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Abstract

Dual encoders have been used for question-
answering (QA) and information retrieval (IR)
tasks with good results. Previous research fo-
cuses on two major types of dual encoders,
Siamese Dual Encoder (SDE), with parame-
ters shared across two encoders, and Asym-
metric Dual Encoder (ADE), with two dis-
tinctly parameterized encoders. In this work,
we explore different ways in which the dual
encoder can be structured, and evaluate how
these differences can affect their efficacy in
terms of QA retrieval tasks. By evaluating on
MS MARCO, open domain NQ and the Mul-
tiReQA benchmarks, we show that SDE per-
forms significantly better than ADE. We fur-
ther propose three different improved versions
of ADEs by sharing or freezing parts of the ar-
chitectures between two encoder towers. We
find that sharing parameters in projection lay-
ers would enable ADEs to perform competi-
tively with or outperform SDEs. We further
explore and explain why parameter sharing in
projection layer significantly improves the effi-
cacy of the dual encoders, by directly probing
the embedding spaces of the two encoder tow-
ers with t-SNE algorithm (van der Maaten and
Hinton, 2008).

1 Introduction

A dual encoder is an architecture consisting of two
encoders, each of which encodes an input (such as
a piece of text) into an embedding, and where the
model is optimized based on similarity metrics in
the embedding space. It has shown an excellent
performance in a wide range of information re-
trieval and question answering tasks (Gillick et al.,
2018; Karpukhin et al., 2020). This approach is
also easy to productionize because the embedding
index of dual encoders can grow dynamically for

Code and additional information:
https://sites.google.com/view/
explore-dual-encoder-architect.

Model Architecture

DPR (Karpukhin et al., 2020) Asymmetric
DensePhrases (Lee et al., 2021a) Asymmetric
SBERT (Reimers and Gurevych, 2019) Siamese
ST5 (Ni et al., 2021b) Siamese

Table 1: Existing off-the-shelf dual encoders.

newly discovered or updated documents and pas-
sages without retraining the encoders (Gillick et al.,
2018). In contrast, generative neural networks used
for question answering need to be retrained with
new data. This advantage makes dual encoders
more robust to freshness.

There are different valid designs for dual en-
coders. As shown in Table 1, previous research
focuses on the two major types: Siamese Dual
Encoder (SDE) and Asymmetric Dual Encoder
(ADE). In a SDE, the parameters are shared be-
tween the two encoders. In an ADE, only some
or no parameters are shared (Gillick et al., 2018).
In practice, we often require certain asymmetry in
the dual encoders, especially in the case where the
inputs of the two towers are of different types. Al-
though all of these models have achieved excellent
results in different NLP applications, how these
parameter-sharing design choices affect the model
performance is largely unexplored.

This paper explores the impact of parameter shar-
ing in different components of dual encoders on
question answering tasks, and assess whether the
impact holds for dual encoders with different model
capacity. In particular, we compare five different
variants of dual encoders as shown in Figure 1:

• Siamese Dual-Encoder (SDE),
• Asymmetric Dual-Encoder (ADE),
• ADE with shared token embedder (ADE-STE),
• ADE with frozen token embedder (ADE-FTE),
• ADE with shared projection layer (ADE-SPL),

where the two extreme cases are SDE and ADE,
with the parameters of two towers completely
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Figure 1: Architectures of dual encoders. We study whether parameter sharing in different dual encoder components (i.e. token
embedder, transformer encoder, and projection layer) can lead to better representation learning. Orange and green components
are distinctly parameterized for question and answer encoder towers, respectively. Blue components are shared between two
encoding paths. Grey components are frozen during the fine-tuning.

shared or distinct.
We conduct experiments across 7 well-

established datasets. We find that SDEs consis-
tently outperforms ADEs on question answering
retrieval tasks, and sharing parameters in token
embedders and projection layers between the two
encoders improves the efficacy of ADEs. In partic-
ular, sharing projection layer (ADE-SPL) enables
ADEs to achieve comparable or even better perfor-
mance than SDEs.

To better understand why parameter sharing im-
proves the efficacy of the asymmetric dual en-
coders, we directly analyze the embeddings from
the two encoder tower, by projecting and clus-
ter them into 2-dimensional space using t-SNE
(van der Maaten and Hinton, 2008). The analysis
shows that without sharing projection layer, ADEs
tend to embed the inputs of the two encoder tow-
ers into disjoint embedding spaces, which hinders
the quality of retrieval. Based on the findings, we
recommend to share the projection layers between
two encoder towers in practice, if using asymmetric
dual encoder is necessary.

