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Abstract

Embodied Vision and Language Task Comple-
tion requires an embodied agent to interpret nat-
ural language instructions and egocentric visual
observations to navigate through and interact
with environments. In this work, we examine
ALFRED (Shridhar et al., 2020), a challenging
benchmark for embodied task completion, with
the goal of gaining insight into how effectively
models utilize language. We find evidence that
sequence-to-sequence and transformer-based
models trained on this benchmark are not suffi-
ciently sensitive to changes in input language
instructions. Next, we construct a new test split
– ALFRED-L to test whether ALFRED mod-
els can generalize to task structures not seen
during training that intuitively require the same
types of language understanding required in
ALFRED. Evaluation of existing models on
ALFRED-L suggests that (a) models are overly
reliant on the sequence in which objects are
visited in typical ALFRED trajectories and fail
to adapt to modifications of this sequence and
(b) models trained with additional augmented
trajectories are able to adapt relatively better to
such changes in input language instructions.

1 Introduction

Recently a number of benchmark datasets have
been proposed to study the ability of embodied
agents to understand natural language in the con-
text of egocentric visual observations and predict
sequences of executable actions to answer ques-
tions (Das et al., 2018), navigate to desired destina-
tions (Anderson et al., 2018; Chen et al., 2019),
or additionally manipulate objects to complete
tasks (Shridhar et al., 2020; Padmakumar et al.,
2021).

Although multi-modal transformer-based mod-
els have achieved tremendous progress on many of
these datasets (Zhu et al., 2021b; Hong et al., 2021;

∗ Work done in part while AA was research intern at
Amazon Alexa AI in Summer 2021.

Low-level Instructions:

<I1>: Walk to the coffee maker on the 
end of the counter.
<I2>: Grab the spoon from the counter.
<I3>: Go to the stove and focus on the 
top left burner.
<I4>: Place the spoon in the pan.
<I5>: Turn around and go to the kitchen 
sink

<I1>: Walk to the coffee maker on the end 
of the counter.
<I2>: Grab the spoon from the counter.
<I3>: Go to the stove and focus on the top 
left burner.
<I4>: Place the spoon in the pan.
<I5>: Turn around and go to the kitchen 
sink.
<I5-r>: Go back to the stove and focus on 
the top left burner.

<I1>: Walk to the coffee maker on the end 
of the counter.
<I3>: Go to the stove and focus on the top 
left burner.
<I5>: Turn around and go to the kitchen 
sink.

<I1>: Walk to the coffee maker on the end 
of the counter.
<I2>: Grab the spoon from the counter.
<I3>: Go to the stove and focus on the top 
left burner.
<I4>: Place the spoon in the pan.
<I5>: Turn around and go to the kitchen 
sink.
<I5-r>: Go back to the stove and focus on 
the top left burner
<I3-r>: Now walk again to the coffee 
maker on the end of the counter 

NAVIGATION-ONLY REVERSE-n

REVERSE-ONE

High-level Goal : Move a spoon to pan

ORIGINAL

Figure 1: An example test trajectory for task type Pick and
Place from ALFRED. We modify the original trajectory in
three different ways to create ALFRED-L test set (highlighted
in red boxes): (a) NAV-ONLY subset picks only the navigation
instructions (e.g. I1, I3, I5) to form a new trajectory; (b) REV-1
subset extends the original ALFRED trajectory by adding an
additional reverse instruction to take the agent back by one
navigation step (e.g. I5-r is the reverse step formed from I5);
(c) REV-n subset extends the original ALFRED trajectory by
adding one or more reverse navigation steps.

Pashevich et al., 2021; Zhang and Chai, 2021), anal-
ysis of such models on other visual grounding tasks
has suggested that they could be learning reasoning
shortcuts and exploiting unintended biases with-
out comprehending the underlying linguistic struc-
ture (Thomason et al., 2019; Zhu et al., 2021a; Chi-
ang et al., 2021; Akula et al., 2020; Thrush et al.,
2022; Akula et al., 2021).

