mll/jiant.
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Figure 4: Data distribution over the Pile domains

selection in the adaptation to downstream tasks in
the target domain. We also notice the standard de-
viation of the runs for random selection is much
larger than cynical selection, indicating more stable
encoder results from cynically selected documents.

3.4 Discussion

Data Distribution We plot the domain distribu-
tion of the selected documents in Figure 4. While
random selection follows the distribution of the
original Pile dataset, cynical selection prefers news-
like articles such as the "Pile CC" and "OpenWeb-
Text2," rather than technical ones, like StackEx-
change. Also, since we consider the same number
of selected documents for each split, the actual se-
lected data size is not the same (Figure 5). We
notice that cynical selection prefers shorter docu-
ments, especially in the top-ranked samples. This
should be related to our scoring strategy since we
average the sentence scores as the final document
score. In the case for long documents, even though
there are sentences with higher scores, it is not
very likely to be selected since the final scores are
averaged by the total number of sentences. This
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Figure 5: For each percentage of cynically and ran-
domly selected documents, we show the actual data
size (GB) and corresponding document length.

explains why the cynical selection prefers shorter
documents in the 0.5% and 1% selection but not
in the 5% selection. Therefore, when we bring
the actual selected data sizes into the comparison,
the cynical selection is much more efficient than
the random sampling. Future work can investigate
other methods of aggregating sentence-level scores.

Computational Trade-off Cynical selection en-
ables the language models to use less training data
and GPU time while achieving competitive results.
However, the data selection needs to be done be-
fore the training and pre-processing could be costly.
Cynical selection on the Pile can be parallelized
via sharding, because the specific order/ranking of
a document in the final selected subset is not impor-
tant. The intuition is that any good document will
be chosen early, regardless of which shard it is in.
So, we split the automatic document selection of
the Pile into 10,000 smaller jobs, each requiring a
single core CPU” and 10GB of RAM and taking 2
hours to finish. In general, the cost of the selection
depends on the size of the general corpus that is be-
ing selected from. In our training environment with
8 RTX6000 GPUs, it takes 800+ GPU hours in total
to train an encoder with 60GB randomly selected
documents. To achieve comparable or even better
performance with cynical selected documents, we
only need 200 GPU hours for the 2.5GB of cyni-
cally selected data to converge. The market price
for a single RTX6000 is $1.50/hour, so we need
$1200+ to train with random selection but less than
$300 for cynical selection. On the Google Cloud
Platform, 20,000 hours on comparable or faster
CPUs can be obtained with $200. Overall, cynical
selected documents saves more than 50% of the
computational cost and achieves better task scores.

"Intel Xeon E5-2620 v3, a chip from 2014.
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Figure 6: This figure shows the training loss for the
runs of 1% and 2% cynically selected subsets.

Overfitting Large language models have the abil-
ity to overfit or memorize small datasets (Kaplan
et al., 2020; Carlini et al., 2022). We inspect
the loss curves for two of the cynical selections
(1% and 2%) in Figure 6. While the 1% encoder
achieves a lower loss for most parts of the train-
ing, it is eventually surpassed by the 2% model.
This highlights a tradeoff between computing cost
and performance; given a limited compute budget
(in this example, under 50K steps), it is better to
use a smaller selection. While prior work suggests
scaling up models to fit dataset size (Kaplan et al.,
2020), we are successful in scaling down dataset
sizes so that they can be efficiently fit (and outper-
form larger datasets) in fewer steps.

4 Related Work

Due to the huge computational cost of training
large models, both researchers and engineers have
sought alternatives to using data more efficiently.
Some prior works use statistical methods to select
relevant data from a large corpus (Rousseau, 2013;
Kirchhoff and Bilmes, 2014; Eetemadi et al., 2015;
Xu and Koehn, 2017). Some other studies intro-
duce additional classifiers or language models to
help the data selection (Ruder and Plank, 2017; Qu
et al., 2019; Sun et al., 2021). Also, data selec-
tion could be more efficiently involved in the ac-
tive learning approaches (Shen et al., 2004; Lowell
etal., 2018; Erdmann et al., 2019; Shelmanov et al.,
2019; Margatina et al., 2022; Tsvigun et al., 2022).
This work applies a simple statistical method to
find the most related text to a target domain. It
incrementally constructs a dataset out of a large
corpus for the goal of training language models.

5 Conclusion

This work builds the connection from corpus subs-
election in statistical LM construction to neural
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LMs. We extend cynical data selection to effi-
ciently select task-related documents for encoder
pretraining and achieve lower perplexity in the tar-
get domain. We also demonstrate its effectiveness
on downstream tasks by achieving comparable or
even better results with 20x less data, 3x fewer
training iterations, and 2x less computational cost
on 8 Edge Probing tasks. We believe this fills the
gap in the literature on an important topic in train-
ing powerful LMs. We purposefully keep this work
in the space of methods used in the days of Stat
NLP to highlight their out-of-the-box applicability,
for which that line of research is still salient. Based
on our findings, this line is resurrected, suggesting
new novel approaches should be studied. We antic-
ipate that with this connection, researchers could
explore this topic, investigate various subselection
methods, and extend it to other domains.
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Limitations

Since pretraining encoders is expensive, our study
only experiments on one source corpus (Pile) and
one target task domain (OntoNotes). However, this
method could be demonstrated more effectively on
other datasets that are more domain-specific. We
do not run multiple random selections with dif-
ferent seeds due to the time and cost of training
large models. We think the standard error for the
randomly selected data would be significant, espe-
cially for the subset of only 0.5% or 1% documents.
Also, we recognize that training our models longer
or scaling up the model size is an “easy”” method of
improving performance (Liu et al., 2019; Kaplan
et al., 2020). Our results assume a fixed training
budget (max 100k steps). Thus with a larger budget,
the trade-offs will vary. Another concern is that we
do not experiment with other subselection meth-

ods (Gururangan et al., 2019) or other languages,
but we believe they should have similar trends.
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A Appendix

A.1 Detailed Distribution
A detailed data distribution is shown in Table 2.