2 Related work

Dual encoders have been widely studied in entity
linking (Gillick et al., 2018), open-domain ques-
tion answering (Karpukhin et al., 2020), and dense
retrieval (Ni et al., 2021a), etc. This architecture
consists of two encoders, where each encoder en-
codes arbitrary inputs that may differ in type or
granularity, such as queries, images, answers, pas-
sages, or documents.

Open-domain question answering (ODQA) is a
challenging task that searches for evidence across
large-scale corpora and provides answers to user
queries (Voorhees, 1999; Chen et al., 2017). One
of the prevalent paradigms for ODQA is a two-step

approach, consisting of a retriever to find relevant
evidence and a reader to synthesize answers. Alter-
native approaches are directly retrieving from large
candidate corpus to provide sentence-level (Guo
et al., 2021) or phrase-level (Lee et al., 2021b) an-
swers; or directly generating answers or passage
indices using an end-to-end generation approach
(Tay et al., 2022). Lee et al. (2021a) compared the
performance of SDEs and ADEs for phrase-level
QA retrieval tasks. However, they only considered
the two extreme cases, where two towers have the
parameters completely shared or distinct. In this
work, we address the missing piece of previous
work by exploring parameter sharing in different
parts of the model.

3 Method

We follow a standard setup of QA retrieval: given a
question q and a corpus of answer candidatesA, the
goal is to retrieve k relevant answers Ak ∈ A for
q. The answer can be either a passage, a sentence,
or a phrase.

We adopt a dual encoder architecture (Gillick
et al., 2018; Reimers and Gurevych, 2019) as the
model to match query and answers for retrieval.
The model has two encoders, where each is a trans-
former that encodes a question or an answer. Each
encoder first produces a fixed-length representation
for its input and then applies a projection layer to
generate the final embedding.

We train the dual encoder model by optimizing
the contrastive loss with an in-batch sampled soft-
max (Henderson et al., 2017):

L =
esim(qi,ai)/τ

∑
j∈B e

sim(qi,aj)/τ
, (1)

where qi is a question and a∗ is a candidate answer.
ai is ground-truth answer, or a positive sample, for
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Metric Model MSMARCO NQ SQuAD TriviaQA HotpotQA SearchQA

P@1

SDE 15.92 48.87 70.13 36.55 34.36 36.40
ADE 14.20 47.83 60.39 31.30 26.71 39.48

ADE-STE 14.71 48.29 61.05 33.59 28.71 40.43
ADE-FTE 14.23 49.38 62.86 35.11 29.07 42.06
ADE-SPL 15.46 50.06 69.39 38.17 33.66 41.13
BERT-DE - 36.22 55.13 29.11 32.05 30.2
USE-QA - 38 66.83 32.58 31.71 31.45

MRR

SDE 28.49 61.15 78.44 49.29 45.58 54.26
ADE 26.31 59.38 70.33 43.42 37.27 55.02

ADE-STE 26.78 59.81 70.85 45.79 39.14 56.08
ADE-FTE 26.64 61.23 72.18 46.95 39.72 57.44
ADE-SPL 28.20 61.92 77.65 50.3 44.19 57.48
BERT-DE - 52.02 64.74 41.34 46.21 47.08
USE-QA - 52.27 75.86 42.39 43.77 50.7

Table 2: Precision at 1(P@1)(%) and Mean Reciprocal Rank (MRR)(%) on QA retrieval tasks. SDE and ADE stand for
Siamese Dual-Encoder and Asymmetric Dual-Encoder, respectively. ADE-STE, -FTE and -SPL are the ADEs with shared
token-embedders, frozen token-embedders, and shared projection-layers, respectively. BERT-DE, which stands BERT (Devlin
et al., 2019) Dual-Encoder, and USE-QA (Yang et al., 2020) are the baselines reported in MultiReQA (Guo et al., 2021). The
most performant models are marked in bold.

qi. All other answers aj in the same batch B are
considered as negative samples during training. τ
is the softmax temperature and sim is a similarity
function to measure the relevance between the ques-
tion and the answer. In this work, we use cosine
distance as the similarity function:

sim(qi, aj) =
~qi · ~aj
‖~qi‖‖~aj‖

. (2)

4 Experiments and Analysis

We evaluate the proposed dual encoder architec-
tures on six question-answering retrieval tasks from
MS MARCO (Bajaj et al., 2016) and MultiReQA
(Guo et al., 2021). In MS MARCO, we consider
the relevant passages as answer candidates, while
for the five QA datasets in MultiReQA the answer
candidates are individual sentences. We further val-
idate the conclusion on an open domain question-
answering task, Open Domain NaturalQuestions,
where the retrieval candidates are context passages.