In this work, we analyze models trained on the
ALFRED dataset (Shridhar et al., 2020) to better
understand how they utilize language for embodied
task completion. We chose ALFRED for our anal-
ysis as it requires object manipulation (object pick
and place, opening and closing doors and more)
in addition to navigation making it more challeng-
ing than most related datasets. In ALFRED, each
example trajectory consists of a high-level natu-
ral language task description, followed by step-
by-step (low-level) natural language instructions
corresponding to logical subgoals, that when com-
pleted in sequence accomplish the task (see Fig 1).
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In this work, we refer to this sequence of logical
subgoals as a task structure - ALFRED trajectories
consists of only 7 possible task structures. In each
trajectory, an embodied agent is placed in the ini-
tial state of the environment, provided the language
instructions, and expected to predict and execute
a sequence of low level actions that accomplish
the task described by the instructions using visual
feedback from the execution of each action.

We evaluate the sensitivity of ALFRED models
to changes in language instructions in two ways.
We first examine whether model predictions are
affected by the removal of words indicative of spa-
tial relationships, or by the removal of step-by-step
instructions entirely (§2). Our experiments demon-
strate that model performance is less affected by
these changes than expected. In contrast, the task
completion rate of models drops to 0% when de-
prived of visual inputs.

In addition, we construct a new test set ALFRED-
L, to test whether models can generalize to varia-
tions of ALFRED instructions that remove object
manipulation steps or add navigation steps (§3). A
sample from this dataset is shown in Fig 1. Intu-
itively, these changes do not require learning of new
language understanding capabilities since follow-
ing navigation instructions is already a prerequisite
for successfully completing ALFRED tasks. Con-
sequently, existing ALFRED models should be able
to generalize well to such instructions. However,
experimental results on ALFRED-L demonstrate
that models are incapable of such generalization.
We hypothesize that models overfit to the task struc-
ture of ALFRED and ignore the addition of extra
objects to be visited in ALFRED-L. Further, we
find that models trained using a larger number of
visual scenes are able to adapt relatively better to
such changes in input language instructions sug-
gesting the importance of data augmentation tech-
niques to make substantive progress on ALFRED.

2 Analysis by Reducing Instruction
Informativeness

In this section, we examine the sensitivity of mod-
els to loss of information from language instruc-
tions when trying to complete ALFRED tasks. In
our first experiment E1, we drop all words and
phrases that indicate directional and spatial infor-
mation from high and low level language instruc-
tions during inference.

We note that 81% of the tokens in ALFRED

Model Val-U
%

Val-S
%

E1-U
(∆)%

E1-S
(∆)%

E2-U
(∆)%

E2-S
(∆)%

ET 2.7 31.5 (40.5) (35.3) (5.6) (1.1)
ET w/o PT 2.1 26.2 (42.9) (31.6) (6.2) (1.3)
ET+Synth 6.5 44.7 (36.9) (21.2) (3.8) (0.9)
HiTuT 12.4 25.2 (30.6) (29.8) (6.7) (4.3)
MOCA 3.7 19.1 (21.5) (20.0) (0.0) (2.1)
Seq2Seq 0.0 3.7 (0.0) (0.0) (0.0) (1.5)

Table 1: Task Success Rate (in percentage) of models on
ALFRED validation unseen (Val-U) and seen (Val-S) splits.
In perturbation E1, all the directional and spatial words are
dropped from instructions. In perturbation E2, we drop all
the language instructions and just keep the higher level task
description. The relative percentage drop in success rate
(shown in parentheses) before and after the perturbations is
shown in the last four columns. All the numbers reported here
are obtained by taking average across five experiments with
different seeds.

instructions constitute directional and spatial infor-
mation such as to the left, three steps forward, to-
wards right, and over to the back. We hypothesize
that the absence of such crucial information should
cause models to be unable to correctly navigate or
identify objects being referred to.