B Formalization of Cynical Data
Selection

The aim of CynDS is to incrementally construct
W through scoring each sentence by information
gained relative to the already selected data (Equa-
tion 1).

Given a REPresentative corpus from the target
domain, CynDS is an effective and efficient method
to identify the most relevant subset of sentences
from a large corpus. Formally, we can define a
cross-entropy between REP and some set of tokens
as,

C(v)

H(REP) = log ,
W]

Z Crep(v

w.
veVagp | REP

where W is the set of tokens, V' is the vocabulary,
and C indicates the count of word type, v. Crgp(v)
is the count within REP and C(v) is the count
within W,

Let Wy, ..., W, be the incrementally selected
corpus. We can define the cross-entropy after se-
lecting n sentences as

Z Crep(v log Crn(v)
WREP Wh

vEVREP

H,(REP) =

and minimize H,,. This can be rewritten recursively
as

H, 1 = H,+max AH (s)

s n—n+l

where AH (s) is the delta (effect) of a given

n—n—+1
sentence s. To find the n + sentence that mini-

mizes AH , we can rewrite it as

1th

n—n-+1
AH = Penalty + Gain (D)
n—n+1 n—n+1 n—n+1

Here, penalty refers to how similar the sentence
is to already selected texts and gain refers to how
similar the sentence is to the representative corpus.
Axelrod (2017) derives the Penalty and Gain as

|Wn + wn—i—l’
Penalty = log——————
n%nJrly g |W |
, Crep(v Cn(v)
Gain =
n—n+1 E; WREP C ( )—‘rcn-i-l( )
v REP

A proof of this derivation is given in Axelrod
(2017).

In our work, we still let Wy, ... W, represent
the first n sentences, and H (RFE P) is unchanged.
However, we use the scores, AH (s), of each

n—n+1

sentence and compute document-level scores for
each document,

Score(D

1
)= 5] 2 AH,0)
seD

These document-level scores can then be ranked,
and we select the top k% of the documents. Note
that while there are many alternatives to selecting
documents, our goal is to select @ method and eval-
uate whether automatic data selection is effective
for LM pretraining rather than comparing different
methods, which can be future work.

B.1 Sentence vs Document Selection

Results are shown below in Table 1.

Data ppl on OntoNotes
Cynical Sent 102.21
Cynical Doc 4.98
Random Doc 8.71

Table 1: Each subset consists of 15GB text.

B.2 Edge Probing tasks

The tasks are constituent labeling, part-of-speech
tagging (POS), named entity labeling (NER), coref-
erence labeling (coref), semantic role labeling
(SRL), dependency labeling (Silveira et al., 2014),
semantic protorole labeling (SPR2) (Rudinger
et al., 2018), and relation classification (Hendrickx
et al., 2010). The first 5 tasks listed are derived
from OntoNotes (Weischedel et al., 2013).



Domain Random Cynical-0.5% Cynical-1% Cynical-2% Cynical-5%

Pile-CC 27.44% 42.06% 42.35% 43.03% 43.30%
OpenWebText2 16.95% 32.53% 32.20% 31.79% 31.35%
StackExchange 15.51% 3.65% 3.56% 3.36% 3.39%

PubMed Abstracts 15.40% 5.51% 5.58% 5.17% 4.79%
Wikipedia (en) 8.90% 12.03% 11.65% 11.24% 11.09%
USPTO Backgrounds  5.84% 2.00% 2.26% 2.47% 2.55%
PubMed Central 2.98% 0.19% 0.24% 0.38% 0.53%
FreeLaw 2.66% 0.38% 0.51% 0.81% 1.12%
ArXiv 1.25% 0.05% 0.06% 0.08% 0.12%

NIH ExPorter 0.94% 0.39% 0.39% 0.37% 0.36%
HackerNews 0.82% 0.54% 0.55% 0.60% 0.68%
Enron Emails 0.49% 0.51% 0.48% 0.46% 0.43%
OpenSubtitles 0.33% 0.009% 0.02% 0.03% 0.05%
YoutubeSubtitles 0.17% 0.13% 0.13% 0.14% 0.15%
Books3 0.15% 0.002% 0.004% 0.009% 0.015%
EuroParl 0.07% 0.01% 0.01% 0.02% 0.024%
Gutenberg (PG-19) 0.04% 0.001% 0.002% 0.005% 0.008%
PhilPapers 0.03% 0.002% 0.003% 0.008% 0.013%
BookCorpus2 0.01% 0.0005% 0.001% 0.003% 0.005%
Ubuntu IRC 0.01% 0.006% 0.004% 0.004% 0.003%

Table 2: Detailed Domain Distribution for the selection under different sizes.
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