To initialize the parameters of dual encoders, we
use pre-trained t5.1.1 encoders (Raffel et al.,
2020). Following Ni et al. (2021b), we take the av-
erage embeddings of the T5 encoder’s outputs and
send to a projection layer to get the final embed-
dings. The projection layers are randomly initial-
ized, with variance scaling initialization with scale
1.0. For the retrieval, we use mean embeddings
from the encoder towers. To make a fair compari-
son, the same hyper-parameters are applied across
all the models for the fine-tuning with Adafactor
optimizer (Shazeer and Stern, 2018), using learn-
ing rate 10−3 and batch size 512. The models are

Model SDE ADE A-STE A-FTE A-SPL D-G7 D-G127

Top-5 62.2 57.6 58.0 57.4 62.7 51.1 55.8
Top-20 77.0 73.2 73.1 73.8 76.4 69.1 73.0
Top-100 84.6 82.7 82.5 83.2 84.4 80.8 83.1

Table 3: Evaluation of different dual encoders, measured
as top-k retrieval accuracy on Open Domain Natural Ques-
tions (development set). The baselines are quoted from DRP
(Karpukhin et al., 2020) with golden labels and 7 (D-G7) or
127 (D-G127) negative examples.

fine-tuned for 20, 000 steps, with linear decay of
learning rate from 10−3 to 0 at the final steps. The
fine-tuned models are benchmarked with precision
at 1 (P@1) and mean reciprocal rank (MRR) on the
QA retrieval tasks, in Table 2.

4.1 Comparing SDE and ADE

SDE and ADE in Figure 1 (a) and (b) are the two
most distinct dual-encoders in terms of parame-
ter sharing. Experiment results show that, on QA
retrieval tasks, ADE performs consistently worse
than SDE. To explain that, our assumption is that,
at inference time, the two distinct encoders in ADE
that do not share any parameters, map the questions
and the answers into two parameter spaces that are
not perfectly aligned. However, for SDE, parame-
ter sharing enforces the embeddings from the two
encoders to be in the same space. We verify this
assumption in Section 4.3.

4.2 Improving the Asymmetric Dual Encoder

Although the dual encoders with maximal param-
eter sharing (SDEs) performs significantly better
than the ones without parameter sharing (ADEs),
we often require certain asymmetry in the dual en-
coders in practice. Therefore, trying to improve the
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Figure 2: t-SNE clustering of the embeddings of the NaturalQuestions eval set generated by five dual encoders. The blue and
orange points represent the embeddings of the questions and answers, respectively.
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Figure 3: Relative performance improvements of different
models relative to ADE on QA retrieval tasks. ∆MRR =
(MRR − MRRADE)/MRRADE) × 100.

performance of ADEs, we construct dual-encoders
with parameters shared at different levels between
the two encoders.

Shared and Frozen Token Embedders. Token
embedders are the lowest layers close to the in-
put text. In ADEs, token embedders are initialized
from the same set of pre-trained parameters, but
fine-tuned separately. A straightforward way to
bring ADEs closer to SDEs is to share the token
embedders between the two towers, or to an ex-
treme, to simply freeze the token embedders during
training.

Evaluated on MS MARCO and MultiReQA, the
results in Table 2 show that both freezing (ADE-
FTE) and sharing (ADE-STE) token embedders
bring consistent, albeit marginal, improvements
for ADEs. However, ADEs with common token
embedders still leave a significant gap compared to
SDEs on most tasks. These results suggest token
embedders might not be the key to close this gap.

Shared Projection Layers. Another way of im-
proving retrieval quality of ADEs is to share the
projection layers between the two encoders. Ta-
ble 2 shows that sharing projection layers drasti-
cally improves the quality of ADEs. As in Fig-
ure 3, ADE-SPL (purple curve) performs on-par
and, sometimes, even better than SDE (blue curve).
This observation reveals that sharing projection lay-
ers is a valid approach to enhance the performance

of ADEs. This technique would be vital if asym-
metry is required by a modeling task.