In our second experiment E2, we discard all
the step-by-step language instructions from the in-
put 1 (See Appendix A for more details). We an-
alyze the following models trained on ALFRED:
(a) Episodic Transformer (ET): a model that uses
a transformer to encode multimodal inputs (Pashe-
vich et al., 2021); ET+Synth: a version of ET
augmented with synthetic trajectories; ET w/o PT:
an ablated version that does not include language
pretraining; (b) HiTuT: a hierarchical transformer-
based model that explicitly predicts sub-goals in
addition to low-level actions at every time step to
enable backtracking to cope with execution fail-
ures (Zhang and Chai, 2021) (c) MOCA: a mod-
ular sequence-to-sequence model that separates
action and object prediction (Singh et al., 2020);
(d) Seq2Seq: a simple sequence-to-sequence base-
line (Shridhar et al., 2020).

Table 1 shows the overall task success rates of
models on validation seen and unseen splits be-
fore and after perturbations 2. Table 2 shows the
sub-goal success rates of the ET+Synth model 3.
Sub-goal success rate measures the ability of a
model to accomplish the next sub-goal conditioned
on the preceding ground-truth expert sequence. In
perturbation E1, we find up to 40% relative drop in
overall task success rates. Surprisingly, we see only

1In this setting, we re-train the model from scratch.
2See Appendix A for detailed results
3We find similar results with other models.
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Sub-Goal Val-U
%

Val-S
%

E1-U
(∆)%

E1-S
(∆)%

E2-U
(∆)%

E2-S
(∆)%

CleanObject 91.2 88.4 (18.5) (16.1) (2.5) (1.3)
CoolObject 99.1 95.2 (−0.9) (0.0) (0.0) (0.0)
GoToLoc. 50.7 80.0 (−4.3) (1.7) (−0.5) (0.2)
HeatObject 99.3 94.4 (0.8) (6.2) (0.0) (1.1)
PickupObject 69.0 75.9 (4.4) (0.8) (2.1) (0.0)
PutObject 69.8 84.5 (6.5) (0.9) (1.0) (0.0)
SliceObject 65.8 89.7 (1.3) (5.4) (0.0) (1.8)
ToggleObject 83.2 98.9 (0.0) (−1.1) (0.0) (0.0)

Table 2: Sub-goal Success Rate of ET+Synth model on AL-
FRED. The relative percentage drop in success rate (shown
in parentheses) before and after the perturbations is shown
in the last four columns. Negative percentages denote that
performance of sub-goal improved after the perturbation.

GoToLocation PickupObject PutObject SliceObject CleanObject
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Figure 2: We examine the last subgoal of a trajectory an agent
reaches before failing before and after perturbation. Most
failures are in navigation (GoToLocation) and picking up
objects (PickUp), which increase upon perturbation.

< 7% relative drop on all the sub-goals (except
for CleanObject), casting doubt whether models
are effectively utilizing language instructions. We
explain these two contrasting observations by ex-
amining the most common sub-goal failures and
low-level API action failures in overall task com-
pletion. In Fig 2, we can observe that the highest
failure rate is for the GoToLocation sub-goal. We
further examine the last incorrect action prediction
that caused the failure within each subgoal and
we find that most of the failures are caused by at-
tempting to perform PickUp and Put actions within
a GoToLocation sub-goal where an agent is only
expected to perform navigation (shown in Fig 3).
We also observe that dropping directional and spa-
tial words from instructions further increases this
model bias to perform PickUp and Put actions even
when there is no object in view to be manipulated,
leading to more failures in completing the overall
task. On the other hand, with perturbation E2, we
do not see any significant drop in model perfor-
mance in both task and sub-goal success rates (Ta-
ble 1; columns E2-U(∆)% and E2-S(∆)%). This
indicates that these models fail to make effective
use of the language instructions and instead exploit
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Figure 3: Most predicted trajectories fail in ALFRED due
to predicting low level actions when these are infeasible. For
each subgoal, we examine the percentage of trajectories that
failed by last predicting particular actions. We observe that
most failures are from attempting to pick up an object when
the agent needs to navigate.

shallower visual correlations 4.
We additionally perform an experiment where

we drop visual input instead of dropping language
instructions. The accuracy drops to 0% in this case
(on both val seen and unseen splits), indicating the
higher influence of visual input on model perfor-
mance.

3 ALFRED-L for Testing Generalization

ALFRED step-by-step language instructions in-
volve a combination of navigation subgoals and
a variety of object manipulation subgoals. Intu-
itively, a model that can understand such language
instructions should still be able to follow modified
combinations of them that add or remove some
steps. To evaluate the ability of ALFRED mod-
els to generalize in this manner, we create mod-
ified instructions using examples from ALFRED
validation splits. We call this modified test split
ALFRED-L.

More concretely, training samples in ALFRED
are typically a sequence of alternating navigation
(GoToLocation) and object manipulation (for ex-
ample CleanObject, HeatObject) subgoals, al-
ways ending with an object manipulation subgoal.
Models would thus expect to perform object manip-
ulations at the end of each navigation subgoal and
could memorize locations of objects commonly

4The low-level instructions, especially in unseen environ-
ments, play an important role in navigating and identifying
the objects whereas the high-level goals fail to specify the
exact object locations in the environment. Therefore, if the
agent is able to finish a task with just high-level goals, it could
potentially imply environment-bias. For example, an object
for a manipulation action could be in a different room than the
agent’s initial position, and it is not realistic to expect the agent
to navigate, simply based on high-level goals, to a different
room (which could be even far away from the initial position
in real-world environments) and interact with the object to
finish the task successfully.
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Turn right, move to the fireplace, turn left, move to the white shelf. Pick up the open box 
on the bottom shelf. Turn around, move across the couch to the right and to the lamp in 

the corner. Turn on the tall lamp in the corner. Move back to the white shelf. 

t = 0 t = 12 t = 18 t = 30 t = 34

t = 39 t = 43 t = 46 t = 49 t = 53

t = 59 t = 70 t = 78 t = 94 t = 96

t = 101 t = 112 t = 114 t = 120 t = 124

Figure 4: An example from ALFRED-L highlighting the re-generated visual frames (last row, t = 101 to 124)
corresponding to the REV-1 language annotation (text at the top, highlighted in red).

navigated to, and exploit these instead of under-
standing instructions provided at inference time to
determine objects to be navigated to. We create
ALFRED-L to break some of these patterns - re-
moving the need for object manipulation actions
and adding instructions to navigate to additional ob-
jects. A model that sees a significant performance
drop between ALFRED and ALFRED-L is likely
overly reliant on the task structure of ALFRED and
ignoring details present in language instructions.

As shown in Fig 1 and Table 3, ALFRED-L con-
sists of 3 subsets:
(a) NAV-ONLY (Navigation-only): This is con-
structed by removing instructions for all object
manipulation steps. An agent that understands the
change made to the instructions would navigate
along the same trajectory as before but without in-
teracting with any objects.
(b) REV-1 (Reverse-1) and REV-n (Reverse-n):
These add additional navigation instructions in-
structing the agent to backtrack to known reference
positions along the trajectory. REV-1 adds one back-
tracking navigation step to the original ALFRED
trajectory and REV-n adds more than one backtrack-
ing navigation step. These evaluate whether an

agent is capable of remembering a point it had nav-
igated to during execution so far, and navigating
back to it without the expectation of performing
further object manipulations 5. In other words, us-
ing REV-1 and REV-n, our goal is to detect if the
embodied agent overfit to the seen task structures
as task structures in the existing unseen test splits
of ALFRED only evaluate the generalization to
unseen environments but fail to test generalization
to unseen task structures. We expect the model
to learn the capability because in collecting our
language instructions for REV-1 and REV-n splits,
we only leveraged the words that are used in the
original ALFRED train dataset 6. Figure 4 shows
an example for the re-generated visual frames for
the REV-1 instruction.