4.3 Analysis on the Embeddings

The experiments corroborate our assumption that
sharing the projection layer enforces the two en-
coders to produce embeddings in the same parame-
ter space, which improves the retrieval quality.

To further substantiate our assumption, we first
generate the question and answer embeddings from
the NaturalQuestions eval set, and then use t-SNE
(van der Maaten and Hinton, 2008) to project and
cluster the embeddings into 2-dimensional space.1

Figure 2 shows that, for ADE, ADE-STE and ADE-
FTE that have separate projection layers, the ques-
tion and answer embeddings are projected and
clustered into two disjoint groups. In compari-
son, ADE-SPL that shares the projection layers,
the embeddings of questions and answers are not
separable by t-SNE, which is similar to the behav-
ior of SDE. This verifies our assumption that the
projection layer plays an important role in bring-
ing together the representations of questions and
answers, and is the key for retrieval performance.

4.4 Experiment on Open Domain NQ.

To further validate our assumption on ODQA, Ta-
ble 3 shows the comparison for different dual en-
coder architectures and the baselines from DRP
(Karpukhin et al., 2020) on Open Domain Natu-
ral Questions (OpenNQ) dataset, using the top-k
accuracy (k ∈ {5, 20, 100}). SDE and ADE-SPL
perform competitively on the OpenQA passage re-
trieval task.

4.5 Impact of Model Size.

To assess the impact of model size, we fine-tune
and evaluate the dual-encoders initialized from
t5.1.1-small (∼ 77M parameters), -base

1For efficiently clustering with t-SNE, we randomly sam-
pled questions and answers, 400 each, from the NQ eval set.
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Metric Top-5 Top-20 Top-100

Model Size small base large small base large small base large

SDE 54.63 62.24 67.51 70.00 76.98 79.92 80.28 84.57 86.93
ADE 46.32 57.65 62.88 62.58 73.21 76.93 74.99 82.69 85.35

ADE-STE 48.03 58.03 64.04 64.85 73.07 77.84 76.57 82.55 85.21
ADE-FTE 50.50 57.40 63.74 67.51 73.80 77.26 78.45 83.19 85.32
ADE-SPL 53.52 62.66 68.06 68.48 76.37 80.25 79.11 84.40 86.23

Table 4: Evaluation of the scaling effect on Open Domain Natural Questions, using top-k retrieval accuracy, with
dual encoders initialized from t5.1.1-small, -base, and -large checkpoints. The most performant models
are marked in bold.
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Figure 4: The impact of model size on the performance of
different dual encoder architectures, measured by MRR on
the eval set of MS MARCO (left), and Top-20 Accuracy on
development set of Open Domain NQ (right).

Metric P@1 MRR

Model Size small base large small base large

SDE 14.50 15.92 16.53 25.76 28.49 29.63
ADE 13.31 14.20 14.17 23.89 26.31 26.99

ADE-STE 12.99 14.71 15.14 23.78 26.78 27.61
ADE-FTE 13.67 14.23 14.73 24.51 26.64 27.40
ADE-SPL 14.31 15.46 16.42 25.53 28.20 29.70

Table 5: Evaluation of the scaling effect on MS
MARCO (Bajaj et al., 2016) QA retrieval tasks, us-
ing Precision at 1 (P@1)(%) and Mean Reciprocal
Rank (MRR)(%), with dual encoders initialized from
t5.1.1-small, -base, and -large checkpoints.
The most performant models are marked in bold.

(∼ 250M), and -large (∼ 800M) on the MS
MARCO and OpenNQ. Figure 4, and Table 4 and
5, show that, across different model sizes, shar-
ing projection layers consistently improves the re-
trieval performance of ADE, and ADE-SPL per-
forms competitively with SDE. This observation
further validates our recommendation to share the
projection layer in ADEs.

5 Conclusion and Future Work

Based on the experiments on 7 QA retrieval tasks
with three different model sizes, we conclude that,
although SDEs outperforms ADEs, sharing the pro-

jection layer between the two encoders enables
ADEs to perform competitively with SDEs. By
directly probing the embedding space, we demon-
strate that the shared projection layers in SDE and
ADE-SPL maps the embeddings of the two encoder
towers into coinciding parameter spaces, which is
crucial for improving the retrieval quality. There-
fore, we recommend to share the projection layers
between two encoders of ADEs in practice.