3.1 Evaluation on ALFRED-L

Table 4 shows the experimental results on
ALFRED-L. Interestingly, the performance of all

5See Appendix B for more examples.
6For example, the keyword back from our REV test splits

has occurred about 9793 times in ALFRED. Similarly, the
REV phrases walk back, move back, go back have been
used in about 1582, 396, and 1455 language instructions re-
spectively in ALFRED.
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Figure 5: Performance on ALFRED-L seen splits with different proportions of masked directional and spatial words.

ALFRED ALFRED-L NAV REV-1 REV-n

Trajectories 506 1024 506 375 143

Anns. 1641 3326 1641 1219 466

Sub-goals 10710 18919 5111 9183 4625

Table 3: Statistics of ALFRED (val seen + unseen) and
ALFRED-L (seen + unseen) test splits.

tested models increases by up to >30% (relative)
on NAV-ONLY; whereas the performance drops by
up to 91% (relative) on the REV-1 split and REV-n
splits. Clearly the models fail to perform reverse
navigation steps and the non-zero success rate on
REV-1 and REV-n results from test samples where
the model’s destination in the original test set and
the reverse navigation step is within the reacha-
bility threshold 7. We hypothesize that NAV-ONLY
performance is higher than that on the ALFRED
test set as the agent has to perform a similar tra-
jectory allowing the use of previously memorized
knowledge about object positions but does not have
to be able to frame or segment objects correctly as
these do not need to be manipulated. These obser-
vations strengthen our conclusions made in section
2 that models tend to rely heavily on ALFRED task
structure and visual input and ignore details present
in language instructions.

We also test the models trained in section 2 on
ALFRED-L. These models are trained with lan-
guage instructions where different proportions of
directional and spatial words are masked out. From
the results of these experiments presented in Fig 5
we observe that the models do not show any sensi-
tivity to these perturbations. Overall, ET + Synth
is relatively more sensitive and generalizes better
to ALFRED-L compared to other models, indicat-
ing that augmenting ALFRED training data with
additional trajectories helps enable models to better
utilize language.

7see Appendix B.2.

ALFRED-L
Model ALFRED NAV-ONLY REV-1 REV-n

S U S U S U S U

ET 31.5 2.7 39.9 11.2 2.6 0.5 2.1 0.0
ET w/o PT 26.2 2.1 38.1 8.7 2.1 0.5 1.8 0.0
ET+Synth 44.7 6.5 51.3 19.6 9.2 2.3 7.8 1.9
HiTuT 25.2 12.4 35.6 20.2 2.4 2.0 1.8 0.6
MOCA 19.1 3.7 20.6 4.5 0.5 0.0 0.0 0.0
Seq2Seq 3.7 0.0 3.9 0.0 0.0 0.0 0.0 0.0

Table 4: Comparison of model performance (Task Success
Rate in percentage) on Validation Seen (S), Unseen (U) splits
between ALFRED and ALFRED-L splits.

4 Conclusion

We evaluate embodied task completion models
trained on ALFRED and find that they are not very
sensitive to loss of spatial and directional informa-
tion, or detailed task steps. We also present a new
test split ALFRED-L to test generalization to novel
task structures and find that models are unable to
adapt to the addition of extra reverse navigation
steps.

We hope that our work guide the development of
future embodied AI benchmarks (and models) to
avoid the issues we identified with ALFRED. In ad-
dition, our analysis at the sub-goal level on unseen
environments (unseen test) and on our proposed
ALFRED-L test split help test different generaliza-
tion aspects and therefore can potentially represent
major failure modes in other embodied AI datasets.

5 Limitations

We analyze ALFRED models for their sensitivity to
modifications in input language instructions. How-
ever since our analysis is restricted to dataset in
English, we are unsure whether similar behavior
will be observed in languages other than English
for embodied task completion. We hypothesize
that such behavior will be less likely in datasets
spanning more tasks or where less of the scene
is visible from any given position the agent is in.
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Additionally we do not include models that make
semantic maps of the environment in this analysis.
However, some such works (Blukis et al., 2022;
Min et al., 2021) have stated that the difference
in performance when step-by-step instructions are
removed is low.

Another limitation of our work is that unlike
in the creation of ALFRED where each trajectory
is annotated with 3 (or more) sets of language in-
structions, in ALFRED-L we only provide a sin-
gle language instruction for the additional reverse
navigation steps added in REV-1 and REV-n splits.
Since the examples in REV-1 and REV-n include
all the steps of the original ALFRED trajectory,
we rely on the diversity between the original sets
of ALFRED instructions to separate the resultant
instructions in ALFRED-L.
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Appendix

In this supplementary material, we begin by provid-
ing more details on our perturbation experiments
to supplement Section 2 of the main paper. We
then present additional details on our ALFRED-L
annotation, and show a few examples randomly
sampled from ALFRED-L to supplement Section
3.

A Reducing Instruction Informativeness

As discussed in Section 2 of the main paper, in
perturbation experiment E1, we drop all directional
and spatial words from both high and low level
language instructions. Note that, in E1, we only
perturb samples during inference and use original
unperturbed data during training. In Figure 6 we
present a examples of these perturbations. On the
other hand, in experiment E2, we discard all low
level language instructions during both training
and inference, and do not perform any perturbation
on high level language instructions. We closely
followed the original set up used by the ET and
other models proposed for ALFRED dataset (batch
size, learning rate, pre-training, iterations, etc) for
training and inference. All these models are trained
using 4 to 8 NVIDIA A100 and V100 instances.
Table 5 and Table 6 present the absolute percentage
of task and sub-goal success rate of the models in
E1 and E2 settings - corresponding to Table 1 and
Table 2 in Section 2 of the main paper.

B ALFRED-L Test Splits

As discussed in Section 3 of the main paper, we
construct ALFRED-L test split by performing mod-
ifications to the trajectories from ALFRED valida-
tion Seen and Unseen splits. In the below subsec-
tions we provide the details on the creation of the
ALFRED-L splits and the modifications made to
the trajectories.

B.1 NAV-ONLY subset
This is constructed by removing language instruc-
tions for all object manipulation steps. After delet-
ing all the interaction sub-goals, we re-generate
the visual scenes using render_trajs.py script
from https://github.com/alexpashevich/E.

Original Instruction Perturbed Instruction

Turn to the left, then to the right, then to 
the sink on the right Turn sink

Move over to your right so that you are 
at the right end of the desk Move desk

Walk forward four steps, turn left for 
three steps and stop to the left of the 

toilet
Walk turn stop toilet

Figure 6: Examples for experiment E1 perturbations

Model Val-U
%

Val-S
%

E1-U
%

E1-S
%

E2-U
%

E2-S
%

ET 2.7 31.5 1.6 20.3 2.5 31.1
ET w/o PT 2.1 26.2 1.2 17.9 2.0 25.8
ET+Synth 6.5 44.7 4.1 35.2 6.2 44.1
HiTuT 12.4 25.2 8.6 17.6 11.5 24.1
MOCA 3.7 19.1 2.9 15.2 3.7 18.7
Seq2Seq 0.0 3.7 0.0 3.7 0.0 3.6

Table 5: Task Success Rate (in percentage) of models on
ALFRED validation unseen (Val-U) and seen (Val-S) splits in
E1 and E2.

T./tree/master/alfred/gen - to make the vi-
sual inputs to be consistent with the language in-
puts.