6 Limitations

In our work, we focus on dual encoder architec-
tures and their impacts on the QA retrieval quality.
Other dense retrieval models beyond dual encoders,
e.g. ColBERT (Khattab and Zaharia, 2020) and
DensePhrases (Lee et al., 2021a), are beyond the
scope of this work. In addition, we demonstrate
that sharing projection layer is a simple yet effec-
tive technique to improve the quality of asymmetric
dual encoder for QA retrieval tasks. However, other
more complicated architectural improvements of
ADE, e.g. introducing more complexity in the pro-
jection layers or interactions between two encoder
towers, are beyond the scope of this work.

Acknowledgements

We could like to thank the anonymous reviewers
of EMNLP 2022, who provided insightful feed-
back and constructive suggestions that significantly
helped us on improving the writing of the paper.

References
Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,

Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
et al. 2016. Ms marco: A human generated machine
reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine

9418



Bordes. 2017. Reading wikipedia to answer open-
domain questions. In ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

D. Gillick, A. Presta, and Gaurav Singh Tomar. 2018.
End-to-end retrieval in continuous space. ArXiv,
abs/1811.08008.

Mandy Guo, Yinfei Yang, Daniel Cer, Qinlan Shen,
and Noah Constant. 2021. MultiReQA: A cross-
domain evaluation forRetrieval question answering
models. In Proceedings of the Second Workshop on
Domain Adaptation for NLP, pages 94–104, Kyiv,
Ukraine. Association for Computational Linguistics.

Matthew Henderson, Rami Al-Rfou, B. Strope, Yun-
Hsuan Sung, László Lukács, Ruiqi Guo, Sanjiv Ku-
mar, Balint Miklos, and R. Kurzweil. 2017. Effi-
cient natural language response suggestion for smart
reply. ArXiv, abs/1705.00652.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 6769–
6781, Online. Association for Computational Lin-
guistics.

O. Khattab and Matei A. Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval.

Jinhyuk Lee, Mujeen Sung, Jaewoo Kang, and Danqi
Chen. 2021a. Learning dense representations of
phrases at scale. In ACL/IJCNLP.

Jinhyuk Lee, Mujeen Sung, Jaewoo Kang, and Danqi
Chen. 2021b. Learning dense representations of
phrases at scale. In Association for Computational
Linguistics (ACL).

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gus-
tavo Hern’andez ’Abrego, Ji Ma, Vincent Zhao,
Yi Luan, Keith Hall, Ming-Wei Chang, and Yinfei
Yang. 2021a. Large dual encoders are generalizable
retrievers. ArXiv, abs/2112.07899.

Jianmo Ni, Gustavo Hernández Ábrego, Noah Con-
stant, Ji Ma, Keith B. Hall, Daniel Cer, and Yinfei
Yang. 2021b. Sentence-t5: Scalable sentence en-
coders from pre-trained text-to-text models. CoRR,
abs/2108.08877.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In EMNLP/IJCNLP.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4596–4604.
PMLR.

Yi Tay, Vinh Quang Tran, Mostafa Dehghani, Jianmo
Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui,
Zhe Zhao, Jai Gupta, Tal Schuster, William W.
Cohen, and Donald Metzler. 2022. Transformer
memory as a differentiable search index. ArXiv,
abs/2202.06991.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Ellen M. Voorhees. 1999. The trec-8 question an-
swering track report. In In Proceedings of TREC-8,
pages 77–82.

Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy
Guo, Jax Law, Noah Constant, Gustavo Hernan-
dez Abrego, Steve Yuan, Chris Tar, Yun-hsuan Sung,
Brian Strope, and Ray Kurzweil. 2020. Multilingual
universal sentence encoder for semantic retrieval.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 87–94, Online. Association
for Computational Linguistics.

9419

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2021.adaptnlp-1.10
https://aclanthology.org/2021.adaptnlp-1.10
https://aclanthology.org/2021.adaptnlp-1.10
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://arxiv.org/abs/2108.08877
https://arxiv.org/abs/2108.08877
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.18653/v1/2020.acl-demos.12
https://doi.org/10.18653/v1/2020.acl-demos.12