For example, consider a sample json structure
for the trajectories in ALFRED as shown in Fig-
ure 7. To create NAV-ONLY trajectory from this json,
(a) We first collect the high-level indices
(high_idx) of all the GoToLocation sub-goals us-
ing the json object plan -> high_pddl.
(b) We next filter out the navigation low-level ac-
tions indices (i.e. low_idx in low_actions json
object) for the corresponding navigation high-level
indices filtered in previous step.
(c) Next, we remove all the images from the
images json object which does not contain the se-
lected high_idx and low_idx values.
(d) We then remove all the language anno-
tations for the manipulation actions in the
turk_annotations -> anns -> high_descs
based on the selected high_idx. Note that high-
level indices (high_idx) has one-to-one mapping
with the language annotations.
(e) We pass this updated json to the render_traj.py
script to re-generate the images.

Table 7 and Table 8 show few examples of the
language annotations in the original trajectory and
in the modified NAV-ONLY trajectory. Note that we
explicitly capture the final expected position of the
agent and modify the original ALFRED evalua-
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Sub-Goal Val-U
%

Val-S
%

E1-U
%

E1-S
%

E2-U
%

E2-S
%

CleanObject 91.2 88.4 74.3 74.1 88.9 87.2
CoolObject 99.1 95.2 99.9 95.2 99.1 95.2
GoToLocation 50.7 80.0 52.8 78.6 50.9 79.8
HeatObject 99.3 94.4 98.5 88.5 99.3 93.3
PickupObject 69.0 75.9 65.9 75.2 67.5 75.9
PutObject 69.8 84.5 65.2 83.7 69.1 84.5
SliceObject 65.8 89.7 64.9 84.8 65.8 88.0
ToggleObject 83.2 98.9 83.2 99.9 83.2 98.9

Table 6: Sub-goal Success Rate of ET+Synth model on AL-
FRED ALFRED validation unseen (Val-U) and seen (Val-S)
splits in E1 and E2.

tion pipeline to only consider this final position
for computing task success rate. While evaluating
model performance on NAV-ONLY split, if the agent
is within 5 steps (i.e. reachability threshold≤
1.25, where the step size in AI2Thor is 0.25) away
from the ground-truth destination, we consider the
task to be successful.

B.2 REV-1 and REV-n splits

These add additional navigation instructions
instructing the agent to backtrack to known
reference positions along the trajectory. REV-1
adds exactly one navigation step to the original
set of step-by-step instructions from ALFRED
and REV-n adds more than one navigation steps.
The authors of this work annotate the language
instructions for these reverse steps. We perform
multiple validation steps and delete the trajectories
that are ambiguous or not clear. Table 7 and
Table 8 show few examples of the language
annotations in the original trajectory and in
the modified REV-1 and REV-n trajectories. In
re-generating the visual scenes for the newly
added reverse instructions, we first add new
sequence of low-level actions to the json structure
by reversing the order of original navigation
steps and then pass the updated json structure to
the https://github.com/alexpashevich/E.T.
/tree/master/alfred/gen/render_traj.py
script to generate corresponding images.

For example, if the original sequence of
navigation contains low-level actions such as
MoveForward → MoveForward → PickUp →
RotateLeft → MoveForward → Look Down, the
reversed navigation actions would be LookUp →
MoveForward → RotateRight → MoveForward
→ MoveForward. As we can see, we inter-
change RotateRight and RotateLeft; LookUp
and LookDown actions while backtracking. Also,

Figure 7: JSON structure for the trajectories in AL-
FRED

the first time we initiate the reverse backtracking,
we perform RotateRight action twice. Moreover,
all the object interaction actions such as PickUp
are skipped while backtracking.

Similar to NAV-ONLY trajectories, we explicitly
capture the final expected position of the agent and
modify the original ALFRED evaluation pipeline to
consider final position of the agent in addition to the
object interaction tasks, for computing task success
rate. We set the reachability threshold to be
≤ 1.25, where the step size in AI2Thor is 0.25. In
Table 4 of the main paper, we find the performances
of all the models on REV-1 and REV-n drops to 0
on both seen and unseen splits when we decrease
the reachability threshold to ≤ 0.5.
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Task Type: pick clean then place in recep
High-level Goal: Put a knife in the sink before standing it on the counter.

Original
Instructions

Go to the right and walk to the fridge, hang a right and go to the counter between the dishwasher
and stove.
Pick up the potato that is on the counter.
Go right to the microwave.
Put the potato in the microwave, turn it on to cook, remove the potato.
Go left towards toward the fridge, then hang a left, go to the garbage can.
Put the potato in the garbage can.

NAV-ONLY
Instructions

Go to the right and walk to the fridge, hang a right and go to the counter between the dishwasher
and stove.
Go right to the microwave.
Go left towards toward the fridge, then hang a left, go to the garbage can.

REV-1
Instructions

Go to the right and walk to the fridge, hang a right and go to the counter between the dishwasher
and stove.
Pick up the potato that is on the counter.
Go right to the microwave.
Put the potato in the microwave, turn it on to cook, remove the potato.
Go left towards toward the fridge, then hang a left, go to the garbage can.
Put the potato in the garbage can.
Walk back to the microwave.

REV-n
Instructions

Go to the right and walk to the fridge, hang a right and go to the counter between the dishwasher
and stove.
Pick up the potato that is on the counter.
Go right to the microwave.
Put the potato in the microwave, turn it on to cook, remove the potato.
Go left towards toward the fridge, then hang a left, go to the garbage can.
Put the potato in the garbage can.
Walk back to the microwave.
Return to the counter between the dishwasher and stove.

Table 7: Random example from ALFRED-L. We show original crowd-sourced instructions from ALFRED as well
as our modified ALFRED-L instructions in NAV-ONLY, REV-1 and REV-n setting.
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Task Type: pick clean then place in recep
High-level Goal: Clean a knife and put it back onto the counter.

Original
Instructions

Turn left and move to the gray coffee maker to the right of the lettuce, then move to the silver
dishwasher to the right of the black toaster.
Pick up the yellow handled knife to the left of the square plate from the counter.
Turn around and move to the sink to the right of the loaf of bread.
Place the knife in the sink to the left of the lettuce, turn on the faucet to rinse the knife, then pick
up the knife from the sink.
Turn around and face the dishwasher underneath the green glass.
Place the knife on the plate to the rear of the potato on the counter.

NAV-ONLY
Instructions

Turn left and move to the gray coffee maker to the right of the lettuce, then move to the silver
dishwasher to the right of the black toaster.
Turn around and move to the sink to the right of the loaf of bread.
Turn around and face the dishwasher underneath the green glass.

REV-1
Instructions

Turn left and move to the gray coffee maker to the right of the lettuce, then move to the silver
dishwasher to the right of the black toaster.
Pick up the yellow handled knife to the left of the square plate from the counter.
Turn around and move to the sink to the right of the loaf of bread.
Place the knife in the sink to the left of the lettuce, turn on the faucet to rinse the knife, then pick
up the knife from the sink.
Turn around and face the dishwasher underneath the green glass.
Place the knife on the plate to the rear of the potato on the counter.
Walk back to the sink to the right of the loaf of bread.

REV-n
Instructions

Turn left and move to the gray coffee maker to the right of the lettuce, then move to the silver
dishwasher to the right of the black toaster.
Pick up the yellow handled knife to the left of the square plate from the counter.
Turn around and move to the sink to the right of the loaf of bread.
Place the knife in the sink to the left of the lettuce, turn on the faucet to rinse the knife, then pick
up the knife from the sink.
Turn around and face the dishwasher underneath the green glass.
Place the knife on the plate to the rear of the potato on the counter.
Walk back to the sink to the right of the loaf of bread.
Move to the silver dishwasher to the right of the black toaster.

Table 8: Random example from ALFRED-L. We show original crowd-sourced instructions from ALFRED as well
as our modified ALFRED-L instructions in NAV-ONLY, REV-1 and REV-n setting.
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